
Challenges Facing a High-Level Language for Machine Knitting

Lea Albaugh James McCann
Disney Research Pittsburgh

{lea.albaugh, jmccann}@disneyresearch.com

Knitting is the process of creating textile surfaces out of
interlocked loops of yarn. With the repeated application of a
basic operation – pulling yarn through an existing loop to
create a new loop – complicated three-dimensional struc-
tures can be created [4]. Knitting machines automate this
loop-through-loop process, with some physical limitations
arising from their method of storing loops and accessing
yarns [1, 3]. Currently, knitting machines are programmed
at a very low level. Projects such as AYAB [2] include util-
ities for designing knit colorwork, but only within a limited
stitch architecture; designers working in 3D usually do so
via a set of pre-designed templates [4].

In this talk, we will discuss our current progress in un-
derstanding what machines can knit, and how this under-
standing has informed the design of our low-level knitting
machine language. We also describe problems that face any
high-level knitting description language, and speculate on
ways they might be addressed.

1. An (Abstract) Knitting Machine
At its most basic level, a knitting machine must store loops
and pass new loops of yarn through its stored loops. Modern
v-bed knitting machines store loops on two opposing beds

Figure 1. The basic knitting machine operations, viewed
from above. Tuck adds a loop to a needle. Knit pulls a loop
through (and drops) the current loops on a needle. Transfer
hands the loops on a needle to the opposing needle.

(rows) of hook-shaped needles. Between the two beds, yarn
feeders bring yarn into the system.

Each needle can form and hold loops, as well as transfer
its currently held loops to the needle across from it, Figure 1.
The alignment of the beds can be changed within machine
limitations, allowing loops to be transferred to various off-
sets.

Once a loop has been dropped, it can no longer be ac-
cessed by the machine. A loop can be dropped explicitly, and
a loop is always dropped when a new loop is pulled through
it unless a special split stitch (which combines a knit with a
transfer) is used.

2. What is Machine-Knittable?
The basic operations above can produce a limited number
of local structures. In fact – and we state this without proof
– the local structure of any machine-knitted object can be
described by a directed acyclic graph containing eight types
of structure nodes (yarn in, yarn out, drop, miss, tuck, knit,
split, stack), and two types of connection (yarn, loop), Figure
2.

Figure 2. The local structure of a machine-knit object can
be described by an acyclic graph containing eight types of
nodes, some of which have multiple orientations. Connec-
tions on the left and right are yarns, top and bottom are loops.
Each connection point on a node must be connected to ex-
actly one other node.

Unfortunately, this is not a complete description of a knit
fabric, since it only tracks the behavior of loops, and im-



portant structural connections can be made without loops.
Additionally, this description is not unique: portions of the
graph can flipped horizontally without changing the de-
scribed topology.

But now that we have a description of a knit object that
isn’t a program that produces said object, we can formulate
an interesting problem:

2.1 The Knit Scheduling Problem
Given a description of the structures in a knit object, can the
object be knit? If so, how?

This boils down to assigning time slices on needles to
operations, subject to a few constraints:

1. Yarn isn’t particularly stretchy, so subsequent knits,
tucks, or misses along the same yarn should happen g
needles apart. (Where the gauge, g, is fixed globally to
one or two.)

2. Stitches must be of the appropriate orientation; however,
there’s a choice to be made here, since a right-to-left
stitch formed on a front bed needle is a rotated version
of a left-to-right stitch formed on a back bed needle.

3. Transfer operations don’t appear in the structure, and will
need to be inserted as needed. However, moving loops
between needles is tedious and error-prone, and machines
can only transfer a limited distance. So any stacking oper-
ations might require several transfer operations between
needles, and all such needles will need to be clear of other
loops.

To further complicate matters, the limits of these assign-
ments are machine- and yarn-dependent. Code that works
fine with one yarn on one machine might be incompatible
with another machine or perhaps even fail with a different
yarn on the same machine.

2.2 Tangling
As noted above, yarns (and yarn feeders) can become entan-
gled with each-other depending on the positions where knits
are formed. These tangles can serve an important structural
function in the finished object, but they can equally be unin-
tended and undesired.

This leads to two further challenges for knit language
designers:

1. How can yarn entanglement be detected when error-
checking a program?

2. How can users indicate when entanglement is desired?

3. Low-Level Languages For Machines
Current knitting languages – including our own – require
knit designers to schedule their own knits. Designers specify
actions at particular needles, with a particular yarn, in a
particular time order.

Because of this, simple scheduling changes such as decid-
ing to knit on the front bed instead of the back or deciding
to knit two tubes side-by-side instead of one after the other
can have dramatic impact on the code or even runtime of a
program without changing the result at all.

In addition, programs may not be portable between ma-
chines and yarns.

4. High-Level Knitting Languages
These low-level approaches represent the machine opera-
tions explicitly, and the produced knit structure only implic-
itly. A high-level knitting language would allow users to act
on structural descriptions of a knit, leaving the low-level ma-
chine scheduling task to a compiler.

Such a language may be designed so that programmers
can specify knits at the macro-scale (in terms of tubes,
sheets, and even complete objects) – rather than at a stitch
level. However, stitch-level control will still be important for
defining surface details, like ribbing or lace.

To allow code written at the stitch level to communicate
with code written at the structure level, a high-level knitting
language will need to be able to describe not only the pos-
sible schedules of various stitches, but also the degrees of
freedom in those schedules. In addition, a type theory will
need to be developed to describe how and when high-level
knitting code can be composed; since many knit items fea-
ture basic features (e.g. cuffs) for which modules should be
developed.

These problems may seem difficult from a general lan-
guages standpoint, but we believe that because knitting pro-
grams produce a finite output – at most a few million stitches
– and operate in a limited domain – at most a few thousand
needles – powerful analysis tools can be brought to bear that
would otherwise be impossible to use.

References
[1] L. Albaugh. From text to textiles: !!Con 2015,

2015. URL http://www.instamatique.com/blog/

from-text-to-textiles-con-2015/.

[2] A. Y. A. Beautiful. Ayab - all yarns are beauti-
ful, 2014. URL http://ayab-knitting.com/index_en.

html#features. [Online; accessed 4-September-2015].

[3] W. Choi and N. B. Powell. Three dimensional seamless gar-
ment knitting on v-bed flat knitting machines. Journal of Textile
and Apparel, Technology and Management, 4(3):1–33, 2005.

[4] J. Underwood. The design of 3d shape knitted preforms, 2009.
PhD Thesis.


