Precise Thread-Modular Abstract Interpretation of Concurrent Programs using Relational Interference Abstractions
We present a static analysis by abstract interpretation of numeric properties in multi-threaded programs. The analysis is sound (assuming a sequentially consistent memory), parameterized by a choice of abstract domains and, in order to scale up, it is modular, in that it iterates over each thread individually (possibly several times) instead of iterating over their product. We build on previous work that formalized rely-guarantee verification methods as a concrete, fixpoint-based semantics, and then apply classic numeric abstractions to abstract independently thread states and thread interference. This results in a flexible algorithm allowing a wide range of precision versus cost trade-offs, and able to infer even flow-sensitive and relational thread interference. We implemented our method in an analyzer prototype for a simple language and experimented it on several classic mutual exclusion algorithms for two or more threads. Our prototype is instantiated with the polyhedra domain and employs simple control partitioning to distinguish critical sections from surrounding code. It currently relates the variables of all threads using polyhedra, which limits its scalability in the number of variables. Nevertheless, preliminary experiments show that modularity enables scaling to a large number of thread instances, provided that the total number of variables stays small.
Tue 17 JanDisplayed time zone: Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna change
16:00 - 17:30 | |||
16:00 30mTalk | Using Abstract Interpretation to Correct Synchronization Faults VMCAI Pietro Ferrara IBM Research, Omer Tripp IBM Thomas J. Watson Research Center, Peng Liu Purdue University, Eric Koskinen Yale University | ||
16:30 30mTalk | Detecting All High-Level Dataraces in an RTOS Kernel. VMCAI Suvam Mukherjee Indian Institute of Science, Arunkumar S Indian Institute of Science, Deepak D'Souza | ||
17:00 30mTalk | Precise Thread-Modular Abstract Interpretation of Concurrent Programs using Relational Interference Abstractions VMCAI |