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1 Motivations

Going far off the beaten track of programming lan-
guage development, I have become interested in creating
programming language paradigms that preserve a well-
defined runtime format.

Let me try to motivate this a bit. Try this experiment:
create a simple x86 64 assembly language program that
does nothing except exit and assemble and link it stat-
ically. (You can find a tar file here that includes some
YASM code and a Makefile to make the various executa-
bles referenced here.)

From a debugger, execute this (the resulting binary is
called null from the tar file), break on the start sym-
bol, and admire the very clean register set, with only the
instruction pointer and the stack pointer among the gen-
eral registers having any non-zero values. Among the
math registers, we only see a sea of zeroes.

Now run a statically-linked assembly program that in-
corporates a system call to getuid(2) (this is called
systemcall in the tar file); again, break right after the
system call, and the registers are all nice and clean. Step-
ping through the system call, we see that while RAX has
the correct userid value, RCX has acquired a value of -1
and R11 now has 770 (0x302). This isn’t unexpected;
the ABI explicitly states in A.2.1 that these registers are
“destroyed.” ([MHJM14])

Now run a statically-linked assembly program that in-
corporates a call to the GLIBC library function wrap-
per for the getuid(2) system call (the binary is called
wrapper-static in the tar file.) The GLIBC function
only returns one value in RAX. Again, break just after
the start, and before the call to getuid(3), and again,
the registers look very clean.

Taking one step and calling getuid(3) (the GLIBC
wrapper), like calling the system call directly, changes
both RCX and R11, but differently, with RCX changing
to 0x4000d7 and R11 to 0x202. Also, our stack now has
a return address matching our call to getuid(3) in the

“unused” area.
Now let’s look at the registers when we run a dynam-

ically linked version of the same program (the binary is
called wrapper-dynamic in the tar file.) Even before
starting anything in this binary, our dynamic loader has
apparently left quite a bit of “digital debris” lying about.
RAX has a 0x1c, RCX has 0x7ffff7ffe758, RDX has
0x7ffff7dea560, RSI has 0x1, RDI has 0x7ffff7ffe1c8,
R8 has 0xb, R9 has 0x4, R10 has 0xd, R11 has 0x8, R12
has 0x400240, R13 has 0x7fffffffe040, and SSE3 regis-
ters YMM0 through YMM4 all have non-zero state.

If we take one step, RAX now has 1000 (0x3e8),
our expected userid value, and RCX now has
0x7ffff7ad6e67, R10 has 0x7fffffffde00, and R11 has
0x202. While the R11 change is the same as with the
statically-linked version, the others are not; indeed, R10
wasn’t even changed in the static version.

So, even statically linked, GLIBC doesn’t clean up af-
ter its use of registers; with ld.so’s dynamic linking,
the register set is now positively untidy and strangely un-
even.

2 Striving for a structured environment,
where uncleanness is incorrectness

“Programs rely on a complex runtime environment
that includes several libraries. It is often impossible
to analyze the source code of these libraries.
Frequently, only the binaries are available and,
even when source code is available, some functions
are hand-written in assembly. Yet, many attacks
make use of libraries when exploiting
vulnerabilities.” [CCH06]

From a security perspective, this doesn’t seem to me
a good position to be in. I think it would be desirable
from a security perspective to be able to uniformly spec-
ify what the exact state should be for all registers and all
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memory for a “knowable” process. While one could use
data-flow integrity to at least detect a broad range of bad
behaviors, data-flow integrity by itself does not guarantee
that the data is well-formed, just not undesirably modi-
fied [CCH06].

The strawman that I propose is an entire program-
ming language paradigm built around a credo of know-
ing, from top-down parsing of register state through all
memory utilization, that

• That all process state is all well-formed;

• That all process state is consistent;

• That all process state is semantically coherent.

I will call process state that has all three of these prop-
erties “knowable.”

To specify well-formedness, we start with actual hard-
ware. This is different than formulations that work over
an abstract machine; instead, we bite the bullet and es-
chew optimizations over speed or space, and instead try
to optimize on the basis of having a precise hardware
idea of what is supposed to be where.

In this instance, I will posit that we are working on
x86 64 hardware with a Linux operating system. At any
point in the computation, we can distinguish all three
conditions given register state and working from there to
memory-mappings (in this case, I am not using the stack
given to the process by the kernel, and I do not create a
heap with brk(2)/sbrk(2).)

To do this, we optimize our programming language’s
use of registers and memory for knowability: that is,
starting with the registers, we can verify that the register
state is well-formed, and from those registers, we then
derive that the memory mappings and their contents are
all consistent and semantically coherent.

However, I don’t believe that we want to pay the price
of re-verifying this at every computational step in a prac-
tical setting; instead, we will try to use state changes
that always preserve these properties, and provide frame-
works for both internal and external verification.

So how do we do this?
There are two parts to this. The first is the runtime

system of the programming language has to be able to
1) create new dynamic memory mappings, 2) structure
these dynamic mappings so that they preserve knowabil-
ity, and 3) mediate program requests for memory alloca-
tion and deallocation over these memory mappings. The
runtime dedicates some number of registers to specify
these memory-mapped areas.

The second is that the programming language uses a
runtime model that uses a simple and regular system for
all of its activities; to that end, I have been using a mul-
tiple stack model. There are four types of stacks: 1) a

return stack; 2) an evaluation stack; 3) a local variable
stack; and 4) an exception stack. All of these stacks are
allocated from the runtime system’s memory mappings,
and dedicated registers point to the first three.

The semantics for every programming language con-
struct must be explicable in terms of either modify-
ing clearly defined internal state in the compiler. We
also don’t want a situation where, as documented in
[WZKSL13], improper performance optimizations cause
undefined behavior.
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