Declarative, Secure, Convergent Edge Computation

Christopher Meiklejohn

christopher.meiklejohn@gmail.com

Abstract

Eventual consistency is a more natural model than strong consis-
tency for a distributed system, since it is closer to the underlying
physical reality. Therefore, we propose that it is important to find a
programming model that is both congenial to developers and sup-
ports eventual consistency. In particular, we consider that a crucial
test for such a model is that it should support edge computation in a
both natural and secure way. We present a preliminary work report
with an initial solution, called Lasp, which resembles a concurrent
functional language while naturally supporting an eventually con-
sistent coordination-free distribution model.

1. Introduction

Many of today’s mobile applications and sensor networks are be-
ing built using a traditional client-server model, which places the
data center at the center of computation. In this model, clients gen-
erate data at the edge, usually a set of immutable events, that is
then transmitted to a data center for processing by an application
provider. In the event that clients are disconnected and unable to
transmit this data, two approaches have been used in practice: gen-
erated events can be buffered and transmitted once connectivity is
restored or the client can prohibit the generation of events at the
device by restricting application use.

This design is desirable to application developers because it
pairs a familiar programming paradigm with an efficient system for
executing computations. This allows developers to compute with
data that is centrally located, eliminating the inherent complexity
required for computations that occur across a dynamic number of
occasionally disconnected clients with varying network latencies.

While widely deployed in practice, this design is inherently
limited as a result of both the limited storage and power capacity on
edge devices. In an ideal design, clients can operate with replicated,
shared state and perform local computations: this design results in
less overhead in state transmission and allows devices to make local
decisions while disconnected from the network.

As an example, consider the case of an edge device responsible
for monitoring the temperature of a refrigerator in a hospital. One
type of event this device might generate is an alert if the tempera-
ture becomes too warm. While it is possible to buffer these events
while the device is disconnected, it is preferable to enable the de-
vice to make local decisions for the sake of timeliness.

2. “Building On Quicksand”

When moving to a model of computation with replicated, shared
state, practitioners have typically treated a database as the “source
of truth” for its data. In this model, clients ask for a copy of some
state, perform local mutations on that state, and then attempt to
write this updated state back to the server.

When there are multiple clients in the system, read and write
operations are interleaved amongst the clients. As a result of this ,
multiple clients can attempt to concurrently modify the same state.

In a centralized approach with a single server, this is traditionally
handled by a transaction protocol that only allows one of the con-
current operations to succeed.

However, when we move to a model where there are multiple
replicas of some shared state, typically to reduce latency and in-
crease fault-tolerance, it becomes increasingly difficult to enforce
a total order without reducing availability of the system. [3] Put in
other words, to enforce a total order over concurrent modifications
to replicated, shared state, synchronization is required for opera-
tion to complete; in the event that some nodes are not reachable
due to network connectivity problems, the system can no longer
make progress. This issue is exacerbated as mobile and sensor net-
work applications are deployed given periods without connectivity
may cause more operations to appear as if they were concurrent.

As an alternative, several “eventually consistent” database sys-
tems have been developed. These systems typically offer weaker
consistency guarantees and strive for high-availability and fault-
tolerance. Arguably the most famous of these systems, Amazon’s
Dynamo, only guaranteed that all updates would eventually be de-
livered to all replicas; without any ordering guarantees for events
in the system, some concurrent modifications performed at differ-
ent replicas would ultimately conflict and need to be resolved by
the application developer. [2]

3. “Single System Illusion”

We posit that the “eventually consistent” view of the world is more
compatible with these new types of applications, and more cor-
rectly models interactions between entities in the physical world.

For example, we can imagine a design where clients own the
canonical copy of their data: this is an inversion of the traditional
database model. This data is locally mutated by clients and shared
to other clients in the system: when other clients in this system
mutate this state, this is represented as new data that is causally
related to the original data; under concurrent modifications, these
changes should be mergeable. This data is disseminated in a peer-
to-peer manner instead of synchronizing with a centralized server.

Computations, or instructions for deriving a value from this
data, can also be disseminated between members of the system.
Computations reflect the completeness of their inputs: as more in-
formation, and more up-to-date information is provided, these com-
putations should be able to be incrementally maintained. Therefore,
computations reflect derived data based on a partial view of the
system. It is important to note that this derived data can be dissem-
inated without necessarily also supplying the source information:
for instance, you might know that the Earth travels around the Sun
without knowing why.

Computations additionally compute causality, or a notion of
provenance. [4, 12] The result of a computation contains a record
of the inputs that produced an output. This allows the results of
computations to be partially ordered, comparable, and mergeable.
Given computations are first class, they themselves can be causally
related to other computations.

2015/12/15



4. “On The Road To Find Out”

We previously proposed an initial solution to the problem of large-
scale distributed programming with minimal coordination, named
Lasp. [9] Lasp uses declarative, functional programming tech-
niques to deterministically compose Conflict-Free Replicated Data
Types (CRDTs), which model sequential data structures that when
distributed, guarantee convergence under concurrent mutations and
out-of-order message delivery. This gives applications developed
in Lasp a strong convergence property: given replicated state that
is concurrently edited and eventually communicated to every node
in a distributed system regardless of ordering, distributed applica-
tions will converge to the correct result. [11] Lasp’s epidemic-based
distributed runtime complements this model well: we can take ad-
vantage of an optimized dissemination protocol with no guarantees
on message ordering when the programming model is tolerant to
message reordering and replay. [10] However, while Lasp provides
the basic building blocks for building distributed, convergent com-
putations, there are still fundamental problems to solve.

One problem is causality. Causality is necessary for the incre-
mental maintenance and mergeability of computation results. For
example, if we have a replicated, shared set and we compute some
function over that set, how can we efficiently represent the input to
the computation in the output: this allows us to ensure results can
be incrementally maintained and merged with replicated copies of
the same computation as the inputs to the computation change over
time. Lasp currently provides this functionality for a limited set of
functional and set-theoretic operations over CRDTs. However, the
question remains as to whether these mechanisms can be extended
to arbitrary higher-order programming.

Another problem is security. If we move all computation to the
edge, how can we write distributed computations where each mem-
ber of the system can incrementally contribute to a final result in a
way where the individual user’s values are not exposed? Return-
ing to the causality example in the previous paragraph, how can
we securely compare causality information to determine if values
are stale? Given the semilattice properties of CRDTs, we wonder
if there is a way to leverage order-preserving encryption: in our re-
frigerator example, is there a way where individual units could alert
on temperature conditions securely, without exposing their actual
temperatures to other units in the system. [6]

Finally, the problem of expressiveness. In this model, if we can
make very few guarantees on when, and in what order, events will
be seen by all members of the system, does this restrict the space of
possible programs that can be expressed within this model? In what
ways do the requirements of CRDTs, because data structures must
be associative, commutative, and idempotent, restrict what types of
abstractions a user can build within this programming model?

5. Related Work

Applications today that perform data processing from devices at the
edge use a MapReduce-style programming model over immutable
data [1] and subsequent optimizations for efficient, fault-tolerant
processing over streams. [12] These solutions are appealing to the
application developer: they present systems for performing efficient
computation in a now-familiar programming paradigm.

Alternative techniques have been presented by academia that
focus on moving computation to the edge to alleviate the need for
transmission of the entire data set. Directed [5] and digest [13] dif-
fusion presented efficient, fault-tolerant approaches for dissemina-
tion of computations and their results. However, these systems do
not expose a general programming model.

Declarative approaches such as Tiny AGgregation, [8] have
been proposed for data collection and aggregation across sensor
networks. However, these approaches have presented abstractions

that are not for general programming as they are specific to the
details of aggregation in sensor networks. Finally, declarative ap-
proaches [7] have also been proposed for computation in large-
scale peer-to-peer systems where clients own their own data. How-
ever, in an effort to make their language Turing complete, they re-
lied on the programmer explicitly encoding the details around how
statements would be evaluated, to ensure termination.

6. Conclusion

As we move towards application designs that operate over a large
amount of client generated data in a privacy-conscious world, is it
possible to define a natural way of computing securely at the edge?

Acknowledgments

Thanks to Peter Alvaro and Peter Van Roy. This work has been
partially funded by the SyncFree EU/FP7 Project (n° 609551).

References

[1] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In ACM SIGOPS Operat-
ing Systems Review, volume 41, pages 205-220. ACM, 2007.

S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT
News, 33(2):51-59, 2002.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 31-40. ACM,
2007.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
a scalable and robust communication paradigm for sensor networks.
In Proceedings of the 6th annual international conference on Mobile
computing and networking, pages 56—67. ACM, 2000.

[3

[

[4

=

[5

[ty

[6

=

V. Kolesnikov and A. Shikfa. On the limits of privacy provided by
order-preserving encryption. Bell Labs Technical Journal, 17(3):135—
146, 2012.

D. H. Lorenz and B. Rosenan. Separation of powers in the cloud:
where applications and users become peers. In 2015 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!), pages 76-89. ACM, 2015.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A
tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS
Operating Systems Review, 36(SI):131-146, 2002.

C. Meiklejohn and P. Van Roy. Lasp: A Language for Distributed,
Coordination-Free Programming. In Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Program-
ming, pages 184—-195. ACM, 2015.

[10] C. Meiklejohn and P. Van Roy. Selective Hearing: An Approach to
Distributed, Eventually Consistent Edge Computation. In Workshop
on Planetary-Scale Distributed Systems collocated with SRDS 2015.
IEEE, 2015.

[11] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In Stabilization, Safety, and Security of
Distributed Systems, pages 386—400. Springer, 2011.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, pages 2—2. USENIX Association, 2012.

[7

—

[9

—

[13

—_

J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for
monitoring wireless sensor networks. In Sensor Network Protocols
and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on, pages 139-148. IEEE, 2003.

2015/12/15



