
The Semantics of Syntax
Applying Denotational Semantics to Hygienic Macro Systems

Neelakantan R. Krishnaswami
University of Birmingham

<N.Krishnaswami@cs.bham.ac.uk>

1. Introduction
Typically, when semanticists hear the words “Scheme” or
“Lisp”, what comes to mind is “untyped lambda calculus
plus higher-order state and first-class control”. Given our
typical concerns, this seems to be the essence of Scheme: it
is a dynamically typed applied lambda calculus that sup-
ports mutable data and exposes first-class continuations to
the programmer. These features expose a complete com-
putational substrate to programmers so elegant that it can
even be characterized mathematically; every monadically-
representable effect can be implemented with state and first-
class control [4].

However, these days even mundane languages like Java
support higher-order functions and state. So from the point
of view of a working programmer, the most distinctive fea-
ture of Scheme is something quite different – its support for
macros. The intuitive explanation is that a macro is a way of
defining rewrites on abstract syntax trees. However, Scheme
programmers typically pair this explanation with the advice
that getting macros right is rather subtle, and that one should
avoid macros unless the usual abstraction mechanisms of the
language have been tried first and have failed.

Because of this subtlety, macros remain a distinctive fea-
ture of the Lisp family, and have so far failed to make the
jump to other functional languages; neither ML nor Haskell
have formal macro systems. (GHC Haskell offers program-
matic access to the AST via Template Haskell, though many
users seemingly hate this feature. Ocaml used to have a
macro system — CamlP4 — but this macro system has ac-
tually been removed from recent versions of the language!)
This, despite the fact that most functional languages have
features, such as pattern matching and do-notation, which
have compositional, local desugarings that would lend them-
selves to being defined and implemented as macros.

This gap arises for surprising and deep reasons, which
the description of a macro as an AST rewriting glosses over.
Without a deeper understanding of these reasons, the tech-
nology developed for Scheme does not immediately transfer
to typed languages, because it is not obvious how to report
errors in terms of the the source rather than the expansion.

2. Three Features of Macro Systems
Below, we lay out the three key features of modern macro
systems which both give them their power, and make them
challenging to understand.

2.1 Hygiene

One of the most celebrated features of Scheme’s macro sys-
tem is its support for hygiene [10] – names introduced in the

body of a macro definition do not interfere with names oc-
curring in the macro’s arguments. Consider this definition of
a short-circuiting and operator:

(define-syntax and
(syntax-rules ()

((and e1 e2) (let ((tmp e1))
(if tmp

e2
tmp)))))

In this definition, even if the variable tmp occurs freely
in e2, it will not be in the scope of the variable definition
in the body of the and macro. As a result, it is important to
interpret the body of the macro not merely as a piece of raw
syntax, but as an alpha-equivalence class.

2.2 Open Recursion

Another essential feature of macro systems (albeit one which
is not usually remarked upon explicitly) are their support for
open recursion. That is, having defined the and macro, we
can similarly define a short-circuiting or macro as follows:

(define-syntax or
(syntax-rules ()

((or e1 e2) (let ((tmp e1))
(if tmp

tmp
e2)))))

Then, expressions like (and (or b1 b2) b3)will “just
work”. This illustrates the key advantage of macros over
straightforward AST-to-AST rewriting — a macro will con-
tinue to work in the presence of other macros, even ones
that had not been anticipated ahead of time. If and and or
had been implemented by an AST rewriter, then the pres-
ence of the or would have confused the and rewriter, and
vice-versa.

2.3 Discovering Binding Structure

Despite macro hygiene, Scheme still permits the definition of
so-called exotic identifiers [8], which makes it quite difficult
to determine the appropriate notion of alpha-equivalence for
source programs. Below, I give a simple macro illustrating
the issue:

(define-syntax perverse
(syntax-rules ()

((perverse x e) (cons (lambda (x) e)
’((x) e)))))

The x argument to the perverse macro is used both as
a binder in the lambda in the first component of the cons

The Semantics of Syntax, OBT’16 submission 1 2015/11/12



cell that perverse creates, and as a symbol in the second
component of the cons cell. As a result, (perverse x (+ x
x)) is not alpha-equivalent to (perverse y (+ y y)),
even though the first argument is a binder.

3. Problems and Challenges
The combination of exotic identifiers, hygiene and open re-
cursion is a very challenging one from the theoretical point
of view. We want macro bodies to respect alpha-equivalence,
but because of open recursion, macro bodies may contain
macros we do not know about, and these macros may well
be exotic. As a result, it is not immediately clear how to even
define what alpha-equivalence means for source programs!

The traditional approach to explaining hygiene [2, 10] has
been an operational one, where the details of the algorithm
are exposed to the programmer so that (with enough study)
it becomes clear that alpha-equivalence has been maintained.
Herman and Wand [9] extend this approach by giving types
to macros, specifying their binding structure, and then prov-
ing a type safety result to ensure that expansion respects this
specification. Adams [1] takes a more semantic approach, us-
ing nominal sets to specify invariance under renaming, and
uses an unusual doubled interpretation of potential binders
to account for potential exotic identifiers.

4. Approach
Herman [7] has remarked that the key engineering feature of
macros is that where traditional compilers take raw text and
parse it into an AST, a language with a macro system takes
text, reads it into an intermediate form (e.g., s-expressions),
and then recursively runs macro-expansion until a core form
is found. This can be illustrated with the following diagram:

Text Read S-Exp Expand λ

Our idea is that a semantic understanding to macro-
expansion can be achieved by splitting this process up fur-
ther. Macro-expansion interleaves the discovery of bind-
ing structure with rewriting. We can take a page from the
Nuprl [3] playbook, and add a second intermediate stage of
abstract binding trees [6], which are essentially syntax trees
annotated with binding information. Unlike the λ-calculus,
they are pure data: the only equations they satisfy are alpha-
equivalence.

So we can split macro expansion into two phases, binding
and elaboration. Binding takes a tree without any binding
structure and identifies binding sites and variable usages,
and then elaboration is rewriting upon the abstract binding
tree.

Text Read S-Exp Bind ABT Elab λ

Happily, semantic models of trees with binding are al-
ready available; Fiore et al [5] show how to interpret datatypes
with binders as ordinary inductive datatypes in the functor
category SetI of functors from the category of finite sets and
injections I to Set. Intuitively, the idea is that we work in a
Kripke model where the Kripke worlds are finite sets of vari-
able names, with injections corresponding to renaming and
weakening.

This idea can be seen as a reformulation of the approach of
Adams [1] – this functor category is also a model of nominal

sets [11]. The naturality condition on morphisms in the func-
tor category then corresponds to invariance under renaming,
and separating binding from elaboration permits us to drop
the doubled interpretation of identifiers.

While this is seemingly a mere change in viewpoint, it is
a very powerful one. Once we begin thinking of free vari-
ables as living in a context, we can consider other notions of
context. In particular, we can consider the category of typed
contexts, where each variable also carries a type. Then, by in-
terpreting transformations in the functor category over the
category of contexts, the usual naturality conditions will en-
sure that we do not define transformations which generate
ill-typed expressions! So by interpreting a macro language in
the internal language of the functor category, we can ensure
that all macros are, by construction, typesafe.

Furthermore, each phase of expansion can be understood
as a way of taking data from a less-structured category into a
more-structured one: s-expressions are merely trees, abstract
binding trees are trees with binding, and typed lambda terms
have typed binding forms.

5. Conclusion
Because this is work-in-progress, everything written here
should be regarded as conjectural. However, we hope to give
a talk showing how we can decompose macro systems in
such a way that deep ideas from semantics become appli-
cable to them, making their invariants plain and (hopefully)
laying out a roadmap to bring macros to typed languages.

References
[1] Michael D. Adams. Towards the essence of hygiene. In Proceed-

ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 457–469, 2015.

[2] William D. Clinger and Jonathan Rees. Macros that work. In
Conference Record of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, Orlando, Florida, USA, Jan-
uary 21-23, 1991, pages 155–162, 1991.

[3] RL Constable, SF Allen, HM Bromley, WR Cleaveland, JF Cre-
mer, RW Harper, DJ Howe, TB Knoblock, NP Mendler, P Panan-
gaden, et al. Implementing mathematics. Prentice-Hall, Inc., 1986.

[4] Andrzej Filinski. Representing monads. In Conference Record of
POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Portland, Oregon, USA, January 17-21,
1994, pages 446–457, 1994.

[5] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract
syntax and variable binding. In 14th Annual IEEE Symposium
on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages
193–202. IEEE Computer Society, 1999.

[6] Robert Harper. Practical foundations for programming languages.
Cambridge University Press, 2012.

[7] David Herman. Homoiconicity isn’t the point.
http://calculist.org/blog/2012/04/17/
homoiconicity-isnt-the-point/. Accessed: 12 Nov
2015.

[8] David Herman. A Theory of Typed Hygienic Macros. PhD thesis,
Northeastern University, Boston, MA, 5 2010.

[9] David Herman and Mitchell Wand. A theory of hygienic
macros. In Programming Languages and Systems, 17th European
Symposium on Programming, ESOP 2008, pages 48–62, 2008.

[10] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen,
and Bruce F. Duba. Hygienic macro expansion. In LISP and
Functional Programming, pages 151–161, 1986.

[11] Ian Stark. Categorical models for local names. Lisp and Symbolic
Computation, 9(1):77–107, 1996.

The Semantics of Syntax, OBT’16 submission 2 2015/11/12

http://calculist.org/blog/2012/04/17/homoiconicity-isnt-the-point/
http://calculist.org/blog/2012/04/17/homoiconicity-isnt-the-point/

	Introduction
	Three Features of Macro Systems
	Hygiene
	Open Recursion
	Discovering Binding Structure

	Problems and Challenges
	Approach
	Conclusion

