FORGE 2024
Sun 14 Apr 2024 Lisbon, Portugal
co-located with ICSE 2024

The application of Large Language Models (LLMs) in software engineering, particularly in static analysis tasks, represents a paradigm shift in the field. In this paper, we investigate the role that current LLMs can play in improving callgraph analysis and type inference for Python programs. Using the PyCG, HeaderGen, and TypeEvalPy micro-benchmarks, we evaluate 26 LLMs, including OpenAI’s GPT series and open-source models such as LLaMA. Our study reveals that LLMs show promising results in type inference, demonstrating higher accuracy than traditional methods, yet they exhibit limitations in callgraph analysis. This contrast emphasizes the need for specialized fine-tuning of LLMs to better suit specific static analysis tasks. Our findings provide a foundation for further research towards integrating LLMs for static analysis tasks.

Sun 14 Apr

Displayed time zone: Lisbon change

11:00 - 12:30
Foundation Models for Software Quality AssuranceResearch Track at Luis de Freitas Branco
Chair(s): Matteo Ciniselli Università della Svizzera Italiana
11:00
14m
Full-paper
Deep Multiple Assertions GenerationFull Paper
Research Track
Hailong Wang Zhejiang University, Tongtong Xu Huawei, Bei Wang Huawei
11:14
14m
Full-paper
MeTMaP: Metamorphic Testing for Detecting False Vector Matching Problems in LLM Augmented GenerationFull Paper
Research Track
Guanyu Wang Beijing University of Posts and Telecommunications, Yuekang Li The University of New South Wales, Yi Liu Nanyang Technological University, Gelei Deng Nanyang Technological University, Li Tianlin Nanyang Technological University, Guosheng Xu Beijing University of Posts and Telecommunications, Yang Liu Nanyang Technological University, Haoyu Wang Huazhong University of Science and Technology, Kailong Wang Huazhong University of Science and Technology
11:28
14m
Full-paper
Planning to Guide LLM for Code Coverage PredictionFull Paper
Research Track
Hridya Dhulipala University of Texas at Dallas, Aashish Yadavally University of Texas at Dallas, Tien N. Nguyen University of Texas at Dallas
11:42
7m
Short-paper
The Emergence of Large Language Models in Static Analysis: A First Look through Micro-BenchmarksNew Idea Paper
Research Track
Ashwin Prasad Shivarpatna Venkatesh University of Paderborn, Samkutty Sabu University of Paderborn, Amir Mir Delft University of Technology, Sofia Reis Instituto Superior Técnico, U. Lisboa & INESC-ID, Eric Bodden
11:49
14m
Full-paper
Reality Bites: Assessing the Realism of Driving Scenarios with Large Language ModelsFull Paper
Research Track
Jiahui Wu Simula Research Laboratory and University of Oslo, Chengjie Lu Simula Research Laboratory and University of Oslo, Aitor Arrieta Mondragon University, Tao Yue Beihang University, Shaukat Ali Simula Research Laboratory and Oslo Metropolitan University
12:03
7m
Short-paper
Assessing the Impact of GPT-4 Turbo in Generating Defeaters for Assurance CasesNew Idea Paper
Research Track
Kimya Khakzad Shahandashti York University, Mithila Sivakumar York University, Mohammad Mahdi Mohajer York University, Alvine Boaye Belle York University, Song Wang York University, Timothy Lethbridge University of Ottawa
12:10
20m
Other
Discussion
Research Track