
Programming Interactivity Requires Both Semantics and Semiotics

Joseph C. Osborn, Michael Mateas
University of California, Santa Cruz

Introduction. Programming languages are generally
designed around models of computation, classes of pro-
grams, or populations of programmers. Considering in-
teractive applications (e.g. games and single-page Web
applications), we argue that programming language re-
search could be usefully oriented around the end-user’s
experience of interacting with the system. Operational
logics, a theoretical framework borrowed from the study
of games and other interactive media, are an especially
suitable formalism that accounts for both the subjective
experience of users and the expressive requirements of
program authors. While end-user experience is not a tra-
ditional subject of PL research, this move helps explain
the recent success of the React user interface library and
could yield future research directions.

Operational logics combine abstract operations
with communicative strategies, at once describing both
how it works and what it looks like [7, 13]. This con-
trasts with earlier approaches in game studies that split
game rules from game fiction (art, sounds, text, and so
on) and studied them separately; in fact, this was al-
ways a contested division [2, 10]. Animation and sound
effects strongly influence how players perceive and em-
ploy a game’s rules, and are in turn contextualized and
given interpretations by their interplay with the rules.

A similar shift is happening in Web development
today. React explicitly combines behavior and presen-
tation in user interface components, de-emphasizing
CSS in favor of styling and presentation via JavaScript
because UI components are often defined by a tight
coupling between visual appearance, underlying state,
and time-evolving interactive behavior [3]. The behav-
ior/presentation split impairs reasoning about the whole
component, since each part of the specification imple-
mented in multiple distinct locations and languages.
Bret Victor’s work is similar in spirit, advocating di-
rect manipulation and reducing the distance between
user-domain concepts and computation [12], echoing
the principles of the Morphic user interface toolkit. We
assert that the motivating pain in all these cases is the
untenable separation of an interactive system into ap-
pearance and behavior: effectively the same split that
caused so much strife and spilled ink in game studies.

We do not argue that ad hoc separation of con-
cerns along the lines of UI components is ideal: we
instead must identify a new principle for decomposing
interactive applications. Besides the ubiquitous presen-
tation/behavior split, concerns have been separated and
individually addressed according to factors like perfor-
mance or the expected authors of changes. We assert
that fields which study interaction with computer pro-
grams and other rule-based systems could provide use-
ful criteria for breaking down interactive programs into
smaller parts. Here we consider game studies, which
theorizes games, play, and players.
Operational Logics. Simulations have inspired PL re-
search at least since Simula, but games are more than
just simulations with user input. Players must form a
mental model of the system with which they are inter-
acting precisely enough to plan towards specific goals,
revising this model as necessary [6]. This interplay be-
tween computational process and observed phenomena
is captured by operational logics; each logic combines
a set of abstract operations like those of collision de-
tection or timed state machines with a communicative
strategy such as 2D sprites or colored text.

For example, players interpret moving images as
solid simulated objects because they halt when overlap-
ping each other; they see an increasing number next to
a small image of a hamburger as gaining more food be-
cause their own sprite has just touched a larger image
of a hamburger. It matters that hamburgers are food,
that the small icon and larger image match up, and that
the counter increases (invoking abstract operations of
a resource logic) due to player actions (in the colli-
sion logic). These interpretations involve both computa-
tion and presentation: if the player’s sprite started react-
ing differently to collisions—if it occasionally moved
through enemies unimpeded—but the appearance of
this sprite did not change, players would be unable to
predict or make sense of the new behavior. Most games
are made up of several operational logics (OLs); each
game rule is built from OLs’ abstract operations and
surfaced via their communicative strategies.

Game rules roughly correspond to program fea-
tures, while games’ observable phenomena correspond



to user interface elements and feedback. Considering
the audiovisual phenomena of a game apart from its
rules is exactly as problematic as separating an applica-
tion’s presentation and behavior. The two are inextrica-
bly linked for the user and the designer, but in the source
code the linkage is implicit, invisible, and tenuous.

An operational logics approach to programming
emphasizes the reuse and composition of just a few
OLs, with each such logic providing a few flexible oper-
ations and communicating via pre-determined channels
(e.g. arcs and lines to be rendered by a drawing library).
We thereby commit to a constrained language for ex-
pressing the required concepts, both from the standpoint
of the developer (in terms of authorial affordances) and
the interactor (in terms of interpretive affordances).

A music-playing application models a library of
songs with membership in various playlists and other
views. A tabular logic organizes each song’s metadata
into columns and rows, with the resizing of columns
governed by a collision logic. Tabular logic’s abstract
operations come from relational algebra and its com-
municative strategy lays out each row and column in
a grid. Though actually playing music requires calls to
system libraries, the semantic connection between the
UI’s playhead and the song’s current audio sample is
maintained by an operational logic: the sound emitted
by the speaker communicates the playhead’s movement,
just as arcs and lines render its visual appearance.
Games and Programming Languages. Previous pre-
sentations at this workshop have proposed games as a
domain for programming language research [5]; we will
further reinforce that argument. Game makers may be a
friendlier audience for the claims and tools of program-
ming language researchers than application developers
in general [8]. Games have relatively explicit but fre-
quently evolving designs, and some lightweight mathe-
matical modeling techniques are already in use [11].

Many game-making tools already address particu-
lar compositions of operational logics: Twine [4] privi-
leges linking logics, and Idle Game Maker [9] provides
a language for resource logic games. Game developers
have also been known to invent their own configura-
tion or programming languages as needed. Games are
therefore an ideal domain for exploring the design and
composition of domain-specific languages (DSLs), and
operational logics give a strong theoretical foundation.

We can also identify OLs with models of com-
putation, immediately connecting to existing research
communities. For example, hybrid automata are used
to model systems with both discrete and real-time com-
ponents [1]. They naturally describe the composition of
physics logics and character-state logics; we can there-
fore use their verification and parameter synthesis tools

directly on games made up of these logics.
Finally, most games are not capable of universal

computation during play and should not require univer-
sal programming languages for their implementation.
Games provide large, natural classes of non-universal
machines, and we should seek convenient ways to spec-
ify such systems; universality is also unnecessary for
many non-game interactive systems.
Conclusion. When building software for humans, we
must account for users not just in our programming
practices, but programming languages as well. The craft
of making games presents an interesting and challeng-
ing domain for PL research; it could in turn benefit from
the PL community’s involvement.

References.

[1] Rajeev Alur et al. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid
systems. Springer, 1993.

[2] Gonzalo Frasca. “Ludologists love stories, too: notes
from a debate that never took place”. In: International
Conference of the Digital Games Research Associa-
tion. 2003.

[3] Pete Hunt. “React: Rethinking Best Practices”. In:
JSConf EU 2013. 2013. URL: https : / / www .
youtube.com/watch?v=x7cQ3mrcKaY.

[4] Chris Klimas. Twine. 2009. URL: http : / /
twinery.org.

[5] Chris Martens. “Languages for Computational Cre-
ativity: Generative Art and Virtual Worlds”. In: POPL
Off the Beaten Track. 2013.

[6] Michael Mateas. “Expressive AI: A Semiotic Analysis
of Machinic Affordances”. In: Conference on Compu-
tational Semiotics for Games and New Media. Confer-
ence on Computational Semiotics for Games and New
Media. 2003.

[7] Michael Mateas and Noah Wardrip-Fruin. “Defining
operational logics”. In: International Conference of
the Digital Games Research Association. 2009.

[8] Mark J Nelson and Michael Mateas. “A require-
ments analysis for videogame design support tools”.
In: International Conference on Foundations of Digi-
tal Games. ACM. 2009, pp. 137–144.

[9] Orteil and Opti. Idle Game Maker. 2014. URL: http:
/ / orteil . dashnet . org / experiments /
idlegamemaker/help.

[10] Celia Pearce. “Theory Wars: An Argument Against
Arguments in the so-called Ludology/Narratology De-
bate”. In: International Conference of the Digital
Games Research Association. 2005.

[11] Paul Tozour. “Decision Modeling and Optimization in
Game Design”. In: Gamasutra (2013).

[12] Bret Victor. Drawing Dynamic Visualizations. 2013.
URL: https://vimeo.com/66085662.

[13] N. Wardrip-Fruin. “Playable media and textual instru-
ments”. In: Dichtung Digital 34 (2005), pp. 211–253.

https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://www.youtube.com/watch?v=x7cQ3mrcKaY
http://twinery.org
http://twinery.org
http://orteil.dashnet.org/experiments/idlegamemaker/help
http://orteil.dashnet.org/experiments/idlegamemaker/help
http://orteil.dashnet.org/experiments/idlegamemaker/help
https://vimeo.com/66085662

