The Promise of Live Programming

Sean McDirmid

Microsoft Research Asia

smcdirm@microsoft.com

Abstract

Live programming aims to create a more fluid feedback loop
between the programmer and programmed. Unfortunately, it
is not very clear what this feedback does and how it is use-
ful: does it just lead to better debugging, or to something
revolutionary? To answer this question, we clarify the expe-
riential design challenges that must be overcome before live
programming can emerge as a serious topic.

Live Programming

Live programming has been characterized as eliminating the
edit-compile-test loop so code can be edited while it is exe-
cuting. Realizing that experience is mostly a technical chal-
lenge: how can compilation and re-execution overhead be
reduced so programmers can get timely feedback about how
their edits effect program execution? Although automatic re-
execution is a huge problem, it is not insurmountable; e.g.
omniscient debuggers [17] can trace all computations with
brute force, which can then “only” need to be incrementally
updated according to edits. This is not an impossible prob-
lem and as Bracha points out, is anyways avoided if pieces of
code can be executed/tested separately [1]. The biggest chal-
lenge instead is live programming’s usefulness: how can its
feedback significantly improve programmer performance?
Live programming feedback must be presented in a form
that allows for quick reaction. Edwards’ example-centric
programming [3] projects example context into a code ed-
itor, where it is then available for quick introspection while
writing code. Previous work in [15] shows how execution
values can be inlined into the code editor as meta-text, and
printf traces enable programmers not only to see a cus-
tomized overview of how their program executes, but also
navigate to various code and execution contexts associated
with the line. DejaVu [10] shows how execution can be
presented across a timeline (Figure 2); it is also possible

[Copyright notice will appear here once "preprint’ option is removed. |

HMEYN
il il 1 1

- [»
O

Figure 2. A timeline in Deja Vu.

-

e b '
- & b &
i) B e

to graph or even “strobe” the values so programmers can
clearly see how they change over time [25].

Perhaps live programming is just super debugging with
accessible execution context where programming otherwise
stays the same. The experience, however, would not be very
fluid: discrete key strokes applied to a text buffer mean the
feedback is often not useful. At worst, feedback on an in-
complete model can limit our thinking about a problem, dis-
tracting rather than helping us [27]. The live programming
story is too incomplete at this point.

To envision a possible future for live programming, con-
sider the fictional programming experience from Iron Man
the movie (2008) shown in Figure 1. Most of the interesting
problem solving in programming currently occurs in pro-
grammer heads augmented by notebooks and whiteboards,
s0 movies must envision bringing that experience into an
environment where it can be shared with the audience. The
resulting interfaces are rich in affordance and fluid feedback,
making them exciting to watch, but are of course complete
fantasy. Could we “for real” bring the interesting parts of

2016/4/20

£ Small Basic
|] I,; & mpert
o b pubish
New Open Sae Saveds | EAPPEI

4
Untitled ™

1 TextWir iriteline(”

2 TextWir

.. Top
Write
WriteLine
o BackgroundCalor

les
ER——

[e

D G Unda D :;’

Paste

WriteLine

i
be appended 1o the
cutput, 5o that the:
next time something is
written to the text

Run (F5) Graduate

gf“* Opeartan
)
07
art

Write

Writes text or number 10 the
text window. Unlike Wri-
teLine, this will not append a
new line character, which
means. anything written to
the text window after this call
will be an the same line.

TextWindow.
Write(data)

data
The text or number to write to
the text window

Figure 3. Intellisense (code completion) in Small Basic.

programming out of the programmer’s head and into the en-
vironment where the computer can then better assist the pro-
grammer in a fluid experience rich in feedback and affor-
dance? This position paper explores that opportunity.

The Water Hose and Scrubbing

Chris Hancock [7] points out that live programming should
go beyond “continuous feedback” to be more like a water
hose. The waterer never stops aiming at their target; they just
move the stream of water in an ever evolving aim until the
target is hit, while an archer loses much of their aiming con-
text after every shot arrow. With a water hose, a programmer
makes small changes to code while observing small changes
to program output that get closer or farther away from their
goals. The water hose is then analogous to a continuous
function that defines an interpreter where small changes in
code input lead to small changes in execution output.

As an example of a water hose, code elements can be
edited with scrubbing via knob/slider-like widgets with live
feedback on how the changing value affects program behav-
ior [24]. A small mouse movement causes a small change in
value and a small change in program output; e.g. scrubbing
a position causes a shape to move slightly on each slight
motion. Live programming demos often include scrubbing
because of this fluid feedback.

Unfortunately, scrubbing only works for abstractions that
exist in a continuum, such as values like numbers and points,
or finite sets of interchangeable terms like literal colors.
Scrubbing also cannot aid in writing, rather than modifying,
code and, anyways, it cannot assist with the abstract reason-
ing that burdens programmers the most when writing code.
This latter limitation is an intrinsic to the water hose: the de-
cision on whether to use an abstraction or not has a large
effect on the program’s behavior. It is just not realistic that a
programmer could “scrub” a program into existence.

Shapes Color fil1(0,0,0); | |
rect(80,80, 40,25);
fil1(200,149,70);

triangle(76,80, 100,52, 124,80); I

Flow -

Text

Figure 4. Dump parts on the floor.

Create by Reacting and Abstracting

Our abstract reasoning capabilities is our capacity to reason
about and solve novel problems by identifying patterns and
relationships that underpin these problems [2]. Computers
currently have little capacity for abstract reasoning; e.g. ma-
chine learning is great at generalizing over lots of data, but
any abstractions used in the learning process must be baked
in. The limitation is similar to that of the water hose: there is
just no feedback to smoothly iterate on to determine if code
is “better” or not as abstractions are added/removed.
Computer-assisted abstract reasoning is much more vi-
able. With the principle that “multiple choice” is easier than
“fill in the blank,” many programming environments today
augment reasoning with code completion, which helps pro-
grammers recall what abstractions they might want to use
without memorizing them [14] (e.g. see Figure 3). Live pro-
gramming further enhances code completion by using run-
time context in the selection process as well as by provid-
ing feedback about what each choice will do. Bret Victor
explores many live code completion concepts as create by
reacting in [25], described using a painter’s analogy:

An essential aspect of a painter’s canvas and a musical in-
strument is the immediacy with which the artist gets some-
thing there to react to. A canvas or sketchbook serves as
an “external imagination,” where an artist can grow an idea
from birth to maturity by continuously reacting to what’s in
front of him.

Victor then lists get something on the screen as soon as pos-
sible and dump the parts bucket onto the floor as two prin-
ciples that move in this direction. For the former, the effect
of a code completion selection can be realized as soon as it
is selected, or even when it is just navigated to, depending
on the API, creating immediate feedback. If the API has ar-
guments, reasonable defaults can be used that can then be
tweaked through scrubbing. Dumping the parts on the floor
means relevant APIs can be listed even before code com-
pletion menus are activated (Figure 4), giving programmers
“raw material to spark new ideas.” As Smith puts it [21]:

Pablo Picasso said “the most awful thing for a painter is
the white canvas.” One of his most memorable paintings,
“The Studio at Cannes,” is of his own studio. Its walls and
ceiling are covered with paintings. Priceless works of art
are jumbled together everywhere. But right in the middle of
the room stands an easel holding a blank canvas. This is a

2016/4/20

WL ip] e | «

Figure 5. Conversational programming in [18].

fitting image of the problem facing all creative people: how
to get started. A blank coding pad is as much a barrier to
programming creativity as a blank canvas is to a painter.

Repenning explores similar concepts as conversational pro-
gramming, which harnesses computing power so program-
mers proactively knows how their code affects program
execution as they explore various chosen contexts (Fig-
ure 5) [18]. For example, by dragging a car around the
programmer can move it to different parts of the city to
explore different scenarios. The programmer interacts with
the world by changing it in order to get information back
about the behavior of an agent—the programmer can drag a
car to a different traffic light and discover that that car would
turn in the wrong direction. Useful code then flows out of the
world’s configuration; e.g. if a frog is placed on top of water,
then one of the choices shown in the code menu can be an
expression that captures that relationship as a condition.

Given complex program goals, live code completion can
be limited in effectiveness. First, many abstractions have pa-
rameters that must be filled in before they have meaningful
execution, where reasonable default values do not always ex-
ist. Second, API calls often fit into an architecture that the
programmer must prepare for ahead of time, or must be used
in combinations that leave the code un-executable for long
periods of time. Lastly, it can be difficult to manifest the ex-
ample execution context needed to inform code completion
approaches or suggest abstraction opportunities—some might
even be impossible to describe without abstraction!

As another way forward, Bret Victor demonstrates in [25]
create by abstracting how the programmer can interac-
tively abstract a concrete code example it by combining con-
stants with the same values into variables that can then be
lifted into procedure arguments. Constants that do not match
exactly can still be combined into variables, with the remain-
der of the value being accounted for in an expression; e.g.
a variable “x” with the value of 100 can be used for the
constant 50 as “xz + 50;” if that was not intended, it can
be scrubbed to another expression; e.g. “z <+ 2.” The com-
puter helps out by making refactoring for abstraction easy
as well as computing equivalent expressions when values

do not match exactly. Still, too much burden is placed on
the programmer in identifying abstraction opportunities; e.g.
how do they know that two 100 values should be the same,
how do they make the leap to relate 100 and 50, and anyways
what if the values are related in complex ways?

The example in [25] involves shapes that can be dras-
tically improved on with direct manipulation [19]: the
programmer can draw shapes on the screen and activate
“guides” that can codify as constraints the nearly coinci-
dental relationships in the example (e.g. two edges of two
shapes almost aligned). Direct manipulation makes the rela-
tionships obvious: the 100 values can be combined because
they represent height of shapes that should be the same, and
2 was the right way to relate 100 and 50 because the latter
was a radius of a circle and we just want the circle’s “height”
to be the same even if that isn’t a direct value. The computer
then assists programmers by highlighting abstraction oppor-
tunities. Unfortunately, it is not clear if similar assistance
can be applied more broadly beyond 2D graphics.

Direct Manipulation

Live programming is naturally related to direct manipula-
tion [19] as characterized by:

- Continuously represented objects of interest;
- Physical actions instead of complex syntax; and

- Rapid, reversible, and incremental actions on objects of
interest with immediate feedback.

Continuous representation of objects is part of a steady
frame of feedback where rapid, incremental, and feedback-
rich actions resembles the water hose. Given a 2D scene
programmed in code, directly combining constants into vari-
ables (as in [25] “create by abstracting”) is not obvious as
numbers lack meaning in the abstract. However, moving and
resizing shapes directly in the 2D scene can be augmented
with alignment guides that perform a similar constant com-
bining that is much more obvious since it is direct.

For programming, direct manipulation often means code
and execution are combined, which is otherwise not nec-
essary for live programming. Morphic [12] is a UI toolkit
based on direct manipulation of morphs that also supports
liveness; however, no abstraction is supported as changes to
morphs are not reflected in code. Attempts have been made
to support direct manipulation with abstraction. In Edwards’
Subtext, for example, code is simply literal computation that
is then copied around as needed [4] (Figure 6). Program-
ming in Subtext is inspired by “WYSIWYG” programming
in spreadsheets, where actual values are computed immedi-
ately while expressions still refer to abstract “cell” locations.
In Elliott’s tangible functional programming, Eros programs
parts are represented as “tangible values” that directly rep-
resent functional computation but also have the ability to be
composed directly [6] (Figure 7). In both systems, directly
manipulated objects reify code and abstract behavior.

2016/4/20

I subcexe N =F|

State Edit View

Top =
Data()
Functions()
Actions
¥ Null action(input: prototype state, status: OK) =
#Link ANull action© (input: prototype state, location: *a location<, source: Null, status: OK)
= "a location »
4 Copy ALink(input: prototype state, container: " prototype state, location: *a location<,
source: Null, status: OK) = "Null #
Agents()
History()

State A[10/13/05 8:10 PM#1|<>
Employee A Employee
wage: 1000
deductions: 1000
pay: {Difference(wage © 1000, deductions© 1000) = 0}
$Fire :: Link(input: State ©, location: “wage©, source: 0, status: OK) = “wage #
%RaiseA Null action ©
input: State © ()
Sum(wage © 1000, 1000) = 2000
#Link(input: Raise.input State, location: “wage<>, source: Sum.=-< 2000, status: OK)
= 'wage »
status: OK
» A |Link| @
Employee A Employee
wage: 1666 2000
deductions: 1000
pay: {Difference(wage © 2000, deductions© 1000) = 1000}

&Fire - Link(innut [Raisel ©)_lncation: *wane<)_sotree: 0_statis: OK\ El

Figure 6. Programming in Subtext.

Parts Tweak Window

Output :: Double, Double) - Bool

Figure 7. Programming in Eros.

Coupled with code, directly reified objects can provide
context for many live programming features. For conversa-
tional programming [18], the world of objects can be se-
lected and manipulated as part of a conversation to mate-
rialize abstract code. More generically, live programming is
often explored and demoed in the context of 2D graphics, i.e.
the 2D box, given that immediate feedback on such objects
is easy to correlate with code.

Direct manipulation has many drawbacks, including:

- Although some abstractions can be re-inserted into the
code as other objects (e.g. alignment guides), in general,
most lack straightforward reification into displayable ma-
nipulatable objects (e.g. anything not visual).

Structures that are deeply repetitive and intricate are dif-
ficult to build directly; e.g. consider 2D shapes, which
at first glance are very amenable to direct manipulation,
but when intricate patterns are desired with many shapes
organized in complex topologies, abstract code becomes
much more usable.

Figure 8. Programming in TouchDevelop [23].

- Our brains are more flexible and capable than any direct
model the computer can currently manifest, so our think-
ing can often be more easily represented as abstract code.

On the last point, Hutchins et al. comment [8]:

A more fundamental problem with direct manipulation in-
terfaces arises from the fact that much of the appeal and
power of this form of interface comes from its ability to di-
rectly support the way we normally think about a domain.
A direct manipulation interface amplifies our knowledge of
the domain and allows us to think in the familiar terms of
the application domain rather than in those of the medium
of computation. But if we restrict ourselves to only build-
ing an interface that allows us to do things we can already
do and to think in ways we already think, we will miss the
most exciting potential of new technology: to provide new
ways to think of and to interact with a domain.

Another similar problem is simply that the “literal” metaphors
that are chosen to make computation accessible can act

against many useful “magical” behaviors; Smith discusses

this using buttons in an Alternate Reality Kit (ARK) based

on physical metaphors as an example [22]:

Buttons have the message they send stamped on the surface
- if the device does not understand the button’s message, the
button will fall right through the object. If the button’s mes-
sage is meaningful, it will stick to the surface of the object.
An invisible connection is established automatically, and the
button is immediately functional. Furthermore, buttons can
be created that cause non-physical effects such as doubling
an object’s size and mass, or causing the object to vanish.
Features like these are called magical because they enable
the user to do powerful things that are outside of the possi-
bilities of the metaphor.

In similar ways, general-purpose abstract code allows us to
think freely where our programs are limited only by our
imagination and our ability to reason abstractly over the
many facets of a system.

2016/4/20

inctions Damage
Primitives Figure 5

assert | True

attack —|(= Attack)

(__cMagic _)|(c Physical)| [

surprise —|{(= Bool | T|E

defense (e Int

power

Functions Fibonacci
Objects Damage

effectiveness

defense|

(=2 I

< Object
< Attack
< Attack
< Physical

Figure 9. Subtext schematic tables.

Beyond Keyboards and Text

One of the requirements of direct manipulation are “rapid,
reversible, and incremental” actions on objects being ma-
nipulated, which forms the core of live programming’s water
hose. Actions can be made quickly (rapid), unmade quickly
if feedback about the action indicates they are wrong (re-
versible), and many small actions should compound together
for greater effects (incremental). A value being scrubbed can
be changed quickly, can be set back to its original value
quickly, and large changes are simply made with a long con-
tinuous motion. Likewise, when two shapes come in align-
ment with each other, an alignment guide can be shown that
the user can then “snap on” to keep the shapes in alignment
as they move; but they can also “snap off” the guide if the
behavior is no longer desired; while multiple guides can be
added to provide for more complex behavior. Beyond direct
manipulation, similar kinds of actions can be supported in
abstract graphical code; e.g. VVVV [16] is based on data
flow blocks (patches) that are wired together by simple ac-
tions, and whose wires can be cut quickly when not needed.
Likewise, Scratch [11] is based on procedural blocks whose
arguments are “snapped in” from other blocks or new ones
via simple drag and drop actions.

As these rapid actions are either atomic or continuous,
which do not benefit from keyboard capabilities, and can
even be hindered by it-manipulating a slider with arrow keys
is very annoying! Even in other cases such as code com-
pletion, as the computer helps out more, the keyboard be-
comes more of a hindrance to productivity. Consider pro-
gramming driven by ubiquitous code completion: the mouse
or touch (Figure 8) can be more efficient in making list se-
lections [13, 14]. What the keyboard is good at, typing out
abstractions in the support of free form unaugmented think-
ing, becomes less important as the programming environ-
ment becomes more live and direct.

As input moves away from the keyboard, it makes sense
to explore graphical notation (if not direct) that provides
more affordance. Conversational programming [18] depends
on a graphically rich environment to surface conversation

'Tﬁ.@ec-_l = i
pgrLet | & 7

g~ @i M

w -
gt Td

Figure 10. Hololens and creating.

topics customized for the program being written. Like-
wise, Subtext supports schematic tables in [5] that provide
for the direct manipulation of conditional logic (Figure 9).
Schematic tables demonstrate how graphical notations can
become very worthwhile when combined with live program-
ming experiences. Finally, even the futuristic holographic in-
terfaces of the movies are becoming feasible (e.g. Hololens
in Figure 10), providing even more possibilities for future
live programming environments.

Feedback Sometimes Considered Harmful

Feedback can be distracting when it does not help the pro-
grammer solve the problem at hand. Types are the classic ex-
ample of potentially distracting feedback in that they require
programmers to think ahead (adding them in a certain order
to suppress compiler type errors), are necessarily conserva-
tive, and can introduce “noise” into the source code. As an-
other example, structured program editors likewise interfere
with the programmer’s flow of activity, locking them into a
series of correct edits, while visual languages often lead to
literal spaghetti code that prevents realistic scaling to large
problems. Live feedback has analogous problems: the pro-
gram must be written in a certain order to keep it “live,” live
feedback often hides problem with generality, and rendering
the value of a large data structure can easily overwhelm the
programmer with unnecessary details.

Reifying the “wrong” model in the computer can actually
make many tasks much more difficult or even impossible to
do. Direct manipulation limits how programmers can solve
a problem, or even if they can approach it at all, while ab-
stract source code liberates the programmer allowing them
to use their own mental models, abstractions, and reasoning.
Overall, this leads to a situation where augmented program-
ming tools are seen as beginner crutches, whose own pro-
gram reasoning skills are undeveloped, and therefore assis-
tance is seen as empowering rather than restrictive. Even as
a beginner aide, the feedback does not necessarily train new
programmers to perform without it; i.e. they cannot graduate
to “real programming.” For live programming to succeed, it
must augment programming performance without being dis-

2016/4/20

tracting or otherwise restricting what the programmer can
do, and it must be adequate for both beginners and experts.

Ways Forward

This position paper concludes by discussing ways on how
live programming can move forward and realize its potential.

Program with Examples

Programming by example promises to free the programmer
from writing code at all by using numerous examples to
synthesize a general solution automatically. Unfortunately
synthesis is quite limited, and anyways numerous exam-
ples are often unavailable. However, one (or a few) ex-
ample can provide a programmer with enough context to
guide the programmer into abstracting the example into a
general solution. Such an approach was first explored in
Pygmalion [20, 21], the first iconic language with a spe-
cific focus on creativity. In Pygmalion, the screen images
always contain concrete examples of the program’s data,
which eliminates an entire class of errors due to abstraction.
This is a good basis for live programming, which should pro-
vide capabilities to form examples as well as progressively
and interactively generalize the example into abstract code.

Water Hose

Although the water hose—continuous small change in code
leading to continuous small change in output—is a nice ideal
for live programming, it cannot be realized in practice. Still,
a live programming experience should provide continuous
aiming capabilities where they make sense in the form of
scrubbing or similar mechanisms; e.g. to form examples or
make choices on abstraction.

Create by Reacting

“Multiple choice” allows programmers to react to possibil-
ities rather than go through the mental effort of imagining
what could be from a blank canvas. Features that realize
this, like code completion, are hardly unique to live program-
ming, but can be boosted by execution context as well as be-
ing oriented to programming with examples; e.g. by showing
what procedures can compute a value already known in the
example from a known argument. By providing likely ab-
stractions in a palette ready to use, the environment can also
inspire programmers with what to do next, further reducing
programming’s mental burden.

Be Conversational

A live example can be manipulated to indicate the program-
mer’s intent in generalizing it. For example, two diagram
boxes in an example can be aligned manually by the pro-
grammer, indicating that continuous alignment might be a
generalization to make in the code. By aligning the boxes,
the computer can provide an affordance of permanent align-
ment to the programmer (e.g. as a guideline), giving them
the choice to activate that abstraction.

DejaVu Canvas vax
1 9] Color [7] Depth [¥] Skeleton [¥] Window

Qe;mem‘m‘t{bh

Skeleton input

'vaesLo(o{

Color input

JMmd:>:>

1720

furthestDepth

Window output

segmentationMask

segmentationMask

Figure 11. Canvas in DejaVu.

Basically, an example can be full of spatial coincidences
that can be recognized and, at the programmer’s discretion,
converted into generalizations. This can work even for non-
visual domains as long as they are somehow projected graph-
ically. Consider a rendered “hello world” string rendered in
an example with an arch that connects the ’h’ to the space
following the first 0.” The meaning of that arc could sim-
ply be nothing, or it could indicate the range of text “hello”,
and even more specifically, could indicate a range of text that
stops at spaces, or just includes letters.

Live Canvas

Because abstract code has a very high ceiling and is still
quite usable even if unaugmented by live feedback, it is diffi-
cult to replace. Instead, just like the debugger co-exists with
the code editor, abstract code should co-exist with live ex-
ecution feedback. Likewise, for feedback to not be distract-
ing, it should be under the programmer’s control, showing
only what the programmer wants to include in what is ba-
sically a “reified mental model.” Besides exploring time-
lines, DejaVu [10] also explored the use of a canvas to or-
ganize live feedback according to programmer preference
(Figure 11); this idea is also explored for image processing
in VisionSketch [9].

Expanding on DejaVu’s canvas, a more complete canvas
for live programming can also be subject to manipulation,
allowing code to be added to the program via techniques
such as bi-directional projectional editing [26]. Such a view
must generally include abstraction as well as live values,
though how abstraction is represented can be more direct;
e.g. through lines or compasses (as in Subtext [4]) that rep-
resent propagated values rather than through abstract names.
More to the point, it should be possible to create abstrac-
tions in this view, especially through generalizing over live
execution values.

2016/4/20

References

[1] G. Bracha. Debug mode is the only mode. Room
101, 2012. URL http://gbracha.blogspot.com/2012/11/
debug-mode-is-only-mode.html.

[2] R. B. Cattell. Abilities: Their structure, growth, and action.
Houghton Mifflin, 1971.

[3] J. Edwards. Example centric programming. In Proc. of
OOPSLA, pages 84-91, Dec. 2004.

[4] J. Edwards. Subtext: uncovering the simplicity of program-
ming. In Proc. of OOPSLA Onward!, pages 505-518, 2005.

[5] J. Edwards. No ifs, ands, or buts: Uncovering the simplicity
of conditionals. In Proc. of OOPSLA, pages 639-658, 2007.

[6] C. M. Elliott. Tangible functional programming. In Proc. of
ICFP, pages 59-70, 2007.

[7] C. M. Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, MIT, 2003.

[8] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct
manipulation interfaces. HCI, 1(4):311-338, Dec. 1985.

[9] J. Kato and T. Igarashi. Visionsketch: Integrated support for
example-centric programming of image processing applica-
tions. In Proc. of GIC, pages 115-122, 2014.

[10] J. Kato, S. McDirmid, and X. Cao. Dejavu: Integrated support
for developing interactive camera-based programs. In Proc. of
UIST, pages 189-196, 2012.

[11] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. East-
mond. The Scratch programming language and environment.
TOCE, 10(4):16, 2010.

[12] J. H. Maloney and R. B. Smith. Directness and liveness in the
Morphic user interface construction environment. In Proc. of
UIST, pages 21-28, nov 1995.

[13] S. McDirmid. Coding at the speed of touch. In Proc. of
SPLASH Onward, pages 61-76, October 2011.

[14] S. McDirmid. Escaping the maze of twisty classes. In Proc.
of SPLASH Onward!, pages 127-138, Oct. 2012.

[15] S. McDirmid. Usable live programming. In Proc. of SPLASH
Onward!, Oct. 2013.

[16] Meso group. VVVV - a multipurpose toolkit, 2009. URL
http://www.vvvv.org.

[17] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient
debugging. In Proc. of OOPSLA, pages 535-552, 2007.

[18] A. Repenning. Conversational programming: Exploring inter-
active program analysis. In Proc. of Onward!, pages 63-74,
2013.

[19] B. Shneiderman. Direct manipulation. a step beyond program-
ming languages. IEEE Transactions on Computers, 16(8):57—
69, August 1983.

[20] D. C. Smith. Pygmalion: A Creative Programming Environ-
ment. PhD thesis, Stanford University, 1975.

[21] D. C. Smith. Pygmalion: An executable electronic black-
board. In A. Cypher, D. C. Halbert, D. Kurlander, H. Lieber-
man, D. Maulsby, B. A. Myers, and A. Turransky, editors,
Watch What I Do, pages 19—48. MIT Press, 1993.

[22] R. B. Smith. Experiences with the Alternate Reality Kit:
an example of the tension between literalism and magic.
SIGCHI, pages 61-67, May 1986.

[23] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich.
Touchdevelop: Programming cloud-connected mobile devices
via touchscreen. In Proc. of SPLASH Onward!, pages 4960,
2011.

[24] B. Victor. Scrubbing calculator. Worry Dream, 2011. URL
http://worrydream.com/ScrubbingCalculator.

[25] B. Victor. Learnable programming: designing a programming
system for understanding programs. Worry Dream, 2012.
URL http://worrydream.com/LearnableProgramming/.

[26] M. Vélter, J. Siegmund, T. Berger, and B. Kolb. Towards user-
friendly projectional editors. In Proc. of SLE, pages 41-61,
2014.

[27] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and
C. R. Cook. Does continuous visual feedback aid debugging

in direct-manipulation programming systems? In Proc. of
CHI, pages 258-265, 1997.

2016/4/20

