

AGERE! at SPLASH 2012

2nd International Workshop on Programming based on
Actors, Agents, and Decentralized Control

Workshop held at ACM SPLASH 2012
21-22 October 2012
Tucson, Arizona, USA

PROGRAMME and ABSTRACTS
The pre-proceedings are available on the web site at:

http://agere2012.apice.unibo.it

AGERE! is an ACM SIGPLAN workshop,
sponsored by Typesafe, Inc.

2

[11] M. Resnick. Turtles, Termites and Traffic Jams. Explorations in Massively
Parallel Microworlds. MIT Press, 1994.

[12] A. Ricci and A. Santi. Agent-oriented computing: Agents as a paradigm
for computer programming and software development. In Proc. of Future
Computing ’11, Rome, Italy, 2011.

[13] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–
92, 1993.

[14] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue: Tomorrow’s Computing Today, 3(7):54–62, Sept. 2005.

[15] A. Yonezawa and M. Tokoro. Object-oriented concurrent programming.
MIT Press series in computer systems. MIT Press, 1987.

26

4

Bibliography

[1] SPLASH ’11 Workshops: Proceedings of the compilation of the co-located
workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11, NEAT’11 &
VMIL’11, New York, NY, USA, 2011. ACM.

[2] G. Agha. Concurrent object-oriented programming. Commun. ACM,
33:125–141, September 1990.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation
for actor computation. J. Funct. Program., 7(1):1–72, Jan. 1997.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time
components in bip. In Proceedings of the Fourth IEEE International Con-
ference on Software Engineering and Formal Methods, SEFM ’06, pages
3–12, Washington, DC, USA, 2006. IEEE Computer Society.

[5] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.
Multi-Agent Programming Languages, Platforms and Applications - Vol-
ume 1. Springer, 2005.

[6] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.
Multi-Agent Programming Languages, Platforms and Applications - Vol-
ume 2. Springer, 2009.

[7] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni. Special
issue on multi-agent programming. Autonomous Agents and Multi-Agent
Systems, 23 (2), 2011.

[8] D. Harel, A. Marron, and G. Weiss. Behavioral programming. Commun.
ACM, 55(7):90–100, July 2012.

[9] D. Harel and A. Pnueli. On the development of reactive systems, pages
477–498. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[10] J. J. Odell. Objects and agents compared. Journal of Object Technology,
1(1):41–53, 2002.

25

4.13 “Timed-Rebeca Schedulability and
Deadlock-Freedom Analysis Using
Floating-Time Transition System” by E.
Khamespanah, Z. S. Kaviani, R. Khosravi, M.
Sirjani and M-J. Izadi

Timed-Rebeca is an actor-based modeling language for modeling real-time re-
active systems. Its high-level constructs make it more suitable for using it
by software practitioners compared to timedautomata based alternatives. Cur-
rently, the verification of TimedRebeca models is done by converting into timed-
automata and using UPPAAL toolset to analyze the model. However, state
space explosion and time consumption are the major limitations of using the
back-end timed automata model for verification. In this paper, we propose a
new approach for direct schedulability checking and deadlock freedom verifica-
tion of Timed-Rebeca models. The new approach exploits the key feature of
Timed-Rebeca, which is encapsulation of concurrent elements. In the proposed
method, each state stores the local time of each actor separately, avoiding the
need for a global time in the state. This significantly decreases the size of
the state space. We prove the bisimilarity of the generated transition system
(called floating-time transition system) and the state space generated based on
Timed-Rebeca semantics. Also, we provide experimental results showing that
the new approach mitigates the state space explosion problem of the former
method and allows model-checking of larger problems.

4.14 “Actor Idioms” by D. Schumacher

Actor systems are driven by asynchronous message reception events. Taking
full advantage of the Actor Model requires recognizing relevant patterns of actor
interaction. We describe several idioms here, in hopes of beginning to build a
catalog of useful interactions. Some idioms simply implement already-familiar
mechanisms, in terms of actors. Others illustrate novel strategies that can only
be realized with asynchronous actor messaging. All provide new perspective on
the process of computation.

24

Contents

1 Introduction 7

2 Committee 11
2.1 Program Committee . 11
2.2 Organizing Committee & PC Chairs 12

3 Programme 13
3.1 First Day (Oct 21, Sunday) . 13
3.2 Second Day (Oct 22, Monday) 14

4 Abstracts 17
4.1 Domains: Safe sharing among actors by J. De Koster, T. Van

Cutsem and T. D’Hondt . 17
4.2 Soter: An Automatic Safety Verifier for Erlang by E. D’Osualdo,

J. Kochems and L. Ong . 17
4.3 Leveraging Actors for Privacy Compliance by J. von Ronne . . 18
4.4 Adding Distribution and Fault Tolerance to Jason by Á. Fernández

Dı́az, C. Benac Earle and L.-A. Fredlund 19
4.5 Programming Abstractions for Integrating Autonomous and Re-

active Behaviors: An Agent-Oriented Approach by A. Ricci and
A. Santi . 19

4.6 Empirical Software Engineering for Agent Programming by M.
B. van Riemsdijk . 20

4.7 Messages with Implicit Destinations as Mobile Agents by A.
Ahmad-Kassem, S. Grumbach and S. Ubéda 20

4.8 A Decentralized Approach for Programming Interactive Applica-
tions with JavaScript and Blockly by A. Marron, G. Weiss and
G. Wiener . 21

4.9 Optimized Distributed Implementation of Multiparty Interactions
with Observation by S. Bensalem, M. Bozga, J. Quilbeuf and J.
Sifakis . 21

5

4.10 Distributed Priority Synthesis using Knowledge by C.-H. Cheng,
R. Yan, H. Ruess and S. Bensalem 22

4.11 Parallel Gesture Recognition with Soft Real-Time Guarantees by
T. Renaux, L. Hoste, S. Marr and W. De Meuter 22

4.12 A Relational Trace Logic for Simple Hierarchical Actor-Based
Component Systems by I. W. Kurnia and A. Poetzsch-Heffter . 23

4.13 Timed-Rebeca Schedulability and Deadlock-Freedom Analysis Us-
ing Floating-Time Transition System by E. Khamespanah, Z. S.
Kaviani, R. Khosravi, M. Sirjani and M-J. Izadi 24

4.14 Actor Idioms by D. Schumacher 24

6

latency. Based on the domainspecific constraints, PARTEs design relies on a
combination of lock-free data structures, safe memory management techniques,
and message passing between Rete nodes. In our benchmarks, we measured
scalability up to 8 cores, outperforming highly optimized sequential implemen-
tations.

4.12 “A Relational Trace Logic for Simple
Hierarchical Actor-Based Component
Systems” by I. W. Kurnia and A.
Poetzsch-Heffter

We present a logic for proving functional properties of concurrent component-
based systems. A component is either a single actor or a group of dynamically
created actors. The component hierarchy is based on the actor creation tree.
The actors work concurrently and communicate asynchronously. Each actor
is an instance of an actor class. An actor class determines the behavior of its
instances. We assume that specifications of the behavior of the actor classes
are available. The presented logic allows deriving properties of larger compo-
nents from specifications of smaller components in a hierarchical manner. The
behavior of components is expressed in terms of traces where a trace is a se-
quence of events. A component specification relates traces of input events to
traces of output events. Generalizing Hoare-like logics from states to traces and
from statements to components, we write p C q to mean that if an input trace
satisfies p, component C produces output traces satisfying q; that is, p and
q are assertions over traces. Such specifications are partial in that they only
specify the reaction of C to input traces satisfying p. This paper develops the
trace semantics and specification technique for actor-based component systems,
presents important proof rules, proves soundness of the rules, and illustrates
the interplay between the trace semantics, the specification technique and the
proof rules by an example derived from an industrial Erlang case study.

23

multiparty interactions with observation. We show that this model provides a
natural encoding for priorities and moreover, can be used as an intermediate
step towards provably correct and optimized distributed implementations.

4.10 “Distributed Priority Synthesis using
Knowledge” by C.-H. Cheng, R. Yan, H.
Ruess and S. Bensalem

For distributed computing, orchestrations along predefined communication
paths are used to obtain agreement between system components on the next
chosen transition. Although the communication overhead can be high, it can
be efficiently reduced by the introduction of knowledge, which provides each
local component imperfect view on the global state during run-time. In this
paper, given a safety criterion, we formulate the problem how to automatically
orchestrate components in a system using stateless precedences between actions
under the assist of statically computed knowledge. If the system is diagnosed
as unsafe, the use of knowledge can be integrated in the synthesis process to
enlarge the set of legal fixing candidates. These new solution candidates may
disrespect predefined communication paths but their defined priorities are still
guaranteed to be deployable.

4.11 “Parallel Gesture Recognition with Soft
Real-Time Guarantees” by T. Renaux, L.
Hoste, S. Marr and W. De Meuter

Applying imperative programming techniques to process event streams, like
those generated by multi-touch devices and full-body motion detection, has sig-
nificant engineering drawbacks. Declarative approaches solve these problems
but have not been able to scale on multicore systems while providing guar-
anteed response times.We propose PARTE, a parallel scalable complex event
processing engine which allows a declarative definition of patterns and provides
soft real-time guarantees for their recognition. It extends the state-saving Rete
algorithm and maps the event matching onto a graph of actor nodes. Using a
tiered event matching model, PARTE provides upper bounds on the detection

22

1 Introduction

ago, agis, egi, actum, agere
latin verb meaning to act, to lead, to do,
common root for actors and agents

“The Free Lunch is Over” also for Abstractions

The fundamental turn of software into concurrency, interactivity, and distri-
bution is not only a matter of performance, but also design and abstraction.
The free lunch is over [14] calls for devising new programming paradigms –
possibly as evolution of existing ones — that would allow for natural ways of
thinking about, designing, developing, executing, debugging and profiling sys-
tems that exhibit different degrees of concurrency, autonomy, decentralization
of control, and physical distribution. Almost any application today requires the
programming of software components that actively –proactively and reactively
–carry out multiple tasks, react to various kinds of events, and communicate
with each other. Relevant research questions include: how to properly program
these entities and systems of entities, what kinds of programming abstractions
can help in systematically structuring complex reactive and proactive behav-
iors, and what kinds of programming abstractions can be effective in organizing
applications as ensembles of relatively autonomous entities working together.

Actors, Agents and Abstractions for Decentralized
Control

Given this premise, in SPLASH 2011 the AGERE! workshop [1] was proposed
for the first time to investigate the definition of proper levels of abstraction,
programming languages, and platforms to support and promote a decentralized
mindset [11] in systems development. To this end, agents (and multi-agent
systems) and actors were taken as a starting point, as two main broad families
of concepts described in the literature. These abstractions and programming

7

tools explicitly promote such a decentralized-control mindset from different
facets, depending on the context in which they are discussed, e.g., concurrent
programming or distributed artificial intelligence.

Actors [3] and object-oriented concurrent programming [15, 2] couple object-
oriented programming with concurrency, providing a clean and powerful
computation model which is nowadays increasingly adopted in mainstream
languages, frameworks and libraries. Agents and agent-oriented program-
ming [5, 6, 7, 10, 13, 12] provide a rich abstraction layer on top of actors and
objects. This approach aims at easing programming of concurrent/distributed
systems conceived as societies of autonomous and proactive task-oriented indi-
viduals interacting in a shared environment.

The wave of interest on concurrency and distribution in mainstream pro-
gramming has been clearly witnessed also through the good number of contri-
butions accepted to OOPSLA and OnWard! in SPLASH 2011 (and in other
recent editions) that addresses those same issues. However, the main focus in
those contributions (including invited talks and panels) so far has been mainly
on issues related to performance, and mechanisms for extending mainstream
paradigms to effectively exploit the power of e.g. multi-core and many-core
architectures. While acknowledging the importance of those objectives, at the
same time we argue for the importance of strengthening the research on new
paradigms aiming first at improving the conceptual modeling and the level of
abstraction used to design and program such complex software systems.

With that main objective in mind, AGERE! is organized in SPLASH 2012
to promote the investigation of the features that would make agent-oriented
and actor-oriented programming languages effective and general-purpose in de-
veloping software systems as an evolution of OOP. Besides actors and agents,
the workshop is meant, more generally, to serve as a venue for all program-
ming approaches and paradigms investigating how to effectively specify and
structure control when programming reactive systems [9, 8, 4] providing new
abstractions for dealing, e.g., with management of asynchronous events and the
efficient execution of concurrent activities.

8

nodes/agents leaving the system. We demonstrate the approach with exam-
ples taken from sensor networks, and show some experimental results on the
QuestMonitor platform.

4.8 “A Decentralized Approach for Programming
Interactive Applications with JavaScript and
Blockly” by A. Marron, G. Weiss and G. Wiener

We present a decentralized-control methodology and a toolset for developing
interactive user interfaces. We focus on the common case of developing the
client side of Web applications. Our approach is to combine visual program-
ming using Google Blockly with a single-threaded implementation of behavioral
programming in JavaScript. We show how the behavioral programming prin-
ciples can be implemented with minimal programming resources, i.e., with a
singlethreaded environment using coroutines. We give initial, yet full, examples
of how behavioral programming is instrumental in addressing common issues
in this application domain, e.g., that it facilitates separation of graphical rep-
resentation from logic and handling of complex inter-object scenarios. The
implementation in JavaScript and Blockly (separately and together) expands
the availability of behavioral programming capabilities, previously implemented
in LSC, Java, Erlang and C++, to audiences with different skill-sets and design
approaches.

4.9 “Optimized Distributed Implementation of
Multiparty Interactions with Observation” by S.
Bensalem, M. Bozga, J. Quilbeuf and J. Sifakis

Using high level coordination primitives allows enhanced expressiveness of
component-based frameworks to cope with the inherent complexity of present-
day systems designs. Nonetheless, their distributed implementation raises mul-
tiple issues, regarding both the correctness and the runtime performance of the
final implementation. We propose a novel approach for distributed implemen-
tation of multiparty interactions subject to scheduling constraints expressed by
priorities. We rely on new composition operators and semantics that combine

21

oriented concurrent programming or by the actor model, being them natively
based on the reactivity principle only. In this paper we tackle the problem
with agent-oriented programming, using an agent-oriented programming lan-
guage called simpAL.

4.6 “Empirical Software Engineering for Agent
Programming” by M. B. van Riemsdijk

Empirical software engineering is a branch of software engineering in which
empirical methods are used to evaluate and develop tools, languages and tech-
niques. In this position paper we argue for the use of empirical methods to
advance the area of agent programming. Through that we will complement the
solid theoretical foundations of the field with a thorough understanding of how
our languages and platforms are used in practice, what the main problems and
effective solutions are, and how to improve our technology based on empirical
findings. Ultimately, this will pave the way for establishing multi-agent sys-
tems as a mature and recognized software engineering paradigm with clearly
identified advantages and application domains.

4.7 “Messages with Implicit Destinations as Mobile
Agents” by A. Ahmad-Kassem, S. Grumbach
and S. Ubéda

Applications running over decentralized systems, distribute their computation
on nodes/agents, which exchange data and services through messages. In many
cases, the provenance of the data or service is not relevant, and applications
can be optimized by choosing the most efficient solution to obtain them. We in-
troduce a framework which allows messages with intensional destination, which
can be seen as restricted mobile agents, specifying the desired service but not
the exact node that carries it, leaving to the system the task of evaluating
the extensional destination, that is an explicit address for that service. The
intensional destinations are defined using queries that are evaluated by other
agents while routing. We introduce the Questlog language, which allows to
reformulate queries, and express complex strategies to pull distributed data.
In addition, intensional addresses offer persistency to dynamic systems with

20

Theory and Practice of Programming with Actors,
Agents and Decentralized Control Abstractions

All stages of software development are considered interesting for the workshop,
including requirements, modeling, prototyping, design, implementation, test-
ing, and any other means of producing running software based on actors and
agents as first-class abstractions. The scope of the conference includes aspects
that concern both the theory and the practice of design and programming us-
ing such paradigms, so as to bring together researchers working on the models,
languages and technologies, as well as the practitioners using such technologies
to develop real-world systems and applications.
Finally, the overall perspective of the workshop is what distinguishes this

event from related venues (e.g. about agents) organized in different con-
texts (e.g. AI) with the intent to hopefully impact mainstream programming
paradigms and software development. Another purpose of the workshop is to
serve as a forum for collecting, discussing, and confronting related research work
that typically appears in different communities in the context of (distributed)
artificial intelligence, distributed computing, computer programming, and soft-
ware engineering.

Acknowledgment

The organizing committee would like to thank all program committee members,
authors and participants. Thank you to ACM and SPLASH organizers, and to
Typesafe Inc., for their support. We look forward to a productive workshop.

9

10

4.4 “Adding Distribution and Fault Tolerance to
Jason” by Á. Fernández D́ıaz, C. Benac Earle
and L.-A. Fredlund

In this paper we describe an extension of the multiagent system program-
ming language Jason with constructs for distribution and fault tolerance. The
standard Java-based Jason implementation already does provide a distribution
mechanism, which is implemented using the JADE library, but to use it effec-
tively some Java programming is often required. Moreover, there is no support
for fault tolerance. In contrast, this paper develops constructs for distribution
and fault tolerance wholly integrated in Jason, permitting the Jason program-
mer to implement complex distributed systems entirely in Jason itself. The
fault tolerance techniques implemented allow the agents to detect, and hence
react accordingly, when other agents have stopped working for some reason
(e.g., due to a software or a hardware failure) or cannot be reached due to a
communication link failure. The introduction of distribution and fault tolerance
in Jason represents a step forward towards the coherent integration of successful
distributed software techniques into the agent based software paradigm. The
proposed extension to Jason has been implemented in eJason, an Erlang-based
implementation of Jason. In fact, in this work we essentially import the distri-
bution and fault tolerance mechanisms from the Erlang programming language
into Jason, a task which requires the adaptation of the basic primitives due
to the difference between a process based functional programming language
(Erlang) and a language for programming BDI (Belief-Desire-Intention) agent
based systems (Jason).

4.5 “Programming Abstractions for Integrating
Autonomous and Reactive Behaviors: An
Agent-Oriented Approach” by A. Ricci and A.
Santi

The integration of autonomous and reactive behavior is a relevant problem in
the context of concurrent programming, related to the integration of thread-
based and event-driven programming. From a programming paradigm per-
spective, the problem can not be easily solved by approaches based on object-

19

Given an Erlang module and a set of properties, Soter first extracts an ab-
stract (approximate but sound) model in the form of an actor communicating
system (ACS), and then checks if the properties are satisfied using a Petri net
coverability checker, BFC. To our knowledge, Soter is the first fully-automatic,
infinite-state model checker for a large fragment of Erlang. We find that in
practice our abstraction technique is accurate enough to verify an interesting
range of safety properties such as mutual-exclusion and boundedness of mail-
boxes. Though the ACS coverability problem is EXPSPACE-complete, Soter
can analyse these problems surprisingly efficiently.

4.3 “Leveraging Actors for Privacy Compliance” by
J. von Ronne

Many organizations store and process personal information about the individ-
uals with whom they interact. Because incorrect handling of this information
can be harmful to those individuals, this information is often regulated by
privacy policies. Although noncompliance can be costly, determining whether
an organizations systems and processes actually follow these policies is chal-
lenging. It is our position, however, that such information systems could be
formally verified if it is specified, designed, and implemented according to a
methodology that prioritizes verifiability of privacy properties. This paper de-
scribes one such approach that leverages an actor-based architectural style,
formal specifications of personal information that is allowed and required to
be communicated, and a domain-specific actor-based language. Specifications
at the system-, componentActor-level are written using a first-order temporal
logic. We propose that the software implementation be mechanically-checked
against individual actor specifications using abstract interpretation. Whereas,
consistency between the different specification levels and would be checked us-
ing model checking. By restricting our attention to programs using a specific
actor-based style and implementation technology, we can make progress towards
the very challenging problem of rigorously verifying program implementations
against complex privacy regulations.

18

2 Committee

2.1 Program Committee

Gul Agha, University of Illinois at Urbana-Champaign, USA
Joe Armstrong, SICS / Ericsson, Sweden
Saddek Bensalem, Verimag, France
Rafael H. Bordini, FACINPUCRS, Brazil
Gilad Braha, Google, USA
Rem Collier, UCD, Dublin
Tom Van Cutsem, Vrije Universiteit, Brussel, Belgium
Amal El Fallah Seghrouchni, LIP6 Univ. P and M. Curie, Paris, France
Jurgen Dix, Technical University of Clausthal, Germany
Philipp Haller, Typesafe, Switzerland
Tom Holvoet, Dept. Computer Science K.U.Leuven, Belgium
Einar Broch Johnsen, University of Oslo, Norway
Hillel Kugler, Microsoft, USA
Assaf Marron, Weizmann Institute of Science, Israel
Mark Miller, Google, USA
Olaf Owe, University of Oslo, Norway
Jens Palsberg, UCLA, Los Angeles, USA
Ravi Pandya, Microsoft, USA
Arnd Poetzsch-Heffter, University of Kaiserslautern, Germany
Alessandro Ricci, University of Bologna, Italy
Birna van Riemsdijk, Delft University of Technology, The Netherlands
Giovanni Rimassa, Whitestein Technologies, Switzerland
Munindar Singh, North Carolina State University, USA
Marjan Sirjani, Reykjavik University, Iceland
Gera Weiss, Ben Gurion University, Israel
Guy Wiener, HP, Israel
Akinori Yonezawa, University of Tokyo, Japan

11

2.2 Organizing Committee & PC Chairs

Gul Agha, University of Illinois at Urbana-Champaign, USA
Rafael H. Bordini, FACIN–PUCRS, Brazil
Assaf Marron, Weizmann Institute of Science, Israel
Alessandro Ricci, University of Bologna, Italy

12

4 Abstracts

4.1 “Domains: Safe sharing among actors” by J.
De Koster, T. Van Cutsem and T. D’Hondt

The actor model has already proven itself as an interesting concurrency model
that avoids issues such as deadlocks and race conditions by construction, and
thus facilitates concurrent programming. While it has mainly been used in a
distributed context it is certainly equally useful for modeling interactive com-
ponents in a concurrent setting. In component based software, the actor model
lends itself to naturally dividing the components over different actors and using
message passing concurrency for implementing the interactivity between these
components. The tradeoff is that the actor model sacrifices expressiveness and
efficiency especially with respect to parallel access to shared state. This paper
gives an overview of the disadvantages of the actor model in the case of shared
state and then formulates an extension of the actor model to solve these issues.
Our solution proposes domains and synchronization views to solve the issues
without compromising on the semantic properties of the actor model. Thus, the
resulting concurrency model maintains deadlock-freedom and avoids low-level
race conditions.

4.2 “Soter: An Automatic Safety Verifier for
Erlang” by E. D’Osualdo, J. Kochems and L.
Ong

This paper presents Soter, a fully-automatic program analyser and verifier
for Erlang modules. The fragment of Erlang accepted by Soter includes the
higher-order functional constructs and all the key features of actor concur-
rency, namely, dynamic and possibly unbounded spawning of processes and
asynchronous message passing. Soter uses a combination of static analysis and
infinite-state model checking to verify safety properties specified by the user.

17

16

3 Programme

3.1 First Day (Oct 21, Sunday)

• 8:30 9:00 Welcome

– Introduction to the AGERE! workshop: Motivation, Objectives,
Agenda.

• 9:00 10:00 Invited talk

On the integration of the actor model in mainstream technolo-
gies The Scala perspective by Philipp Haller, Typesafe

• 10:00 10:30 Coffee Break

• 10:30 12:00 Research Papers session I Actors

– Domains: Safe sharing among actors
Joeri De Koster, Tom Van Cutsem and Theo D’Hondt – Vrije Uni-
versiteit (Belgium)

– Soter: An Automatic Safety Verifier for Erlang
Emanuele D’Osualdo, Jonathan Kochems and Luke Ong – Oxford
University (United Kingdom)

– Leveraging Actors for Privacy Compliance
Jeffery Von Ronne – The University of Texas at San Antonio (United
States)

• 12:00 13:30 Lunch

• 13:30 14:30 Invited talk

20 years of Agent-Oriented Programming in Distributed AI:
History and Outlook by Birna van Riemsdijk Delft University
of Technology, The Netherlands

13

• 14:30 15:00 Research Paper Session IIa Agent-Oriented Programming

– Adding Distribution and Fault Tolerance to Jason
Álvaro Fernández Dı́az, Clara Benac Earle and Lars-Ake Fredlund
– Universidad Politcnica de Madrid (Spain)

• 15:00 15:30 Coffee Break

• 15:30 17:00 Research Paper Session IIb Agent-Oriented Programming

– Programming Abstractions for Integrating Autonomous and Reactive
Behavior: An Agent-Oriented Approach
Alessandro Ricci, Andrea Santi – University of Bologna (Italy)

– Empirical Software Engineering for Agent Programming
Birna Van Riemsdijk – TU Delft (The Netherlands)

– Messages with Implicit Destinations as Mobile Agents
Ahmad Ahmad-Kassem, Stphane Grumbach and Stphane Ubda –
INRIA INSA Lyon, INRIA (France)

3.2 Second Day (Oct 22, Monday)

• 8:30 9:00 Welcome

– Brief summary of the first day and agenda of the second day. Prepa-
ration for the panel discussion.

• 9:00 10:00 Invited Talk

Agents, Concurrent Objects, and High Performance Computing
by Akinori Yonezawa University of Tokyo, Japan

• 10:00 10:30 Coffee Break

• 10:30 12:00 Research Paper Session III Decentralized control program-
ming with Behavioral Abstractions

• Introduction by Assaf Marron

– A Decentralized Approach for Programming Interactive Applications
with JavaScript and Blockly
Assaf Marron, Gera Weiss and Guy Wiener – Weizmann Institue of
Science, Ben Gurion University, HP Labs (Israel)

14

– Optimized Distributed Implementation of Multiparty Interactions
with Observation
Saddek Bensalem, Marius Bozga, Jean Quilbeuf and Joseph Sifakis
– VERIMAG, VERIMAG/CNRS (France)

– Distributed Priority Synthesis using Knowledge
Chih-Hong Cheng, Rongjie Yan, Harald Ruess and Saddek Bensalem
– Fortiss (Germany), State Key Laboratory of Computer Science
Institute of Software (China), VERIMAG (France)

• 12:00 13:30 Lunch time

• 13:30 15:00 Research Paper Session IV Actors

– Parallel Gesture Recognition with Soft Real-Time Guarantees
Thierry Renaux, Lode Hoste, Stefan Marr and Wolfgang De Meuter
– Vrije Universiteit (Belgium)

– A Relational Trace Logic for Simple Hierarchical Actor-Based Com-
ponent Systems
Ilham W. Kurnia and Arnd Poetzsch-Heffter – University of Kaiser-
slautern (Germany)

– Timed-Rebeca Schedulability and Deadlock-Freedom Analysis Using
Floating-Time Transition System
Ehsan Khamespanah, Zeynab Sabahi Kaviani, Ramtin Khosravi,
Marjan Sirjani and Mohammad-Javad Izadi – Tehran University
(Iran), Reykjavik University (Iceland)

• 15:00 15:30 Coffee Break

• 15:30 17:00 Research Paper V and Discussion Session

– Actor Idioms
Dale Schumacher – United States

– Research directions for Agent, Actor and Decentralized Control:
panel and open discussion

• 17:00 SPLASH Poster session with one poster about AGERE! summary
& contributions

15

