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CNRS, LIPN, Université Paris 13, Sorbonne Paris Cité
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Implicit computational complexity. Loosely speaking, the aim of implicit computational complexity (ICC) is to
replace clocks (or other explicit resource bounds) with certificates. For example, if we consider polynomial time
computation, the idea is to define a structured programming language whose programs are guaranteed to be polytime
by construction, e.g., because they are well-typed, not because their execution is artificially stopped after a polyno-
mial number of steps (which is the “explicit” definition used in computational complexity). At the same time, such
a programming language must be expressive enough so that every polynomial time function may be somehow im-
plemented. Notable early examples of such methodology are the work of Bellantoni and Cook [BC92], Leivant and
Marion [LM93], and Jones [Jon99].

Although there is an annual international workshop on the topic,1 ICC is a niche research subject which rarely
appears in mainstream programming languages conferences. Nevertheless, it is thematically relevant, both in terms of
techniques (type systems, proof theory, semantics. . . ) and potential applications (mostly program analysis [JHLH10,
DLG11], but people are starting to develop applications to the verification of cryptosystems [NZ15]).

Non-uniform computation. To keep the definition of cost model as simple and incontrovertible as possible, the
“default” models used in computational complexity (Turing machines, RAMs. . . ) are extremely low level. This has
the effect of virtually erasing the fundamental structures present in data and algorithms: in Turing machines, there are
no data types, just strings; and all algorithms, albeit containing recursion, control structures, subroutines and such,
become sets of tuples.

Although complexity theorists have been able to develop their research seemingly unimpeded by the above remark,
in truth the theory has been most successful in proving non-trivial lower bounds when algorithms are expressed in
computational models offering more structure than just sets of tuples or assembly-like instructions. Decision trees,
Boolean formulas and circuits are typical examples of such models (see for instance Part II of [AB09]). These all share
the characteristic of being strongly finitary, in the sense that one program may only handle finitely many inputs (usually,
all inputs of a given size). In order to compute a function in the usual sense (defined on data of arbitrary size), one has to
consider infinite families of such programs (one for each input size). To stay within the realm of computable functions,
one must impose a uniformity constraint, i.e., that the members of the family are generated by a single “usual” program
(e.g. a Turing machine, perhaps with bounded resources). There are well known connection theorems between, for
instance, time- or space-bounded Turing machines and uniform families of circuits with restrictions on their size or
depth (for instance, deterministic polytime Turing machines correspond to uniform polysize circuits).

However, the role of uniformity in practice is unclear: most lower bound proofs simply ignore it, i.e., they apply
to non-uniform families. Indeed, the majority of existing proof techniques exploit the local structure of each member
of the family, regardless of the other members. The fact that the family globally forms a coherent whole (i.e., an
algorithm in the usual sense instead of infinitely many unrelated micro-algorithms) is surprisingly unhelpful.

Affine functional programs as higher-order Boolean circuits. We propose to discuss the idea of non-uniformity
from the point of view of functional programming and ICC, following recent work by the author (and co-authors) on
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an infinitary affine λ-calculus [Maz12, Maz14, MT15]. The starting point is the “equation”

linear/affine λ-terms
λ-terms

=
Boolean circuits
Turing machines

The relationship between Boolean circuits and affine calculi is not new [Mai04, Ter04]. The key novelty of the present
line of work is the idea of continuous approximation: every usual λ-termM induces an infinite family of affine λ-terms
converging to it (technically, they converge to the infinitary affine representation ofM , in a suitable topology [Maz12]).
Additionally, term evaluation (i.e., β-reduction) is continuous, which has the following consequence. Suppose that M
decides a language: for every Church string w, Mw →∗ b with b a Boolean. Then, continuity guarantees that there
is an affine approximation t|w| of M (where |w| is the length of w) such that t|w| w →∗ b. If M is compared to a
Turing machine, then t|w| is akin to the circuit approximating the behavior of the machine on inputs of size |w|. Using
this fact, one may re-establish certain fundamental complexity-theoretic results, such as the Cook-Levin theorem, in
a purely functional setting. Moreover, working along these lines one may find implicit characterizations of certain
standard non-uniform complexity classes (namely, non-uniform polytime P/poly [Maz14] and non-uniform logspace
L/poly [MT15]). Capturing such complexity classes is a novelty in ICC.

There are two main perspectives which we wish to put forward:
• within the theory of programming languages, one may wonder whether the notion of continuous approxima-

tion has applications in static analysis and control flow analysis (CFA). Essentially, ICC is a kind of static
analysis: runtime properties of programs (their membership to a complexity class) are inferred at compile-
time. Does the non-uniform view provide new methods for refining ICC to more sophisticated analyses,
e.g. of the kind provided in [DLG11, GS14] (which already come from ICC)? Are affine approximations re-
lated to the approximations used in k-CFA? One should also mention Ghica’s geometry of synthesis (http:
//www.veritygos.org/), which is based on the idea of extracting circuits from higher-order programs.

• A more speculative (and much more ambitious) question is whether the higher-order view of non-uniformity
may shed some light on the role (or lack thereof) of uniformity in lower bound proofs. Is there a more ab-
stract formulation of the notion of approximation (categorical, type-theoretic, or any other traditional tool of PL
theory) which helps explaining why current lower bound proof methods fail at exploiting uniformity?
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