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Introduction

ago, agis, egi, actum, agere
latin verb meaning to act, to lead, to do,
common root for actors and agents

“The Free Lunch is Over” also for Abstractions

The fundamental turn of software into concurrency, interactivity, and distri-
bution is not only a matter of performance, but also design and abstraction.
The free lunch is over [14] calls for devising new programming paradigms —
possibly as evolution of existing ones — that would allow for natural ways of
thinking about, designing, developing, executing, debugging and profiling sys-
tems that exhibit different degrees of concurrency, autonomy, decentralization
of control, and physical distribution. Almost any application today requires the
programming of software components that actively —proactively and reactively
—carry out multiple tasks, react to various kinds of events, and communicate
with each other. Relevant research questions include: how to properly program
these entities and systems of entities, what kinds of programming abstractions
can help in systematically structuring complex reactive and proactive behav-
iors, and what kinds of programming abstractions can be effective in organizing
applications as ensembles of relatively autonomous entities working together.

Actors, Agents and Abstractions for Decentralized
Control

Given this premise, in SPLASH 2011 the AGERE! workshop [I] was proposed
for the first time to investigate the definition of proper levels of abstraction,
programming languages, and platforms to support and promote a decentralized
mindset [IT] in systems development. To this end, agents (and multi-agent
systems) and actors were taken as a starting point, as two main broad families
of concepts described in the literature. These abstractions and programming



tools explicitly promote such a decentralized-control mindset from different
facets, depending on the context in which they are discussed, e.g., concurrent
programming or distributed artificial intelligence.

Actors [3] and object-oriented concurrent programming [I5] 2] couple object-
oriented programming with concurrency, providing a clean and powerful
computation model which is nowadays increasingly adopted in mainstream
languages, frameworks and libraries. Agents and agent-oriented program-
ming [Bl [6, [7, 10, 13, 12] provide a rich abstraction layer on top of actors and
objects. This approach aims at easing programming of concurrent/distributed
systems conceived as societies of autonomous and proactive task-oriented indi-
viduals interacting in a shared environment.

The wave of interest on concurrency and distribution in mainstream pro-
gramming has been clearly witnessed also through the good number of contri-
butions accepted to OOPSLA and OnWard! in SPLASH 2011 (and in other
recent editions) that addresses those same issues. However, the main focus in
those contributions (including invited talks and panels) so far has been mainly
on issues related to performance, and mechanisms for extending mainstream
paradigms to effectively exploit the power of e.g. multi-core and many-core
architectures. While acknowledging the importance of those objectives, at the
same time we argue for the importance of strengthening the research on new
paradigms aiming first at improving the conceptual modeling and the level of
abstraction used to design and program such complex software systems.

With that main objective in mind, AGERE! is organized in SPLASH 2012
to promote the investigation of the features that would make agent-oriented
and actor-oriented programming languages effective and general-purpose in de-
veloping software systems as an evolution of OOP. Besides actors and agents,
the workshop is meant, more generally, to serve as a venue for all program-
ming approaches and paradigms investigating how to effectively specify and
structure control when programming reactive systems [9, 8, 4] providing new
abstractions for dealing, e.g., with management of asynchronous events and the
efficient execution of concurrent activities.



Theory and Practice of Programming with Actors,
Agents and Decentralized Control Abstractions

All stages of software development are considered interesting for the workshop,
including requirements, modeling, prototyping, design, implementation, test-
ing, and any other means of producing running software based on actors and
agents as first-class abstractions. The scope of the conference includes aspects
that concern both the theory and the practice of design and programming us-
ing such paradigms, so as to bring together researchers working on the models,
languages and technologies, as well as the practitioners using such technologies
to develop real-world systems and applications.

Finally, the overall perspective of the workshop is what distinguishes this
event from related venues (e.g. about agents) organized in different con-
texts (e.g. AI) with the intent to hopefully impact mainstream programming
paradigms and software development. Another purpose of the workshop is to
serve as a forum for collecting, discussing, and confronting related research work
that typically appears in different communities in the context of (distributed)
artificial intelligence, distributed computing, computer programming, and soft-
ware engineering.
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On the Integration of the Actor Model
into Mainstream Technologies

A Scala Perspective

Philipp Haller
Typesafe, Inc.

philipp.haller@typesafe.com

Abstract

Integrating the actor model into mainstream software platforms is
challenging because typical runtime environments, such as the Java
Virtual Machine, have been designed for very different concurrency
models. Moreover, to enable integration with existing infrastruc-
tures, execution modes and constructs foreign to the pure actor
model have to be supported. This paper provides an overview of
past and current efforts to address these challenges in the context
of the Scala programming language.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming— Distributed and parallel pro-
gramming; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

Keywords Concurrent programming, distributed programming,
actors, threads

1. Introduction

Actors are a powerful abstraction for structuring highly concurrent
software systems which scale up to many-core processors, as well
as scale out to clusters and the cloud. The Scala community is well-
known for its effort to bring the actor model to mainstream software
engineering. The first actors implementation was released as part of
the Scala standard library in 2006 [6, 15]. Since then, there has been
a steady stream of both research results and industrial development,
contributing to a renewed interest in actors in academia, as well
as innovations powering state-of-the-art frameworks like the Akka
event-driven middleware [16].

Integrating the actor model into mainstream software platforms
is a formidable challenge. On the one hand, industrial-strength im-
plementations have to make optimal use of underlying runtime en-
vironments which typically have not been designed to support ac-
tors. On the other hand, in order to integrate with existing infras-
tructures, it is necessary to support execution modes and constructs
that are rather foreign to a pure notion of actors, such as blocking
operations, and interoperability with native platform threads.

This paper provides an overview of the challenges of provid-
ing an industrial-strength actor implementation on the Java Vir-
tual Machine (JVM), in the context of the Scala programming lan-
guage [13]. It aims to serve as an experience report on addressing
these challenges through a combination of research and engineer-
ing advances.

We’re going to focus on the two main actor implementations for
Scala: Scala Actors [7] and Akka [16]. The former has been part of
Scala’s standard library since Scala version 2.1.7. Beginning with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

AGERE! October 21-22, 2012.

Scala version 2.10.0, Scala Actors are deprecated in favor of Akka’s
actor implementation, a new member of the Scala distribution. One
goal of this paper is to motivate this transition, and to examine
which ideas of Scala Actors are adopted in Akka, and what has
changed in the design and implementation.

1.1 Overview

The design and implementation of industrial-strength actor imple-
mentations on mainstream platforms, such as the JVM, is driven
by numerous requirements. Some requirements guided the design
and implementation of Scala’s first actors framework; these “early
requirements” were:

e Library-based implementation (R1). It is unclear which con-
currency abstraction is going to “win”. Real-world concurrency
tasks might even benefit from a combination of several differ-
ent abstractions. Rather than betting on a single candidate and
providing built-in language support, Scala’s approach has been
to enable flexible concurrency libraries.

High-level domain-specific language (R2). While actors are
provided using library abstractions in Scala, it is important that
their programming interface is “competitive” with languages
with specialized concurrency support.

Event-driven implementation (R3). Actors should be mapped to
lightweight tasks triggered by messaging events. Spending an
entire virtual machine thread per actor does not scale to large
numbers of actors. At the same time, the benefits of thread-
based programming should remain accessible in cases where
a purely event-driven model would be too restrictive.

In retrospect, these requirements are still valid, however, other
requirements turned out to be more important in the context of
industrial software development. With the growing use of actors in
production Scala applications, it became clear that satisfying only
these early requirements was not sufficient to meet all demands.
Other requirements had to be added, and existing ones turned out
to be useful beyond their initial goals. These “later requirements”
were:

® High performance (R4). The majority of industrial applica-
tions where actors provide most benefits are highly perfor-
mance sensitive. Past experience with industrial Erlang appli-
cations [1, 12] suggests that scalability is more important than
raw performance. On the other hand, it is known that a high-
performance virtual machine such as the JVM can enable ap-
plications to scale out much more gracefully than other runtime
environments. In addition, benchmarking offers a simple evalu-
ation strategy if the compared benchmark programs are of sim-
ilar complexity.



e Flexible remote actors (R5). Many medium-sized and large ap-
plications can benefit from remote actors, i.e., actors that com-
municate transparently over the network. In many cases, flexi-
ble deployment mechanisms, e.g., using external configuration,
are very important.

The early requirement of a library-based implementation turned
out to provide additional benefits: first, it enables existing tools,
such as IDEs and debuggers, to be readily supported. Second, it is
possible to provide APIs for several languages. For example, the
Akka framework has both a Scala and a Java API.

In the following we are going to “tackle” these requirements,
in two groups: the first group is concerned with the programming
interface (see Section 2) which addresses requirements R1 and
R2. The second group is concerned with the actor runtime (see
Section 3) which addresses requirements R3 and R4. Remote actors
(R5) are beyond the scope of this paper.

2. The Programming Interface

This section provides an overview of the programming interface of
both Akka and Scala Actors, and how the interface is realized as a
library in Scala.

An actor is a process that communicates with other actors by
exchanging messages. The principal message send operation is
asynchronous. Therefore, an actor buffers incoming messages in
a message queue, its mailbox. The behavior of an actor determines
how the messages in its mailbox are processed. Since defining an
actor’s behavior is a rather important activity when programming
with actors, it is crucial that an actor programming system has good
support for it. In Scala, the behavior of an actor can be defined by
creating a new class type that extends a predefined Actor trait.'
Figure 1 shows an example using Scala Actors (top) and Akka
Actors (bottom), respectively.

In Scala Actors, the body of the act method (inherited from
Actor) defines an actor’s behavior. In the above example, it repeat-
edly calls the receive operation to try to receive a message. The
receive operation has the following form:

receive {
case msgpati => actioni

case msgpat, => actionn,

}

The first message which matches any of the patterns msgpat;
is removed from the mailbox, and the corresponding action; is
executed. If no pattern matches, the actor suspends.

The example in Figure 1 (top) uses receive to wait for two
kinds of messages. The Order (item) message handles an order
for item. An object which represents the order is created and an
acknowledgment containing a reference to the order object is sent
back to the sender. The Cancel(o) message cancels order o if
it is still pending. In this case, an acknowledgment is sent back
to the sender. Otherwise a NoAck message is sent, signaling the
cancellation of a non-pending order.

The API of Akka’s actors is similar to that of Scala Actors. The
principal way of defining a message handler for incoming messages
is the implementation of the receive method, which is inherited
from the Actor trait. The body of the receive method has the
same form as in the case of receive in Scala Actors.

For simplicity, we're going to refer to the latter as “sreceive”
and to the former as “areceive” (Akka’s receive) in the following.
The main difference between “sreceive” and “areceive” is that the

U A trait in Scala is an abstract class that can be mixin-composed with other
traits.

class OrderManager extends Actor {
def act() {
while (true) {
receive {
case Order(item) =>
val o = handleOrder(sender, item)
sender ! Ack(o)
case Cancel(o) =>
if (o.pending) {
cancelOrder (o)
sender ! Ack(o)
} else sender ! NoAck

class OrderManager extends Actor {
def receive = {
case Order(item) =>
// same as above
case Cancel(o) =>
// same as above

Figure 1. Example: orders and cancellations.

former operation is blocking, i.e., the current actor is suspended
until a matching message can be removed from its mailbox. On the
other hand, “areceive” is used to define a global message handler,
which, by default, is used for processing all messages that the actor
receives over the course of its life time. Moreover, the message
handler defined by “areceive” only gets activated when a message
can be removed from the mailbox. Another important difference is
that “areceive” will never leave a message in the mailbox if there
is no matching pattern which is different compared to “sreceive”.
Whenever the actor is ready to process the next message, it is
removed from the mailbox; if there is no pattern that matches the
removed message, an event is published to the system, signaling an
unhandled message.

The example in Figure 1 (bottom) defines a global message
handler which handles the same two kinds of messages as the
example at the top.

2.1 Bridging the Gap

The semantics of “sreceive” and “areceive” are quite different.
“sreceive” has the same semantics as “receive” in Erlang [2]. On
the other hand, “areceive” can be implemented more efficiently on
the JVM. Each construct enables a different programming style for
messaging protocols. To support both styles, Akka 2.0 introduces
a Stash trait which an Actor subclass can optionally mix in.
Together with methods to change the global message handler of
an actor (called become and unbecome in Akka), the stash enables
the familiar Erlang style also using Akka.

2.2 Creating Actors

In Scala Actors, creating a new instance of a subclass of Actor
(such as OrderManager in Figure 1) creates an actor with the be-
havior defined by that class. All interaction with the actor (message
sends etc.) is done using references to that instance.

In Akka Actors, an actor is created using one of several factory
methods of an instance of type ActorRefFactory, say factory:



val actor = factory.actorOf (Props[OrderManager])

In many cases, the factory object is the “actor system”, the con-
tainer which provides shared facilities (e.g., task scheduling) to
all actors created in that container. (The factory can also be a
“context” object which is used to create supervision hierarchies for
fault handling.) The expression Props [OrderManager] in Scala
is equivalent to Props . apply [OrderManager], an invocation of
the apply factory method of the Props singleton object. Singleton
objects have exactly one instance at runtime, and their methods are
similar to static methods in Java. The Props . apply method returns
an instance of the Props class type, which contains all information
necessary for creating new actors.

The main difference between creating an actor in Scala Actors
and in Akka is that the above actor0f method in Akka returns an
instance of type ActorRef instead of an instance of the specific
Actor subclass. One of the main reasons is encapsulation.

2.3 Encapsulation

The actor runtime guarantees thread safety of actor interactions
only if actors communicate only by passing messages. However,
in Scala Actors it is possible for an actor to directly call a (public)
method on a different actor instance. This breaks encapsulation and
can lead to race conditions if the state of the target actor is accessed
concurrently [10].

To prevent such encapsulation breaches, in Akka actors have a
very limited interface, ActorRef, which basically only provides
methods to send or forward messages to its actor. Akka has built-
in checks to ensure that no direct reference to an instance of an
Actor subclass is accessible after an actor is created. This mech-
anism works surprisingly well in practice, although it can be cir-
cumvented. [9]

An alternative approach to ensuring encapsulation of actors is
a typing discipline such as uniqueness types [3]. The capability-
based separate uniqueness type system [8] has been implemented
as a prototype for Scala [5]. However, more research needs to be
done to make such type systems practical.

2.4 Implementation

Looking at the examples shown above, it might seem that Scala is a
language specialized for actor concurrency. In fact, this is not true.
Scala only assumes the basic thread model of the underlying host.
All higher-level operations shown in the examples are defined as
classes and methods of the Scala library. In the rest of this section,
we look “under the covers” to find out how selected constructs are
defined and implemented.

The send operation ! is used to send a message to an actor.
The syntax a ! msg is simply an abbreviation for the method call
a.!(msg), justlike x + y in Scala is an abbreviation for x.+(y).
Consequently, ! can be defined as a regular method:

def !(msg: Any): Unit = ...

The receive constructs are more interesting. In Scala, the pattern
matching expression inside braces is treated as a first-class object
that is passed as an argument to “sreceive”, and returned from
“areceive”, respectively. The argument’s type is an instance of
PartialFunction, which is a subtrait of Functioni, the type of
unary functions. The two traits are defined as follows.

trait Functioni[-A, +B] {
def apply(x: A): B

trait PartialFunction[-A, +B]
extends Functioni[A, B] {
def isDefinedAt(x: A): Boolean
}

Functions are objects which have an apply method. Partial func-
tions are objects which have in addition a method isDefinedAt
which tests whether a function is defined for a given argument.
Both traits are parameterized; the first type parameter A indicates
the function’s argument type and the second type parameter B indi-
cates its result type’.
A pattern matching expression

{ case p; => e;1; .; case p, => e, } is then a partial
function whose methods are defined as follows.

e The isDefinedAt method returns true if one of the patterns
p; matches the argument, false otherwise.

e The apply method returns the value e; for the first pattern
p; that matches its argument. If none of the patterns match, a
MatchError exception is thrown.

The two methods are used in the implementation of “sreceive”
as follows. First, messages in the mailbox are scanned in the order
they appear. If the argument £ of “sreceive” is defined for a mes-
sage, that message is removed from the mailbox and f is applied
to it. On the other hand, if f.isDefinedAt (m) is false for every
message m in the mailbox, the receiving actor is suspended.

The Akka runtime uses partial functions differently: first, the be-
havior of an actor is defined by implementing the receive method;
this method returns a partial function, say, £. The messages in the
actor’s mailbox are processed in FIFO order. The Akka runtime
guarantees that at most one message (per receiving actor) is pro-
cessed at a time. Each message, say msg is removed from the mail-
box regardless of £. If £ is defined for msg, £ is applied to it. On the
other hand, if £ . isDefinedAt (msg) is false, msgis published as
an “unhandled message” event to the system (wrapped in an object
which additionally contains references to the sender and receiver).

3. The Actor Runtime

As motivated in the introduction, the most important features of
the actor runtime are (a) a lightweight execution environment, and
(b) high performance. In the following we will outline how these
features are realized in Akka and which ideas of Scala Actors stood
the test of time.

3.1 Event-Based Actors

Scala Actors [6] introduced a new approach to decouple actors
and threads by providing an event-based operation for receiving
messages, called “react”. In this approach, an actor waiting for a
message that it can process is not modeled by blocking a thread;
instead, it is modeled by a closure which is set up to be scheduled
for execution when a suitable message is received. At that point
a task is created which executes this continuation closure, and
submitted to a thread pool for (asynchronous) execution.

In this approach, the continuation closure is actually an instance
of type PartialFunction[Any, Unit] (see Section 2.4). Akka
has adopted this idea: the continuation of an actor waiting for a
message is an instance of the same type. The main difference is
that when using “react”, this continuation closure is provided per
message to be received; in contrast, in Akka the continuation clo-
sure is defined once, to be used for many (or all) messages. Addi-
tionally, Akka provides methods to change the global continuation
(become/unbecome). The main advantage of Akka’s approach is
that it can be implemented much more efficiently on the JVM. In

2 Parameters can carry + or - variance annotations which specify the re-
lationship between instantiation and subtyping. The -A, +B annotations
indicate that functions are contravariant in their argument and covari-
ant in their result. In other words Function1[X1, Y1] is a subtype of
Functionl[X2, Y2] if X2 is a subtype of X1 and Y1 is a subtype of Y2.



the absence of first-class continuations, implementing “react” re-
quires the use of control-flow exceptions to unwind the call stack,
so that each message is handled on a call stack which is basically
empty. Throwing and catching a control exception for each mes-
sage is additional overhead compared to Akka’s execution strategy.

3.2 Lightweight Execution Environment

A key realization of Scala Actors is the fact that for actor programs
a workstealing thread pool with local task queues [11] scales much
better than a thread pool with a global task queue. The main idea
is as follows: when creating a task which executes the message
handler to process a message, that task is submitted to the local
task queue of the current worker thread. This avoids an important
bottleneck of thread pools with a global task submission queue
which can quickly become heavily contended.

Like Scala Actors, Akka uses Lea’s fork/join pool (an evolu-
tion of [11], released as part of JDK 7 [14]). In addition, and un-
like Scala Actors, Akka uses non-blocking algorithms for inserting
messages into actor mailboxes, and scheduling tasks for execution,
which results in a substantial performance boost.

3.3 Integrating Threads and Actors

Integrating (JVM) threads and event-based actors is useful to
enable powerful message-processing operations also for regular
threads. This facilitates interoperability with existing libraries and
frameworks and offers additional convenience, since it enables ac-
tors to be more easily used from Scala’s interactive REPL (read-
eval-print-loop). Besides Scala Actors, there are other approaches
attempting an integration of threads and event-based actors [4].

In Scala Actors, calling receive on a regular thread, which is
not currently executing an actor, establishes an actor identity and
mailbox in thread-local storage. This actor identity can be passed
to other actors in messages, so as to add the thread actor to their set
of acquaintances.

Akka version 2.1 introduces an Inbox abstraction which let’s
one create a first-class actor mailbox as follows:

implicit val i = ActorDSL.inbox()

someActor ! someMsg // replies will go to ©

,i,(

val reply = i.receive()

val transformedReply = i.select(5 seconds) {
case x: Int => 2 * x

}

The message send in the second line above implicitly trans-
mits an ActorRef obtained from the Inbox i as the sender
of someMsg. As a result, responses of the receiving actor (via
sender ! someResponse) are enqueued in i. Methods such as
receive and select enable blocking access to one message at
a time. The downside of a first-class mailbox is, of course, that it
does not come with a guarantee that there is only a single thread
receiving from the same mailbox, since it could be shared among
multiple threads. On the other hand, the advantage is that it allows
an efficient implementation, and it is relatively straight-forward to
avoid subtle memory leaks.

3.4 Summary

e Scala’s partial functions are well-suited to represent an actor’s
continuation.

e The overhead of unwinding the call stack through exceptions
can be avoided by using a single, global message message
handler. Loss in flexibility can be recovered through constructs
to replace the global message handler.

e A workstealing thread pool with local task queues is an ideal
execution environment for event-based actors.

e Threads and actors can be integrated in a robust way using first-
class actor mailboxes. On the other hand, it does not guarantee
unique receivers.

4. Conclusion

In this paper we have outlined the requirements and forces of
mainstream software engineering which have influenced past and
present actor implementations for Scala. Based on these require-
ments, principles behind the design and implementation of actors
in Scala are explained, covering (a) the programming interface, and
(b) the actor runtime. It is our hope that the learned lessons will be
helpful in the design of other actor implementations for platforms
sharing at least some features with Scala and/or the Java Virtual
Machine.
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Abstract

The actor model has already proven itself as an interesting concur-
rency model that avoids issues such as deadlocks and race condi-
tions by construction, and thus facilitates concurrent programming.
While it has mainly been used in a distributed context it is certainly
equally useful for modeling interactive components in a concurrent
setting. In component based software, the actor model lends itself
to naturally dividing the components over different actors and us-
ing message passing concurrency for implementing the interactiv-
ity between these components. The tradeoff is that the actor model
sacrifices expressiveness and efficiency especially with respect to
parallel access to shared state.

This paper gives an overview of the disadvantages of the actor
model in the case of shared state and then formulates an extension
of the actor model to solve these issues. Our solution proposes
domains and synchronization views to solve the issues without
compromising on the semantic properties of the actor model. Thus,
the resulting concurrency model maintains deadlock-freedom and
avoids low-level race conditions.

1. Introduction

Traditionally, concurrency models fall into two broad categories:
message-passing versus shared-state concurrency control. Both
models have their relative advantages and disadvantages. In this
paper, we explore an extension to a message-passing concurrency
model that allows safe, expressive and efficient sharing of mutable
state among otherwise isolated concurrent components.

A well-known message-passing concurrency model is the actor
model [3]. In this model, applications are decomposed into con-
currently running actors. Actors are isolated (i.e., have no direct
access to each other’s state), but may interact via (asynchronous)
message passing. While originally designed to model open, dis-
tributed systems, and thus often used as a distributed programming
model, they remain equally useful as a more high-level alterna-
tive to shared-memory multithreading. Both component-based and
service-oriented architectures can be modeled naturally using ac-
tors. It is important to point out that in this paper, we restrict our-
selves to the use of actors as a concurrency model, not as a distri-
bution model.
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In practice, the actor model is either made available via dedi-
cated programming languages (actor languages), or via libraries in
existing languages. Actor languages are mostly pure, in the sense
that they often strictly enforce the isolation of actors: the state of an
actor is fully encapsulated, cannot leak, and asynchronous access
to it is enforced. Examples of pure actor languages include Erlang
[5], E [18], AmbientTalk [23], Salsa [24] and Kilim [20]. The ma-
jor benefit of pure actor languages is that the developer gets very
strong safety guarantees: low-level race conditions are avoided. On
the other hand, these languages make it difficult to express shared
mutable state. Often, one needs to express shared state in terms of
a shared actor encapsulating that state, which has several disadvan-
tages, as will be discussed in Section 2.4.

On the other end of the spectrum, we find actor libraries, which
are very often added to an existing language whose concurrency
model is based on shared-memory multithreading. For Java alone,
there exist the ActorFoundry [6], AsyncObjects [2], ... Scala, which
inherits shared-memory multithreading from Java, features mul-
tiple actor frameworks, such as Scala Actors [12] and Akka [1].
What these libraries have in common is that they cannot typically
enforce actor isolation, i.e. they do not guarantee that actors don’t
share mutable state. On the other hand, it’s easy for a developer to
use the underlying shared-memory concurrency model as an “es-
cape hatch” when direct sharing of state is the most natural or most
efficient solution. However, once the developer chooses to go this
route, all of the benefits of the high-level actor model are lost, and
the developer typically has to resort to manual locking to prevent
data races.

The goal of this work is to enable safe, expressive and efficient
state sharing among actors:

safe : the isolation properties of actors are often helpful to bring
structure to, and help reason about, large-scale software. Con-
sider for instance a plug-in or component architecture. By run-
ning plug-ins in their own isolated actors, we can guarantee that
they do not violate invariants of the “core” application. Thus, as
in pure actor languages, we want an actor system that maintains
strong language-enforced guarantees, such as the fact that low-
level data races and deadlocks are prevented by design.

expressive : many phenomena in the real world can be naturally
modelled using message-passing concurrency (e.g. telephone
calls, e-mail, digital circuits, discrete-event simulations, etc.).
Sometimes, however, a phenomenon can be modelled more di-
rectly in terms of shared state. Consider for instance the score-
board in a game of football, which can be read in parallel by
thousands of spectators. As in impure actor libraries, we want
an actor system in which one can directly express access to
shared mutable state, without having to encode shared state
via a shared actor. Furthermore, by enabling direct synchronous
access to shared state, we gain stronger synchronization con-



straints and prevent the inversion of control that is characteris-
tic of interacting with actors (as interaction is typically asyn-
chronous).

efficient : today, multicore hardware is becoming the prevalent
computing platform, both on the client and the server [21].
While multiple isolated actors can be perfectly executed in
parallel by different hardware threads, shared access to a single
actor can still form a serious sequential bottleneck. In particular,
in pure actor languages that support mutable state, all requests
sent to an actor are typically serialized, even if some requests
could be processed in parallel (e.g. requests to simply read
or query some of the actor’s state). Pure actors lack multiple-
reader, single-writer access, which is required to enable truly
parallel reads of shared state.

In this paper, we propose domains, an extension to the actor
model that enables safe, expressive and efficient sharing among
actors. Since we want to provide strong language-level guarantees,
we present domains as part of a small actor language called Shacl'.
In terms of sharing state, our approach strikes a middle ground
between what is achievable in a pure actor language versus what
can be achieved using impure actor libraries. An interpreter for the
whole SHACL language can be found on our website?.

In the next section 2 we present a number of problems that
occur when representing shared state within the actor model. In
section 3 we present our domain and view abstractions. In section 4
we list a number of important additional features of SHACL. And
to conclude the paper we have a related work section and finally a
conclusion.

2. The problem: Accessing non-local shared state

In this section we introduce SHACL, a small implementation of a
pure event-loop actor language for which we introduce new fea-
tures to allow synchronous access to shared state as we go along.
There are two ways to represent shared state in the event-loop ac-
tor model: either by replicating the shared state over the different
actors or by encapsulating the shared state as an additional inde-
pendent actor. In this section we discuss the disadvantages of both
approaches using a motivating example.

2.1 Shacl: An event-loop actor language

The sequential subset of SHACL implements a prototype-based ob-
ject model similar to Self [22]. This object model also has an in-
heritance model, supports late binding and static super references.
However, these are not relevant in the context of this paper and thus
will not be discussed. The concurrency model of SHACL is based
on the event-loop model of E [18] and AmbientTalk [23] where ac-
tors are represented by vats. Each vat/actor has a single thread of
execution, an object heap, and an event queue. Each object in the
object heap of an actor is owned by that actor.“Owning” an object
gives that actor exclusive access rights to that object. Any reference
to an object owned by the same actor is called a local reference. A
reference to an object owned by another actor is called a remote
reference. The type of reference determines the access capabilities
of the actor on the referenced object. While objects pointed to by
local references can be synchronously accessed, any remote ob-
ject can only be accessed through asynchronous message passing.
Thus, sending a message to another actor in this model is just a
matter of sending a message to a remote object in that actor’s ob-
ject heap. Any incoming message is then added to the event queue
of the actor that owns the remote object. The thread of execution

! Pronounce as “shackle”, short for shared actor language
2 http://soft.vub.ac.be/“jdekoste/shacl

of that actor combined with the event queue form the event-loop of
that actor. This event-loop processes arriving messages one by one.
The processing of a single message is called a turn. Each of those
turns is processed in a single atomic step. As in E and AmbientTalk,
SHACL supports non-blocking futures to implement two-way mes-
sages without using callbacks (See section 4.2). This model was
extended with the notion of domains to allow shared state between
different actors in a controlled way.

2.2 Motivating example

As a motivating example we looked into plugin architectures. Iso-
lation and encapsulation are important properties for such architec-
tures to model the different plugins. Hence, the event-loop actor
model is a good fit for such application as it already enforces these
properties on the level of the language. The actor model lends it-
self to naturally model the different plugins each as an actor and
using message passing concurrency to model the communication
between these different components of the application. However,
in such applications, it is common for different plugins to require
access to a shared resource. Whether it be globally available for all
plugins or just shared between a subset of the plugins.

Figure 1 shows a model of an application where two different
plugins use a binary search tree (BST) as a shared data-structure.
The binary search tree can be queried for a certain key using
query and users can insert key-value pairs using insert. In our
application Plugin 1 will periodically insert new key-value pairs in
the tree and Plugin 2 will first query the tree and depending on the
result insert a new key-value pair in the tree.

BST
query()
insert()
Plugin 1 Plugin 2
insert() querylnsert()

Figure 1. Two plugins using the same shared resource

In the next two sections we will use this example to motivate
the issues of using shared state within the actor model.

2.3 Replication

One option for representing shared state in the actor model would
be to replicate this state inside different actors that require access
to it. For our specific example this would mean that the BST would
be replicated in both plugin 1 and 2. This approach has a number
of issues:

Consistency Keeping replicated state consistent requires a consis-
tency protocol that usually does not scale well with the number
of participants. In our specific example this approach can be
used but if we consider applications with hundreds of compo-
nents this no longer feasible. Lowering the availability or con-
sistency of shared state can be a solution to this problem [9].
Unfortunately, whether lowering either availability or consis-
tency is possible is entirely application dependent. In general,
keeping replicated state consistent is a hard problem that usu-
ally leads to inefficient code.

Memory usage increases linearly with the amount of shared state
and the number of actors. Depending on the granularity with
which actors are created, this might incur a memory overhead
that is too high.



Copying cost Sometimes short lived objects need to be shared
between different actors and the cost of copying them is greater
than the cost of the operation that needs to be performed on
them.

For our approach, we could try to hide these consistency proto-
cols and try to lower the memory usage and copying costs. Unfor-
tunately this solution does not scale very well with the number of
actors, making it very unfeasible to use.

2.4 Shared state as an additional independent actor

Using a separate actor to encapsulate shared state is the more
natural solution as it does not require any consistency protocols
and also scales well with the number of other actors accessing that
shared state. There are however three different classes of problems
when using this approach:

Continuation-passing style enforced. Using a distinct actor to
represent conceptually shared state implies that this resource
can not be accessed directly from any other actor since all com-
munication happens asynchronously within the actor model.
Thus, the programmer needs to explicitly handle a request-
response situation, which usually forces the programmer to
employ an explicit continuation-passing-style.

No synchronization conditions. The traditional actor model does
not allow specifying extra synchronization conditions on dif-
ferent operations since the order in which events from different
senders are handled is nondeterministic.

No parallel reads. State that is conceptually shared can never be
read truly in parallel because all accesses to this state are se-
quentialized by the event queue of the encapsulating actor.

Figure 2 shows an implementation of the BST that is encapsu-
lated by a separate actor. Similarly to E [18] and AmbientTalk [23]
in SHACL the actor{<expression>} syntax evaluates to a
new actor with its own separate object heap and event-loop. That
object heap is then initialized with a single new object initialized
by <expression>. The actor syntax immediately evaluates to a
remote reference to that newly created object. Any asynchronous
message that is sent to that reference will then be scheduled as an
event in the event-loop of the newly created actor. For this exam-
ple we intentionally left out the implementation details of the BST.
What is important here is its interface and how it can be accessed.
In this example, querying or updating the BST requires the use of
asynchronous communication. Because of that, querying the BST
for a value requires the use of callbacks to implement the response
message. In our example this is done by passing a callback object,
namely the client (lines 19-25), as a second argument of the
query method. This callback object then has to implement a queried
method that is called with the result of the query method.

In this example the insert method of plugin 1 just delegates
any insert calls to the BST. On the other hand, plugin 2 provides a
queryInsert method that will query the BST for a certain key
and will then decrement the value of that key if it is positive.

In this section we will discuss the three issues raised above in
more detail using our motivating example.

Asynchronous communication leads to continuation passing
style

The style of programming where a computation is divided into
different execution steps is called continuation passing style (CPS),
also known as programming without a call stack [15]. This problem
of using CPS to access a remote resource is typical and can be
found in various other actor languages like Salsa [24], Kilim [20],
etc. The problem with this style of programming is that it leads to
“inversion of control”.

let bst = actor {
insert (key, value) {

}
query (key,
result :=
client<-queried(result);
}
}

client) {

let pluginl = actor {
insert (bst, key, value) {
bst<-insert (key, value)
}
}
let plugin2 = actor {
queryInsert (bst, key) {
bst<-query (key, object {
queried(value) {
if (value > 0) {

bst<-insert (key, value - 1)

Figure 2. A shared bst encapsulated in a separate actor

Figure 2 shows that the restriction of only being able to com-
municate asynchronously with a remote shared resource forces the
programmer to structure his code in a very unintuitive way (CPS,
lines 19-25). If we want to query and afterwards insert a new value
in the BST to update it, we either have to extend the implemen-
tation of our BST with an update method or we combine the
query and insert method in some way. Let us assume that
changing the interface of the BST is not possible’ and we need to
employ the latter solution. Inter-actor communication always hap-
pens asynchronously in the event-loop model and therefore does
not yield a return value. If we want to access items in our BST we
will need a way to send back the result of the que ry method. The
common approach to achieve this is to add an extra argument to
each message that represents a callback. This client implements the
continuation of our program given the return value of the message.
In our example this is done via the queried method.

On line 19 we asynchronously send a query message to the
BST passing a key as a parameter as well as a reference to an
object that implements the continuation of our program given the
return value of the query method (lines 20-24). Once the bst
actor is processing the event it will eventually send back the result
of the query to the client object via an asynchronous message (line
7). Because the client object was created by the plugin 2 actor
that message will then be scheduled as an event in the event-queue
of the plugin 2 actor. Note that while the bst actor is busy
processing the query request, the plugin 2 actor is available
for handling other incoming events. Once the plugin 2 actor is
ready to process the “queried” event it can then decide whether or
not to send an insert message to the bst actor depending on the
return value of the query (lines 21-23).

The lack of synchronous communication with remote resources
forces us to write our code in a CPS. Ideally we would want the

3 This can be true for various reasons. Either legacy reasons or it might be
that the query and insert messages need to be combined in a non-trivial way
that also involves other remote objects.



query and insert method to be evaluated in the context of one
event, which is not possible in either the event-loop actor model.

Extra synchronization conditions on groups of messages are
not possible

In some cases it is possible that a certain interleaving of the eval-
uation of different messages leads to event-level race conditions.
For example, in Figure 2 we introduce a race condition when both
plugin 1 and plugin 2 try to insert a new value in the BST. Even if
we would somehow avoid having to use CPS, any unwanted inter-
leaving of the query an insert methods might lead plugin 2 to
update the BST using old information. For example, if the bst actor
first receives a query event from plugin 1, then the insert event from
plugin 2 and only then the insert event from plugin 1, then plugin 1
updated the value of the bst depending on old information which is
arace condition.

The reason race conditions like these occur when programming
in an actor language is because different messages, sent by the same
actor, cannot always be processed atomically. Programmers cannot
specify extra synchronization conditions on groups of messages.
A programmer is limited by the smallest unit of non-interleaved
operations provided by the interface of the objects he or she is
using and there are no mechanisms provided to eliminate unwanted
interleaving without changing the implementation of the object (i.e.
there are no means for client-side synchronization). There are ways
to circumvent this, such as batch messages [25], but they do not
solve the problem in the case where there are data dependencies
between the different messages (e.g. in our example we need the
value of the query method to be able to pass it to the insert
method).

One way to solve this issue in our specific case would be to
introduce a “coordination actor” that synchronizes access to the
BST. Figure 3 illustrates how we could implement this.

The coordinator implements an asynchronous lock that can be
acquired when the lock is available and released otherwise. Using
a coordinator like this to guard critical sections has a number of
disadvantages:

e Because all operations are asynchronous all of the actors will
stay responsive to any message. However, this approach just
reintroduces all the issues of traditional locking techniques.
For example, similarly to deadlocks, progress can still be lost
if different client objects are waiting to acquire a lock on a
coordinator locked by the other client.

Because the coordinator actor is a shared resource as well,
asynchronous locking mechanism introduces another level of
CPS code (lines 25 and 39).

Introducing locks like this has the additional overhead of having
to use the message passing system to both acquire and release a
lock which makes it unsuitable for fine-grained locking.

No parallel reads

The main inefficiency of the actor model with respect to parallel
programming is the fact that data cannot be read truly in parallel.
This is assuming that we represent shared state as a separate actor.
If we want to read (part of) an actor’s state in parallel we have to
go through the message passing system and the event-loop of the
actor, which will handle each received event sequentially.

In Figure 2, our shared bst resource needs to be encapsulated
by an actor. This means that all query messages will be needlessly
sequentialized (in the absence of a queryInsert method)

Not only does this make accessing a large data structure from
within different components of an application inefficient, it also
makes it difficult to implement typical data-parallel algorithms
efficiently within the actor model.

let bst = actor {
insert (key, value, client) {
result :=

client<-inserted(result);
}
query (key,
result :=
client<-queried(result);
}
}

client) {

let coordinator = actor {
acquire (client) {

client<-agcuired();

}

release () |

}
}

let pluginl = actor {
insert (coordinator, bst, key, value) {
coordinator<-acquire (object {
aqcuired() {
bst<-insert (key, value,
inserted (ignore) {
coordinator<-release () ;

object {

let plugin2 = actor {
queryInsert (coordinator, bst, key) {
coordinator<-acquire (object {
aqcuired() {
bst<-query (key, object {
queried(value) {
if (value > 0) {
bst<-insert (key, value - 1,
inserted (ignore) {
coordinator<-release () ;
}
I N
} else {
coordinator<-release();

object {

Figure 3. Synchronizing access to the BST

2.5 Our approach

Ideally we would want a third option in which we represent shared
state as objects that do not belong to any particular actor but rather
to a separate entity on which multiple actors can have synchronous
access in a controlled way. This way we avoid all the issues with
replicating state and also avoid all the issues that come with asyn-
chronously communicating with that shared state.



3. The solution: Domains and views

Our approach allows the programmer to bundle any number of ob-
jects in the shared state as a domain. A domain does not belong
to a specific actor but is rather a separate entity on which actors
can have synchronous access. This synchronous access is impor-
tant as most of the problems we identified are caused by the use of
asynchronous communication to access the shared state. In our ap-
proach this synchronous access is represented by a “view”. Views
are a synchronization mechanism that allows one or more actors to
have synchronous access to a shared domain for the duration of one
event-loop event. There are two kinds of views, a shared and an ex-
clusive view which mimic multiple reader, single writer access as a
synchronization strategy.

As we discussed in section 2.4 an actor is a combination of
an object heap and an event loop. The actor{<expression>}
syntax creates a new event-loop and an object heap initialized with
a single object initialized with <expression>. Evaluating the
actor expression will result in a remote reference to that object.
Similarly, a domain is just a container for a number of objects. An
actor can never have a direct reference to a domain as a whole.
Rather it can have references to objects inside that domain. From
now on we will refer to these kinds of references as domain refer-
ences. The domain{<expression>} syntax will create a new
domain and initialize that domain’s object heap with one object
initialized by <expression>. Evaluating the domain expression
will result in a domain reference to that object.

SHACL has a number of primitives to asynchronously request
access rights to a particular domain using a domain reference. Once
the corresponding domain becomes available for shared or exclu-
sive access, an event is queued in the event-loop of the requesting
actor. During that event, that actor has a window to synchronously
access any object encapsulated by that domain using a domain ref-
erence.

Figure 4 gives a quick illustration of the usage of domains
and views. Note that the bst actor of figure 2 has been replaced
by a domain. As we saw in the previous section, the domain
syntax on line 1 will create a new domain with a single object
that implements two methods, insert and query. The return
value of the domain syntax is always a domain reference to that
object. This means that in our example the bst variable will
contain a domain reference. Any object created by an expression
nested inside the domain syntax cannot have access to variables
that outside of the scope of that domain. The domain reference
contained in the variable can be arbitrarily passed around between
actors but can only be dereferenced when obtaining a view.

In Figure 4 sending a queryInsert message to plugin 2 will
first asynchronously request an exclusive view on the bst domain
reference (line 21). Once the corresponding domain becomes avail-
able for exclusive access, an event is scheduled in the event queue
of the plugin 2 actor which will evaluate the block of code provided
to the whenExclusive primitive (lines 22-25). Note that this
block of code is executed by the actor that created it (plugin?2)
and it has access to all lexically available variables such as bst and
key. The plugin 2 actor can synchronously access the BST within
that block of code. It can synchronously query it for a certain key
and then synchronously update that key-value pair depending on
the result of that operation. The same holds if we want to read the
same value multiple times, read and/or update different values, etc.
Additionally, during the event on which we acquired the view the
actor code no longer has to be written in CPS to read and/or write
values from and to our shared resource, we can synchronize differ-
ent messages to the same resource and in the case of a shared view
we can even parallelize reads to that resource.

let bst = domain {
insert (key, value) {
}
query (key) {
}
}
let pluginl = actor {
insert (bst, key, value) {

whenExclusive (bst) {
bst.insert (key, value);
}
}
}

let plugin2 = actor {
queryInsert (bst, key) {
whenExclusive (bst) {
value := bst.query(key);
if (value > 0) {
bst.insert (key,
}
}
}
}

value - 1)

Figure 4. Illustration of domains and views

3.1 View primitives

In this section we will only consider view primitives that acquire a
view on a single domain at a time. For SHACL this set of primitives
was extended to also allow acquiring shared and/or exclusive views
on a set of domains (See section 4). SHACL supports the following
primitives for requesting views on a domain reference:

whenShared(e){e’}
whenExclusive(e){e’}

Here, e is a valid SHACL expression that evaluates to a domain
reference and ¢’ is any valid SHACL expression. Note that these
primitives are asynchronous operations, they will schedule a view-
request and immediately return. After the request is scheduled,
the event-loop of the actor can resume processing other events in
its event-queue. Once the domain becomes available two things
happen. First the domain is locked for exclusive or shared access.
Then an event that is responsible for evaluating the expression e’ is
put in the event-queue of the corresponding actor. Once that event is
processed the domain is freed again, allowing other actors to access
it.

Figure 5 illustrates how views are created. Both actor A and
actor B have a reference to the shared object. If they want to
access this shared object, first they need to request a view on that
object. Attempting to access a domain reference outside of a view
results in an error. Once the request is handled by the domain, any
reference to an object inside that domain becomes synchronously
available for the duration of one event. When €’ is evaluated, the
actor loses its access rights to that domain. A shared view allows
the actor to synchronously invoke read-only methods of all the
objects within the corresponding domain. Any attempt to write a
field of a domain object during a shared view will result in an error.
An exclusive view allows the actor to synchronously invoke any
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Figure 5. Actor A and B share a reference to an object inside
domain D on which Actor B has an exclusive view.

method on objects inside the corresponding domain, regardless of
whether they change the state of the object(s) inside that domain.

3.2 Semantic properties

In this section we will evaluate and discuss our approach with
regard to the original actor model. The following topics will be
discussed: deadlock freedom, race condition freedom and macro-
step semantics.

3.2.1 Deadlock freedom

The absence of deadlocks and low-level race conditions are the two
properties of the actor model that differentiate it from lower-level
models and provide the required guarantees to build large concur-
rent applications in a sustainable manner. To maintain deadlock-
freedom, the following two restrictions are enforced for views:

View requests are non-blocking. All primitives that request views
are non-blocking. As explained in Section 3.1, the request for a
view is scheduled as an asynchronous event which is processed
only once the domain becomes available. This implies that all
operations in our language terminate, meaning that all events
can be processed in a finite operational time (if programmed
correctly). And thus, the event for which a lock was acquired
will eventually terminate and release the lock again, which is
important to ensure that our language remains deadlock free.

A view on a domain only exists for the duration of one event.
Events in our model can be considered atomic operations with
a finite operational time. This means that any domain that is
currently unavailable due to a view will become available at
some point in the future.

With those restrictions in place SHACL is guaranteed to be dead-
lock free. With view requests being non-blocking, and the absence
of any other blocking operation in the model, it is guaranteed that
wait-for cycles can not be constructed with the basic primitives pro-
vided.

As discussed in Section 3.1, views are only held for the duration
of a single event, and requesting a “nested” view while holding
another view is an asynchronous operation. All this supports the
notion of an event being executed as an atomic operation with a
finite number of operational steps. Barring any sequential infinite
loops included by the programmer.

3.2.2 Race condition freedom

To maintain race condition freedom, the following three restrictions
are enforced for views:

Only allow view requests on domain references

All our primitives require that the reference on which a view is
requested is a domain reference. In contrast with other remote
objects, domain objects are not allowed to have direct refer-
ences to objects contained in another domain. This way, acci-
dentally shared state is avoided, which ensures that no low-level
race conditions can occur in our model. Without this restriction,
multiple actors could access the same free variable in the lexi-
cal scope of a domain object, opening the door for classical data
races.

Domain references cannot be accessed outside of a view

Care has to be taken of views which had been previously lexi-
cally captured but haven been only available in an asynchronous
operation. Since the lexical scope would hold a reference to a
domain object that is not protected by a view anymore, race
conditions could be introduced. To avoid such data races, any
attempt to access a domain object outside of a view throws an
error.

Object creation inside a domain.
Any object creation expression lexically nested inside a domain
generates objects owned by that domain. Views are acquired on
a domain and dereferencing an object owned by that domain
can never expose that domain’s content. As such, any reference
to an object that is owned by a domain is always a domain
reference.

These three rules ensures that, in any scenario, any domain
reference or lexically nested state is no longer accessible while
processing later events without requesting a new view. They also
ensure that any concurrent updates of shared state are impossible
and thus ensures that we avoid race conditions by construction.

3.2.3 Macro-step semantics

The actor model provides one important property for formal rea-
soning about different program properties. This property is the
macro-step semantics [4].

In an actor model, the granularity of reasoning is a mes-
sage/event. For the properties of a program, each event is processed
in a single atomic step. This leads to a convenient reduction of the
overall state-space that has to be regarded in the process of formal
reasoning. Furthermore, this property is directly beneficial to appli-
cation programmers as well in their development process. Program-
mers can design the semantics of message sends as coarse-grained
as appropriate, reducing the potential problematic interactions.

After introducing domains and views, the question is whether
the macro-step semantics still holds. Arguable, this is still the case,
since the macro-step semantics only requires the atomicity of the
evaluation of a message, but does not imply any locality of changes.
Thus, changing the state of an object for which a view was obtained
does not violate atomicity, since we only allow exclusive views
for state modifications. Shared views for reading state are also not
violating the semantics since state is not actually changed.

Based on this reasoning, an actor-model with the concept of
views presented in Section 3.1 still maintains the macro-step se-
mantics, and thus keeps the main properties of the actor model that
are beneficial for formal reasoning intact.

Furthermore, the semantics of all writes in our model, being re-
stricted either to local writes inside an actor, or writes protected
by an exclusive view, result in a memory model which enforces se-
quential consistency [11]. Thus, the original semantics remains pre-
served and allows the application of relevant reasoning techniques.



3.3 [Expressiveness

Since the actor model relies solely on asynchronous event process-
ing to avoid deadlocks, the expressiveness of such a language is
typically impaired.

With the mechanisms proposed here, it is however possible to
grant synchronous access to domain objects protected by views.
Listing 4 introduced the corresponding example and demonstrates
how to access a shared resource synchronously, which could not
be expressed before. For this specific case, the alternative solution
would be to change the interface of the remote object, to be able to
request and update its state in a single step. However, that approach
is neither always possible, e. g., for third-party code, nor desirable.
Also, this solution would not be appropriate for synchronizing up-
dates to different domain objects as ensuring synchronized access
in the traditional actor model would require to bundle these objects
into one actor. Thus, with views the expressiveness is extended con-
siderably over the standard actor model. Programmers can model
their shared state without taking into account how this shared state
will be accessed from the client side and the client side can syn-
chronize and compose access to different objects in an arbitrary
way.

3.4 Conclusion

In this section we have shown that with the use of views we can
avoid the problems discussed in section 2. Firstly, by not repli-
cating the shared state we avoid the need to keep replicas con-
sistent. Secondly, from within a view we do not need to employ
CPS to access shared state. If we have synchronous access to the
domain object we can directly access it’s fields without using the
message passing system. Thirdly, we can safely build more coarse-
grained synchronization boundaries by combining messages to ob-
jects within the same domain in an arbitrary way during the event
in which we acquired the view. Lastly, if we only use shared views
on a resource we can read from that resource in parallel.

4. SHACL further features

Section 3 discussed only the core features of SHACL. In this section
we will discuss a number of other important features of SHACL.

4.1 Views on multiple domains

Currently, SHACL only supports shared and exclusive views, which
mimic single writer, multiple reader locking. This means that it
is impossible to do parallel updates of objects a single domain.
A workaround for this problem would be to subdivide the shared
data structure into several domains. We could for example put
each node of the binary search tree of our example in a separate
domain. This however also means that any parallel updates to that
data structure need to be synchronized by the program. SHACL has
a primitive that allows the programmer to synchronize access to
multiple domains:

when(e, e'){e"}

The when primitive takes any 2 SHACL expressions e and e’
that evaluate to two arrays of domain references. The first array
has to contain all the domain references for which the programmer
wants to have shared access and similarly the second array has to
contain all the domain references for which the programmer wants
to have exclusive access. €'’ is the expression that will be scheduled
as an event in the event-loop of the executing actor once all the
necessary resources become available.

In SHACL there is a global ordering in which all domains are
locked for shared and/or exclusive access. This is to prevent dead-
locks when views are requested on multiple domains.

4.2 Futures

In section 1 we already mentioned that SHACL supports future-
type messages. Futures introduce a synchronization mechanism for
actors to synchronize on the reception of a message without using
callbacks. Traditional asynchronous messages have no return value.
A developer needs to work around this lack of return values by
means of an explicit customer object as seen in all the examples
throughout the paper. Future type messages allow the programmer
to hide this explicit callback parameter.

In contrast to regular asynchronous messages, a future-type
message does have a return value. It returns a future-value that
represents the “eventual” return value of the message that was
sent. The developer can then register an observer with that future-
value using a special whenBecomes primitive. When the original
message is processed by the receiving actor, the future is “resolved”
with the return value of that message and any registered observer
is notified. A notified observer triggers an event that is scheduled
in the event-loop of the actor that executed the whenBecomes
primitive.

The following example illustrates the usage of futures:

let cell = object {
c := 0y
get () {
c;
}
set (n) {
this.c := n;
}
}
let a = actor {
increase (counter) {
future := counter<-get();

whenBecomes (future -> c) {
counter<-set(c + 1);
}
}
}

a<-increase (cell);

Figure 6. Illustration of futures

In Figure 6 get is sent as a future-type message to the remote
reference counter and immediately returns a future-value. An event
is registered with that future that is responsible for updating the
counter by sending it a regular asynchronous set message. Notice
that using futures does not solve the issues discussed in section 2.
We still need to employ CPS if we want to access several values of
our remote object, event-level data races can still occur and reads
are not parallelized.

The reason that futures are interesting for our model is because
they work well together with domains and views. In fact, a view
request in SHACL returns a future-value on which can be synchro-
nized. If part of our computation depends on the atomic update of
a shared resource but does not necessarily require synchronous ac-
cess to that resource, these futures can be used to schedule code
that can be executed after the view was released.

There is also a mechanism in SHACL to group futures into a
single future (namely the primitive group). This mechanism can
be used in conjunction with future-type messages to branch work
to other actors and then synchronize on all of them. Or it can be



used in conjunction with domains and views to schedule a number
of atomic updates and then synchronize on the completion of all of
them.

5. Related work

The engineering benefits of semantically coarse-grained synchro-
nization mechanisms in general [10] and the restrictions of the actor
model [16] have been recognized by others. In particular the notion
of domains and view-like constructs has been proposed before.

Demsky and Lam [10] propose views as a coarse-grained lock-
ing mechanism for concurrent Java objects. Their approach is based
on static view definitions from which at compile time the correct
locking strategy is derived. Furthermore, their compiler detects a
number of problems during compilation which can aid the devel-
oper to refine the static view definitions. For instance they de-
tect when a developer violates the view semantics by acquiring a
read view but writing to a field. The main distinction between our
and their approach comes from the different underlying concur-
rency models. Since Demsky and Lam start from a shared-memory
model, they have to tackle many problems that do not exist in the
actor model. This results in a more complex solution with weaker
overall guarantees than what our approach provides. First of all, ac-
cessing shared state without the use of views is not prohibited by
the compiler thereby compromising any general assumptions about
thread safety. Secondly, the programmer is required to manually
list all the incompatibilities between the different views. While the
compiler does check for inconsistencies when acquiring views, it
does not automatically check if different views are incompatible.
Forgetting to list an incompatibility between different views again
compromises thread safety. Thirdly, acquiring a view is a blocking
statement and nested views are allowed, possibly leading to dead-
locks. They do recognize this problem and partially solve this by
allowing simultaneously acquiring different views to avoid this is-
sue. But avoiding the acquiring of nested views is not enforced by
the compiler. Finally, their approach does not support a dynamic
notion of a view which could be used to safely access shared state
depending on runtime information.

Hoffman et al. [14] show the need for programs to isolate
state between different subcomponents of an application. They
propose protection domains and ribbons as an extension to Java.
Similarly to our approach, protection domains dynamically limit
access to shared state from different executing threads. Access
rights are defined with ribbons where different threads are grouped
into. While their approach is very similar to ours, they started
from a model with less restrictions (threads) and built on top of
that while we started from the actor model which already has the
necessary isolation of processes by default. While access modifiers
on protection domains do limit the number of critical operations in
which race conditions need to be considered. If two threads have
write access to the same data structure, access to that data structure
still needs to be synchronized.

Axum [17] is an actor based language that also introduced the
concept of domains for state sharing. Similarly to our approach sin-
gle writer, multiple reader access is provided to domains. Access
patterns in Axum have to be statically written down, which does
give some static guarantees about the program but ultimately suf-
fers from the same problems as the views abstractions from Dem-
sky and Lam. Although the Axum project was concluded it also
showed that there is an interest in a high level concurrency model
that allows structuring interactive and independent components of
an application.

ProActive [7] is middleware for Java that provides an actor ab-
straction on top of threads. It provides the notion of Coordination
actors to avoid race conditions similar to views. However, the over-
all reasoning about thread safety is hampered since its use is not

enforced. Furthermore, coordination actors are proxy objects that
sequentialize access to a shared resource, and thus, are not able
to support parallel reads, one of the main issues tackled with our
approach. In addition, it is neither possible to add synchroniza-
tion constraints on batches of messages, nor is deadlock-freedom
guaranteed, since accessing a shared resource through a proxy is a
blocking operation.

In Deterministic Parallel Java [8] the programmer has to use
effect annotations to determine what parts (regions) of the heap a
certain method accesses. They ensure race condition free programs
by only allowing nested calls to write disjoint sub-regions of that
region. This means that this approach is best suited for algorithms
that employ a divide and conquer strategy. In our approach we want
a solution that is applicable to a wider range of problems including
algorithms that randomly access data from different regions.

Parallel Actor Monitors [19] (PAM) is a related approach to en-
able parallelism inside a single actor by evaluating different mes-
sages in the message queue of an actor in parallel. The differ-
ence with our approach is that the actor that owns the shared data-
structure is still the only one that has synchronous access on that
resource. In our approach we apply an inversion of control where
the user of the shared resource has exclusive access instead of the
owner. This inversion of control allows an actor in SHACL to syn-
chronize access to multiple resources which is not possible in the
case of PAM.

6. Conclusion

The Actor Model is a good model for concurrent programming, it
provides a number of safety guarantees for issues that are often
problematic in other models (Deadlock freedom, data-race free-
dom, macro-step semantics). Unfortunately the restrictions on this
model often limit the expressiveness of the model in comparison
with less strict implementations, limiting its adoptability as a main-
stream programming model. The issue of accessing shared state
is one shared between all actor languages. Others solve this issue
by allowing the programmer to break actor boundaries as an es-
cape hatch (e.g. Scala). In this case, the programmer has to rely
on traditional locking mechanisms to synchronize access to that
state, reintroducing all problems that come with locks. Others com-
bine several concurrency models to solve this issue. For example,
Clojure [13] both implements actor based concurrency primitives
as well as a Software Transactional Memory. In our approach we
tried to tailor our solution specifically for the Actor Model ensur-
ing maximum interoperability between the different primitives. The
advantages of our model over the traditional event-loop model are
threefold. Firstly we avoid the continuation passing style of pro-
gramming when accessing shared state. Secondlyndly we allow
the programmer to introduce extra synchronization constraints on
groups of messages and lastly we are able to model true parallel
reads.
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Abstract

This paper presents Soter, a fully-automatic program analyser and
verifier for Erlang modules. The fragment of Erlang accepted by
Soter includes the higher-order functional constructs and all the
key features of actor concurrency, namely, dynamic and possibly
unbounded spawning of processes and asynchronous message pass-
ing. Soter uses a combination of static analysis and infinite-state
model checking to verify safety properties specified by the user.
Given an Erlang module and a set of properties, Soter first extracts
an abstract (approximate but sound) model in the form of an ac-
tor communicating system (ACS), and then checks if the properties
are satisfied using a Petri net coverability checker, BFC. To our
knowledge, Soter is the first fully-automatic, infinite-state model
checker for a large fragment of Erlang. We find that in practice our
abstraction technique is accurate enough to verify an interesting
range of safety properties such as mutual-exclusion and bounded-
ness of mailboxes. Though the ACS coverability problem is EX-
PSPACE-complete, Soter can analyse these problems surprisingly
efficiently.

1. Introduction

This paper presents Soter, a tool that automatically verifies safety
properties of concurrent Erlang programs, based on the framework
of [4]. Erlang is an open-sourced language with support for higher-
order functions, concurrency, communication, distribution, fault
tolerance, on-the-fly code reloading and multiple platforms [2]. The
sequential part of Erlang is a higher order, dynamically typed, call-
by-value functional language with pattern-matching algebraic data
types. Following the actor model [7], a concurrent Erlang compu-
tation consists of a dynamic network of processes that communi-
cate by asynchronous message passing. Each process has a unique
process identifier (pid), and is equipped with an unbounded mail-
box. Message send is non-blocking. Retrieval of messages from
the mailbox is not FIFO but First-In-First-Firable-Out (FIFFO) via
pattern-matching. A process may block while waiting for a message
that matches a certain pattern to arrive in its mailbox. Thanks to a
highly efficient runtime system, Erlang is a natural fit for program-
ming multicore CPUs, networked servers, distributed databases,
GUISs, and monitoring, control and testing tools. For an introduc-
tion to Erlang, see Armstrong’s CACM article [1].

Safety Verification by Static Analysis and Model Checking

The challenge of verifying Erlang programs is that one must reason
about the asynchronous communication of an unbounded set of
messages, across an unbounded set of Turing-powerful, higher-
order processes. The inherent complexity of the verification task
can be seen from several diverse sources of infinity in the state
space.

(0o 1) Function definitions are not necessarily tail-recursive, so a
call-stack is needed.
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(00 2) Higher-order functions are first-class values; closures can
be passed as parameters or returned.

(00 3) Data domains, and hence the message space, are un-
bounded: functions may return, and variables may be
bound to, terms of an arbitrary size.

(00 4) An unbounded number of processes can be spawned dy-
namically.

(00'5) Mailboxes have unbounded capacity.

This motivates our model checking approach: we automatically
extract an abstract model that simulates the semantics of the pro-
gram by construction, then we use decision procedures on the ab-
stract model to prove safety properties.

Our abstract model, called Actor Communicating System, is
highly expressive: it can model dynamic spawning and unbounded
mailboxes. An ACS is defined by a finite set of rules but it is
infinite-state i.e. its dynamic semantics includes traces that go
through infinitely many different configurations. It follows that
one cannot establish reachability by exploring all the possible
runs. However ACS are equivalent to Petri nets for which model-
checking algorithms do exist. Our tool uses a Petri net coverability
checker called BFC [8]. ACS models are described in Section 2.

Overview of Soter

Soter is an experimental, prototype Haskell implementation of
the framework of [4]. It accepts a (concurrent) subset of the Er-
lang language: supported features include algebraic data-types with
pattern-matching, higher-order, spawning of new processes, asyn-
chronous communication. See Section 4 for the Erlang constructs
that are not currently supported by Soter.

As presented in Figure 1, Soter’s workflow has three phases.

In phase 1, the input Erlang module with correctness anno-
tations is compiled using the standard Erlang compiler erlc to
a module of Core Erlang — the official intermediate representa-
tion of Erlang. The code is then normalised in preparation for the

Phase 1 Phase 3
Core
Elang
module
4
SAFE
y Phase 2
Analysis m UNSAFE
(ERROR)
ACS @ mBocheI

Figure 1. Workflow of Soter
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Figure 2. Screenshot of Soter’s web interface

next phase. Correctness properties, expressible in various forms,
are specified by annotating the program source. The user can insert
assertions, or label program points and mailboxes and then state
constraints they must satisfy.

The main purpose of phase 2 is to soundly abstract sources of
infinity (0o 1), (00 2) and (co 3). This is done as follows. A control-
flow based analysis is performed on the program, yielding a control
flow graph on which we bootstrap the generation of the ACS rules.
The analysis is parametric in D and M, the depth of the data and
message abstraction respectively. We abstract data by truncating
terms at the specified depth. By default D is set to zero, so calls
to the same function with different arguments are merged in the
abstract model; the runtime of the analysis is exponential in D. M
is by default set to D + P where P is the maximum depth of the
receive patterns of the program; using large values for M does not
incur the same slowdown as adjusting D. In future releases, we plan
to introduce parameters to tune the precision of the abstraction so
that users can control the context sensitivity of the analysis.

In phase 3, Soter generates a Petri net in the format of BFC [8],
which is a fast coverability checker for Petri nets with transfer arcs,
developed by Alexander Kaiser. For each property Soter needs to
prove, BFC is called internally with the BFC model and a query
representing the safety property as input.

Soter can be run in three modes: “analysis only” which pro-
duces the ACS, skipping phase 3; “verify assertions” which extracts
the properties from user annotations; “verify absence-of-errors”
which generates BFC queries asserting the absence of runtime ex-
ceptions. Currently not all the exceptions that the Erlang runtime
can throw are represented; the supported ones include sending a
message to a non-pid value, applying a function with the wrong
arity, and spawning a non-functional value. A notable omission is
pattern-matching failures which will be supported by the next re-
lease of Soter.

Soter is a practical implementation of a highly complex proce-
dure. Phases 1 and 2 are polytime in the size of the input program
[4]. Despite the EXPSPACE-completeness of the Petri net cover-
ability problem, phase 3 is surprisingly efficient; see the outcome
of the experiments in Table 1.

In addition to a command-line interface, we have built a web
interface for Soter at http://mjolnir.cs.ox.ac.uk/soter/.
The user interface allows easy input of Erlang programs. A library
of annotated example programs is available to be tried and modi-
fied. Soter presents the generated abstract model as a labelled graph
for easy visualisation, and reports in detail on the performance
and results of the verification. A screenshot of the web interface
is shown in Figure 2.

Related Work There are a few popular bug-finding tools for Er-
lang, notably Dyalizer [3, 9] which implements a variety of static
analyses. McErlang [5] is a finite-state on-the-fly model-checker

i main() -> Me = self(),

2 Gen = spawn(fun()->counter(2)end),
3 spawn (fun()->sieve(Gen,Me)end) ,

4 dUJHP()»

6 dump() -> receive X -> io:write(X), dump() end.

s counter(N) ->

9 ?label_mail ("counter_mail"),

10 receive {poke, From} ->

1 From!{ans, N}, counter(N+1)
12 end.

1+ sieve(In, Out) ->

15 ?label_mail("sieve_mail"),

16 In!{poke, self()},

17 receive {ans,X} ->

18 Out!X,

19 F = spawn(fun()->

20 filter(divisible_by(X), In)
21 end),

2 sieve(F,0Out)

23 end.

25 filter(Test, In) ->

26 ?label_mail("filter_mail"),
27 receive {poke, From} ->

28 filter(Test, In, From)
29 end.

31 filter(Test, In, Out) ->

2 In!{poke, self()},

33 receive {ans,Y} ->

34 case Test(Y) of

35 false -> Out!{ans,Y}, filter(Test, In);
36 true -> filter(Test, In, Out)

37 end

38 end.

40 -ifdef (SOTER).

41 divisible_by(X) ->

0 fun(Y) -> 7any_bool() end.
43 -—else.

14 divisible_by(X) ->

45 fun(Y) -> case Y rem X of
46 0 -> true;

47 _ => false

48 end

19 end.

50  —endif.

Figure 3. Eratosthenes’ Sieve, actor style

for Biichi properties and EtomCRL2 [6] translates Erlang programs
to uCRL which allows verification. Soter instead operates on the
semantics of Erlang directly and model-checks an infinite-state
transition system.

2. Actor Communicating Systems

The abstract model we extract from the input Erlang program is an
Actor Communicating System (ACS), which models the interaction
of an unbounded set of communicating processes. An ACS has a
finite set @) of control states, a finite set P of pid classes, a finite
set M of message kinds and a finite set of rules. An ACS rule has
the shape ¢: ¢ EN ¢’ which means that a process of pid class ¢ can
transition from state ¢ to state ¢’ with (possible) communication
side effect ¢, of which there are four kinds:

(i) the process makes an internal transition,

(ii) it extracts and reads a message m from its mailbox,
(iii) it sends a message m to a process of pid class " and
(iv) it spawns a process of pid class .
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Figure 4. The ACS graph generated by Soter from the sieve example. The o component represents the starting process which sets up the
counter agent (¢1) and the sieve agent (¢2) and then becomes the dump agent. During its execution, the sieve agent spawns new filter agents,

all represented by the ¢3 component.

To help user visualise the model, we present an ACS as a collection
of label graphs (called components), each showing a pid-class,
where the vertices are the control states and the labelled edges are
the rules. An example of such a graphical presentation is shown in
Figure 4.

The semantics of ACS is as follows. Each control state is a
counter holding tokens; when a t: ¢ - ¢’ rule is executed a
token is extracted from ¢ and transferred to ¢; if g contains no
tokens the rule is not enabled. Spawn rules insert a new token in
the control state of the process to be created while making the
transition. Message passing is dealt with analogously: for each
component there is a counter for each message; these counters
keep track of the number of messages that have been sent to that
component so far, thus merging all the mailboxes of the processes
of the component. When a message is sent, a token is inserted in the
relevant counter. A receive rule can fire only when the counter for
the message to be extracted contains at least one token; when fired,
a token gets consumed. Note that the order of arrival of messages
is not recorded.

An ACS can be interpreted naturally as a vector addition system
(VAS), or equivalently Petri net. Recall that a VAS of dimension n
is given by a set of n-long vectors of integers regarded as transition
rules. A VAS defines a state transition graph whose states are just
n-long vectors of non-negative integers. There is a transition from
state v to state v’ justif v/ = v-+r for some transition rule r. In this
paper, we are concerned with the EXPSPACE-complete decision
problem Coverability [10]: given a VAS, a start vector s and a target
non-negative vector ¢ of the same dimension, is it possible to reach
some v that covers ¢ (i.e. v > t)? Note that LTL Model Checking is
also EXPSPACE-complete for VAS; Reachability is decidable but
its complexity is open.

A wide range of properties can be encoded as coverability
queries on the ACS. Examples include reachability of error states,
mutual exclusion, bounds on the number of enqueued messages in
amailbox. Some of these correctness properties can be exploited by
optimising compilers. Bounds on mailboxes of a class of processes,
for example, allow the compiler to allocate a fixed number of
cells for that mailbox, resulting in programs that can be efficiently
garbage-collected.

Liveness properties such as deadlock freedom cannot currently
be checked by Soter because there are no efficient implementations
of LTL model checking for Petri nets. Should such implementations
become available, Soter can quickly take advantage of them.

3. Demo: A Concurrent Eratosthene’s Sieve

We illustrate the workings of Soter by an example. Figure 3 shows
an implementation of Eratosthenes’ sieve inspired by a NewSqueak

program by Rob Pike.! The actor defined by counter provides
the sequence of natural numbers as responses to poke messages,
starting from 2; the dump actor prints everything it receives. The
sieve actor’s goal is to send all prime numbers in sequence as
messages to the dump actor; to do so it pokes its current In actor
waiting for a prime number. After forwarding the received prime
number, it creates (spawn) a new filter process, which becomes
its new In actor. The filter actor, when poked, queries its In actor
until a number satisfying Test is received and then it forwards it;
the test (an higher-order parameter) is initialized by sieve to be a
divisibility check that tests if the received number is divisible by
the last prime produced. The overall effect is a growing chain of
filter actors each filtering multiples of the primes produced so
far; at one end of the chain there is the counter, at the other the
sieve that forwards the results to dump.

Since Soter does not have native support for arithmetic opera-
tions, line 41 defines a stub to be used by Soter that returns true
or false non-deterministically, thus soundly approximating the real
definition based on division given in line 44.

The communication here is synchronous in spirit: whenever a
message is sent, the sender actor blocks waiting for a reply. To
check this is the case, we can verify the property that every mailbox
contains in fact at most one message at any time. To be able to
express this constraint we label the mailboxes we are interested in
with the ?71abel_mail () macro: the instructions in lines 9, 15 and
26 mark the mailbox of any process that may execute them with the
corresponding label.

Then we can insert the following lines at the beginning of the
module

-uncoverable("counter_mail >= 2").

-uncoverable("filter_mail >= 2").
-uncoverable("sieve_mail >= 2").

which state the property we want to prove. The —uncoverable
directive is ignored by the Erlang compiler but it is interpreted
by Soter as a property to be proved: all the states satisfying the
constraint are considered to be “bad states”. These inequalities
state that if the total number of messages in the labelled mailboxes
exceed the given bound, we are in a bad state.

Soter allows user-defined labels for program locations as well
with the macro 71abel (); the inequalities in this case state that the
total number of processes executing the labelled instruction at the
same time must be less that the given bound.

When executed on the code in Figure 3, Soter will compute
the ACS in Figure 4; its semantics is a sound approximation of
the actual semantics of the program. A VAS description of it,

'see “Concurrency/message passing Newsqueak”, http://video.
google.com/videoplay?docid=810232012617965344
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ABSTR ACS SIZE TIME
Example LOC  PRP  SAFE? D M Places Ratio Analysis Simpl BFC Total
reslockbeh 507 1 yes 0 2 40 4% 1.94 0.41 085 321
reslock 356 1 yes 0 2 40 10% 0.56 0.08 0.82 148
sieve 230 3 yes 0 2 47 19% 0.26 0.03 246 276
concdb 321 1 yes 0 2 67 12% 1.10 0.16 519 646
state_factory 295 2 yes 0 1 22 4% 0.59 0.13 0.02 075
pipe 173 1 yes 0 0 18 8% 0.15 0.03 0.00 0.18
ring 211 1 yes 0 2 36 9% 0.55 0.07 025 0.88
parikh 101 1 yes 0 2 42 41% 0.05 0.01 0.07 0.13
unsafe_send 49 1 no 0 1 10 38% 0.02 0.00 0.00  0.02
safe_send 82 1 no* 0 1 33 36% 0.05 0.01 0.00  0.06
safe_send 82 4 yes 1 2 82 34% 0.23 0.03 0.06 0.32
firewall 236 1 no* 0 2 35 10% 0.36 0.05 0.02 044
firewall 236 1 yes 1 3 74 10% 2.38 030  0.00 2.69
finite_leader 555 1 no* 0 2 56 20% 0.35 0.03 0.01  0.40
finite_leader 555 1 yes 1 3 97 23% 0.75 0.07 086 1.70
stutter 115 1 no* 0 0 15 19% 0.04 0.00  0.00 0.05
howait 187 1 no* 0 2 29 14% 0.19 0.02 0.00 0.22

Table 1. Soter Benchmarks. The number of lines of code refers to the compiled Core Erlang. The PRP column indicates the number of
properties which need to be proved. The columns D and M indicate the data and message abstraction depth respectively. In the “Safe?”
column, “no*” means that the program satisfies the properties but the verification was inconclusive; “no” means that the program is not safe
and Soter finds a genuine counterexample. “Places” is the number of places of the underlying Petri net after the simplification; “Ratio” is the
ratio of the number of places of the generated Petri net before and after the simplification. All times are in seconds.

incorporating the property, is then generated and fed to BFC to
check for the uncoverability of bad states; in this instance BFC is
successful in proving the program safe.

4. Experiments, Limitations and Extensions

Evaluation In Table 1 we summarise our experimental results.
Soter is a fully automatic tool. All our example programs are
higher-order and use dynamic (and unbounded) process creation
and non-trivial synchronisation. The properties checked fall into
three groups: mutual exclusion, unreachability of error states, and
bounds on mailboxes. The annotated example programs in Ta-
ble I can all be viewed and verified using Soter at the web inter-
face http://mjolnir.cs.ox.ac.uk/soter/. As indicated by
the experimental outcome, the abstractions employed by Soter are
sufficiently precise to prove safety for a wide variety of examples.
We observe that the ACS simplification is especially effective in
reducing the problem size. BFC implements an algorithm that is
EXPSPACE-hard in the ACS size. The experiments show there are
other factors such as transition structure that strongly influence the
runtime complexity of BFC, although it is not yet clear what these
parameters are. In conclusion, despite the worst-case exponential
complexity of the underlying algorithm, Soter is surprisingly ef-
ficient. We believe that the experimental outcome justifies further
development of the tool.

Limitations Features of Erlang currently unsupported by Soter
can be organised into three groups: (i) constructs such exceptions,
arithmetic primitives, built-in data types and the module system are
not difficult to integrate into the current framework; (ii) features
such as time-outs in receives, registered processes, input-output and
type guards could be supported by providing specific abstractions;
(iii) the monitor / link primitives and the multi-node semantics.
These features need to be supported explicitly by the abstract model
for them to be usefully approximated, and may require a major
extension of the theory. How to extend our framework to explicitly
and precisely model the last two groups of features is an interesting
research problem. Despite these limitations, it is usually possible
to adapt existing programs so that they are accepted by Soter:
often it is sufficient to provide “dummy” implementations of the

unsupported functions as it has been done in line 41 of the example
code in Figure 3.

In addition certain problem instances remain out of Soter’s
scope: if the proof of safety for a program requires accurate mod-
elling of the stack or precise sequencing information on the arrival
order of messages, then our abstractions are not suitable; further
our analysis assumes a closed program — the ability to analyse
and model-check open programs would enable a compositional ap-
proach which we expect would enhance Soter’s scalability.

Extensions and Future Directions We plan the following exten-
sions: (i) handle arbitrary Core Erlang programs (ii) formalise and
implement specific abstractions for time-outs and I/O (iii) develop
fine-tuned, flexible and refineable abstractions for data, mailboxes
and context-sensitivity, which would facilitate the construction of
a CEGAR loop (iv) exploit the decidability of LTL-properties for
ACS to enable Soter to prove liveness and other path properties.
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Abstract

Many organizations store and process personal information about
the individuals with whom they interact. Because incorrect han-
dling of this information can be harmful to those individuals, this
information is often regulated by privacy policies. Although non-
compliance can be costly, determining whether an organization’s
systems and processes actually follow these policies is challeng-
ing. It is our position, however, that such information systems
could be formally verified if it is specified, designed, and imple-
mented according to a methodology that prioritizes verifiability of
privacy properties. This paper describes one such approach that
leverages an actor-based architectural style, formal specifications
of personal information that is allowed and required to be com-
municated, and a domain-specific actor-based language. Specifi-
cations at the system-, component- Actor-level are written using
a first-order temporal logic. We propose that the software imple-
mentation be mechanically-checked against individual actor spec-
ifications using abstract interpretation. Whereas, consistency be-
tween the different specification levels and would be checked using
model checking. By restricting our attention to programs using a
specific actor-based style and implementation technology, we can
make progress towards the very challenging problem of rigorously
verifying program implementations against complex privacy regu-
lations.

Keywords formal specifications, program verification, program-
ming languages

1. Introduction

Many organizations store and process personal information about
the individuals with whom they interact. Health care providers and
insurers maintain medical records of patients’ health problems and
treatments. Credit card companies have records of their customers’
purchasing habits. Search engines have records of every search an
individual makes. Modern information technology makes collect-
ing and storing such information cheaper and consequently more
pervasive than ever before. Inappropriate disclosure of such infor-
mation, however, can be harmful to the individual. For instance,
98,000 University of Hawaii students, alumni, and faculty and staff
members were affected [14] when their social security numbers and
other private information were published online by a retired profes-
SOr.

[Copyright notice will appear here once ’preprint’ option is removed.]

Consequently, various laws, industry norms, contractual obli-
gations, and organizational policies have arisen to protect the pri-
vacy of individuals and to regulate the conditions under which per-
sonal information can be stored, used, and disseminated. Exam-
ples include the Health Insurance Portability and Accountability
Act (HIPAA) [10], the Family Education Rights and Privacy Act
(FERPA) [6], Fair Credit Reporting Act, the UK Internet Adver-
tising Bureau Good Practice Principles for Online Behavioral Ad-
vertising, and the ACM Privacy Policy. We will refer to these col-
lectively as privacy policies. Failure to adhere to such policies is
not only harmful to the individuals whose information is being dis-
closed, but it can also be damaging to the organization that violates
the individuals’ policies (e.g., [2]).

At the same time, organizations are processing the data with
ever-more complex and interconnected information systems. For
example, electronic medical record systems (which can be as large
as sixty million lines of code [8]) are currently being adopted
throughout the health care industry. Since it is difficult to know
whether such large and complex systems are compliant with ap-
plicable privacy policies, there is an urgent need to be able to stati-
cally verify the software systems against privacy policies. Although
challenging, there has been progress towards formalizing the com-
munications allowed and required by privacy policies using tempo-
ral logics [3, 4, 7, 11]. Determining whether an arbitrary software
systems complies with even a formalized privacy policy is an even
more daunting task. We can, however, get leverage on the problem
of verifying software systems against privacy policies by constrain-
ing the class of software systems that we wish verify. Specifically,
in this paper, we will discuss how one might build distributed infor-
mation systems using an Actor-based architectural style such that
they can be mechanically checked.

2. Policy Specifications in Temporal Logic

Building on Barth et al.’s work formalizing Contextual Integrity
[3], it is possible to formalize most aspects of privacy policies by
abstracting all activity as communications between entities. These
communications may either be a speech act that is meant as an
action performed by the sender or a message that is meant to convey
one or more personal attributes (e.g., protected health information
(phi) under HIPAA) of a subject from the sender to the receiver.

In this way, an organization’s privacy-relevant activities can be
represented formally as a sequence or trace of messages that are
sent among various entities, including the organization’s informa-
tion system’s components and the system’s users. Furthermore, a
privacy policy can be considered formally to define a set of traces
of messages that are compliant with the policy. These sets of traces
can be specified using first-order linear temporal logic formulas
that are satisfied only by traces in which the organization is privacy
compliant.
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2.1 Background: Linear Temporal Logic

Temporal Logic [12] characterizes the behavior of reactive systems
in terms of traces, a sequence of states and/or events. Our privacy
policy language is a many-sorted, first-order linear temporal logic
(FOTL) [5]. Due to space constraints, we summarize FOTL only
briefly.

FOTL formulas can contain unary and binary temporal opera-
tors where the operand(s) are FOTL subformula(s). The temporal
operators we use are standard and are discussed below. Future Op-
erators. Henceforth: (¢ says that ¢ holds in all future states. Even-
tually: & ¢ says that ¢ holds in some future state. Past Operators.
Historically: H¢ says that ¢ held in all previous states. Once: & ¢
says that ¢ held in some previous state. Since: ¢1 S ¢2 says that ¢o
held at some point in the past, and since then ¢ has held in every
state. FOTL formulas also include non-temporal formulas, which
are constructed from atomic formulas, possibly with variables, log-
ical connectives, and quantifiers over variables.

A logical environment n maps each variable to a value in the
carrier according to the variable’s sort. That a formula ¢ is satisfied
by a trace o at an index ¢ under 7 is denoted by 0,9, = ¢,
which can be defined inductively on the structure of ¢.One says
that o satisfies ¢, written o |= ¢, if and only if for any 7, we have

a,0,n = ¢.

2.2 Policy Formulas in First Order Linear Temporal Logic

The policy formulas can be decomposed into norms by restricting
temporal logic formulas to the form found in Figure 1 in a manner
similar to that done in Barth er al.’s work on Contextual Integrity.

The sorts are P,T", M, and R (denoting agents, attributes, mes-
sages, and roles) and their associated carriers are given by P, T,
M, and R. The variables p1, p2, and q are of sort P, 7,71, and 72
are constants of sort R, t is a variable of sort T, and m is a vari-
able of sort M. We use meta-variables ¥i, y2, ¥3, and y1 to denote
vectors of zero or more additional arguments, drawn from p;, p2,
and ¢, and used to support parameterized roles. “Procedure” and
“diagnosis” are examples of attributes. The meta-variable £ stands
for an attribute set-valued constant.

A communication action is denoted by send(p, ¢, m), in which
p is the sender, g is the receiver, and m is the message be-
ing sent. Each message contains a set of agent, attribute pairs,
content(m) C P x T. The predicate contains(m, g,t) holds if
message m contains attribute ¢ of subject q. A knowledge state k
is a subset of P x P x T.If (p,q,t) € K, this means p knows
the value of attribute ¢ of agent g. For example, Alice knows Bob’s
height. A transition between knowledge states occurs when a mes-
sage is transmitted, and the attributes contained in the message
become known to the recipient. Transmitting a message m is per-
missible when all the negative norms and at least one positive norm
are satisfied.

We allow roles to be parameterized, as illustrated in Figure 2.
For this we use the inrole predicates of differing arities. We have
inrole(p, ¥, r) if (p, ¥, ) € roleAssignment C P x P* x R. For
example, if (Alice, Bob, psychiatrist) € roleAssignment, then
Alice is Bob’s psychiatrist and if inrole(Bob, Fred, Carol, child)
holds, then Bob is the child of Fred and Carol. We make the
simplifying assumption that principals are statically assigned to
roles.

Figure 2 shows some example norms that could be used to
instantiate a policy of the required syntactic form. The first is a
positive norm that allows information to be released to another
healthcare provider. The second is a negative norm, that requires
that a covered entity p; only release a patient ¢’s medical records
to an individual (not a healthcare provider) p2 if ¢ has previous
givien permission to release their information to ps.

3. Distributed Information Systems and Actors

As described above, the formal privacy policies describe the actions
humans and organizations (e.g., “covered entities”’) may perform.
These principals may, however, make use of automated informa-
tion systems to store information for them and perform tasks on
their behalf. If an information system is used to (automatically)
transmit personal information on behalf of a principal, it is nec-
essary that the actions that the information system takes or fails
to but is supposed to take do not put the principal out of compli-
ance with applicable privacy policies. Since a typical organization
(such as a medical clinic) will consist of multiple human and auto-
mated agents acting on behalf;, this requires the system designers to
carefully delineate, within the context of the organization, what the
responsibilities of the human agents and the information system is.

This can be accomplished by developing a set of temporal logic
formulas for each agent of an organization that describe under what
circumstances that agent can or must communicate information to
other agents, including those that are both internal and external to
the organization. The structure of policy formulas for organizations
can be adopted for this purpose, by distinguishing between legal
principals and physical agents and by adding a new type of pred-
icate to constrain whether some agent acts-on-behalf-of some
principal. Formal methods, such as model checking (after applying
a small-model theorem to eliminate the first-order quantification),
can then be used to show that these agent responsibilities entail the
privacy policy formula when the agent actions are attributed to the
appropriate principals.

The temporal logic formula giving the responsibilities of the in-
formation system is a partial specification of that system’s allowed
behavior. If information systems were simple and monolithic, this
would be sufficient and the actual program code could be verified
directly against this partial specification of the information system.
In practice, however, the information systems we care about, such
as electronic medical record system, are not monolithic, and in-
clude many different software agents interacting. Some of these
might be acting on behalf of the organization, some on behalf of
particular individuals (such as doctors or nurses) within the orga-
nization and some might act on behalf of external entities (such
as insurance companies). Furthermore, the number and identity of
these software agents and the principals they represent may vary
dynamically. They may also be distributed across multiple com-
puter hardware-systems (e.g., backend servers, user workstations)
and locations (e.g., a hospital and an affiliated out-patient client).

The Actor Model [1, 9] provides clarity to this situation. In this
model, a collection of concurrently operating actors communicate
through asynchronous message passing. Each of these actors has a
mailbox through which it receives messages. Based on its state/be-
havior, an actor reacts to the messages it receives one at a time—
but not necessarily in the order they arrive—by performing some
action. The action an actor takes in response to the receipt of a
message can involve sending a finite number of messages to other
actors it knows about, creating a finite number of new actors, and/or
changing its state/behavior so that it will take different actions in
response to future messages.

By considering the information system to be composed of ac-
tors (with external I/O being just messages sent to/from outside
entities), one can dynamically associate, each actor instance with
the principal it acts on behalf of and create privacy specifications
for actor classes in temporal logic. These privacy specifications
should describe what kind of information can be sent by the ac-
tor and under what circumstances. It may also include assumptions
about the circumstances under which it can receive messages that
are required to be fulfilled by the rest of the system. The advantage
of this approach is that there is a natural correspondence between
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Figure 1. General form of Knowledge-Transmission Policy
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Figure 2. Example Privacy Policy Norms

Information System

EMR Scheduling Billing

/\
Archive  App

Figure 4. Decomposition of the Information System

messages in the implementation and the communication regulated
by the policy.

In order to deal with the complexity of such software systems,
however, it is probably necessary to support aggregating Actors into
components to which specifications can be applied. Agha et al. [1]
and Talcott [13] give semantics for actor components in terms of
the evolution of configurations of actors, which is a group of actors
with an interface for interaction with their environment. Although
these configurations can evolve over time, an initial configuration
can be defined statically and a temporal logic specification can be
associated with the static definition that applies to the dynamically
changing configuration. These configurations can then be nested
statically and formal methods can be applied to show that the inner
components’ specifications entail the outer components’ specifica-
tion.

4. Defining Components and Actors

This development approach and verification of the software system
against formal privacy policies can be facilitating by implementing
the software system in an Actor-based domain specific language
that contains abstractions for Actors, messages, components, prin-
cipals, and protected information about particular principals.

An example of how the initial configuration of the components
of a medical clinic information system might be defined in a lan-
guage (called the History Aware Programming Language (HAPL))
that we are developing for this purpose is shown in Figure 3. (Note,
for space-reasons, we do not include the HAPL actor class defini-
tions, which use imperative code and per-actor state to define the
behavior of actors.) The components of this example are nested as
illustrated in Figure 4.

The system as a whole is an instance of the System component.
This component is parameterized with the dependently-typed pa-
rameter clinic and a corresponding type-parameter <, which is
constrained to be a covered entity. (A variable of type P [a] holds
a runtime representation of the principal «.) System has one exter-
nally visible actor that is specified using the channel keyword. Fur-
thermore, System contains three sub-component instances records

which is an instance of EMR, scheduling which is an instance of
Scheduling, and billing which is an instance of Billing; the compo-
nent classes Billing, Scheduling, and EMR are also nested inside of
System. The EMR component definition, in turn consists of two ac-
tor instances. The first is an archive that is responsible for storing
in EMR data and is an instance of EMRArchive. It is parameter-
ized with the same clinic that as the System of which it is a part.
The second is an instance of EMRApp; it is parameterized by the
archive and provides an interface for interacting with the archive.

The definitions of the Billing and Scheduling components and
the EMRArchive and EMRApp actors are omitted for brevity.
HAPL’s actor definitions, however, are statically typed with types
parameters for principals, and types for protected information.
The syntax resembles conventional class-based object oriented lan-
guages such as C++, Java, Cf, and Scala. This language is designed
with static semantics that use an abstract interpretation to verify the
actor against its specification.

5. Example

Consider a medical clinic for which the information system in
Figure 3 is being built. This organization might have the following
privacy policy norms:

1. If a patient requests a copy of their medical records, the clinic
will provide them to the patient.

2. Patient records will not be disclosed, except to:
(a) clinic employees
(b) the patient, or

(c) another third party if the patient has given prior authoriza-
tion.

The statement that “patient records will not be disclosed except
to ...” is a safety requirement. It can be applied independently to
the human agents and to each of the actors and components com-
prising the information system. As long as both the information
system and the human agents only disclose information when per-
mitted, the organization as a whole will only disclose information
when permitted.

The requirement that obligates an organization to respond to a
patient’s requests for copies of her medical records, however, is
more complicated. It raises the question of from whom the patient
is allowed to make such requests. Must the clinic’s janitor be
prepared to cope with such requests? Must the information system?
A similar provision in HIPAA allows a medical provider to require
such requests to be made in writing, as long as it informs the patient
of how to submit such requests.
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component System [« |inrole(q, covered-entity)]( clinic:P[a]) {

channel emr = records.app

records = new component EMR[]()
scheduling = new component Scheduling []()
billing = new component Billing []()

component Billing []() { ... }
component Scheduling []() { ... }
component EMR[]() {

archive = new actor EMRArchive[a](clinic)
app = new actor EMRApp[a](clinic ,archive)

Figure 3. Component Definition in HAPL

One could imagine, that an organization might be allowed to

implement this requirement by telling their patients that they can
directly access their own records the electronic medical records
app (that is part of the clinic’s information system). In this case,
the obligation becomes a liveness property required of the infor-
mation system. Formalizing this, however, requires that the com-
munication channels (e.g., the electronic medical records app) be
identified (as was done in Figure 3) and incorporated into the infor-
mation system’s formal partial specification.

6.

Summary and Outlook

Ensuring the privacy compliance of information systems is an

inc

reasingly urgent problem. There is a need to be able to for-

mally verify information system’s compliance against privacy poli-

cie:

s described in formal logics. This problem is very challeng-

ing, but by restricting our attention to programs using a specific

act

or-based style and implementation technology, we can make

progress towards rigorously verifying program implementations
against complex privacy regulations. We have begun developing
a programming language, the History Aware Programming Lan-
guage (HAPL), and verification tools that will take us this next
step.
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Abstract

In this paper we describe an extension of the multiagent system pro-
gramming language Jason with constructs for distribution and fault
tolerance. The standard Java-based Jason implementation already
does provide a distribution mechanism, which is implemented us-
ing the JADE library, but to use it effectively some Java program-
ming is often required. Moreover, there is no support for fault
tolerance. In contrast, this paper develops constructs for distribu-
tion and fault tolerance wholly integrated in Jason, permitting the
Jason programmer to implement complex distributed systems en-
tirely in Jason itself. The fault tolerance techniques implemented
allow the agents to detect, and hence react accordingly, when other
agents have stopped working for some reason (e.g., due to a soft-
ware or a hardware failure) or cannot be reached due to a com-
munication link failure. The introduction of distribution and fault
tolerance in Jason represents a step forward towards the coherent
integration of successful distributed software techniques into the
agent based software paradigm. The proposed extension to Jason
has been implemented in eJason, an Erlang-based implementation
of Jason. In fact, in this work we essentially import the distribution
and fault tolerance mechanisms from the Erlang programming lan-
guage into Jason, a task which requires the adaptation of the basic
primitives due to the difference between a process based functional
programming language (Erlang) and a language for programming
BDI (Belief-Desire-Intention) agent based systems (Jason).

1. Introduction

The increasing interest in multiagent systems (MAS) is resulting
in the development of new programming languages and tools capa-
ble of supporting complex MAS development. One such languages
is Jason [6]. Some of the more difficult challenges faced by the
multiagent systems community, i.e., how to develop scalable and
fault tolerant systems, are the same fundamental challenges that any
concurrent and distributed system faces. Consequently, the agent-
oriented programming languages provide mechanisms to address
these issues, typically borrowing from more mainstream frame-
works for developing distributed systems. For instance, Jason al-
lows the development of distributed multiagent systems by inter-
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facing with JADE [4, 5]. However, Jason does not provide specific
mechanisms to implement fault-tolerant systems.

MAS and the actor model [2] have many characteristics in com-
mon. The key difference is that agents normally impose extra re-
quirements upon the actors, typically a rational and motivational
component such as the Belief-Desire-Intention architecture[10,
11].

Some programming languages based on the actor model are
very effective in addressing the aforesaid challenges of distributed
system. Erlang [3, 7], in particular, provides excellent support
for concurrency, distribution and fault tolerance. However, Erlang
lacks some of the concepts, like the Belief-Desire-Intention archi-
tecture, which are relevant to the development of MAS.

This article forms part of a research programme to evalu-
ate whether the BDI architecture provides useful programming
paradigms which can improve the design of (non Al-based) com-
plex distributed systems too. However, to be able to do such an
evaluation we found that it was first necessary to improve the sup-
port for programming distributed systems available in Jason imple-
mentations (which is the topic of this article).

In recent work [8], we presented eJason, an open source im-
plementation of a significant subset of Jason in Erlang, with very
encouraging results in terms of efficiency and scalability. More-
over, some characteristics common to Jason and Erlang (e.g. both
having their syntactical roots in Prolog) made the implementation
quite straightforward. However, the first eJason prototype did not
permit the programming of distributed or fault-tolerant multiagent
systems.

In this paper, we propose a distribution model and a fault toler-
ance mechanism for Jason closely inspired by Erlang. This exten-
sion of Jason has been implemented in eJason, thus making it pos-
sible to develop complex distributed systems fully in Jason itself.
Our implementation of eJason and the sample multiagent systems
described in this and previous documents can be downloaded at:

git : //github.com/avalor /eJason.git

The rest of the paper is organized as follows: Section 2 provides
background material introducing Jason, Erlang and eJason. Sec-
tions 3 and 4 describe the proposed distribution model and fault
tolerance mechanisms for Jason programs, respectively. Some de-
tails on the implementation in eJason of these extensions can be
found in Section 5. An example that illustrates in detail the use of
the proposed extension is included in Section 6. Finally, Section 7
presents the conclusions and future lines of work.

2. Background

In this section we briefly introduce Jason, Erlang and eJason. Some
previous knowledge of both Jason and Erlang is assumed.



2.1 Jason

Jason is an agent-oriented programming language which is an ex-
tension of AgentSpeak [9]. The standard implementation of Jason
is an interpreter written in Java.

2.1.1 The Jason Programming Language

The Jason programming language is based on the Belief-Desire-
Intention (BDI) architecture [10, 11] which is highly influential on
the development of multiagent systems. The first-class constructs
of the language are: beliefs, goals (desires) and plans (intentions).
This approach allows the implementation of the rational part of
agents by the definition of their “know-how”, i.e., how each agent
should act in order to achieve its goals, based on its subjective
knowledge.

The Jason language also follows an environment-oriented phi-
losophy, i.e., an agent exists in an environment which it can per-
ceive and with which it can interact using so called external actions.
In addition, Jason allows the execution of internal actions. These
actions allow the interaction with other agents (communication) or
to carry out some useful tasks such as, e.g., string concatenation
and printing on the standard output, among others.

2.1.2 The Java Implementation of Jason

A complete description of the Java implementation of Jason can be
found in [6]. This implementation of Jason allows the programming
of distributed multiagent systems by interfacing with the well-
known third-party software JADE [4, 5], which is compliant to
FIPA recommendations [1]. JADE implements a distribution model
where the agents are grouped in agent containers which are, in turn,
grouped again to compose agent platforms.

The distribution of a Jason system using JADE is not transpar-
ent from the programmer’s perspective as he/she must declare the
architecture of the system (centralised and JADE being the ones
provided by default), and, most likely, execute some actions that
rely on the third-party software used to distribute the system.

The Java interpreter of Jason provides mechanisms to detect
and react to the failure of a plan of an agent. However, there are
no mechanisms to detect and react to the failure of an entire agent.
That is, there are no constructs which permit to detect if some agent
has stopped working (has died) or has become isolated. One can,
of course, program a “monitor agent” to continuously interact with
the agent that should stay alive according to some pre-established
communication protocol, in order to detect if the monitored agent
fails. However, having to program such monitors by hand is an error
prone and a tedious task.

2.2 Erlang

Erlang [3, 7] is a functional concurrent programming language
created by Ericsson in the 1980s which follows the actor model.
The chief strength of the language is that it provides excellent
support for concurrency, distribution, and fault tolerance on top of
a dynamically typed and strictly evaluated functional programming
language. It enables programmers to write robust and clean code
for modern multiprocessor and distributed systems.

An Erlang system (see Fig. 1) is a collection of Erlang nodes.
An Erlang node (or Erlang Run-time System) is a collection of
processes (actors), with a unique node name. These processes run
independently from each other and do not share memory. They
interact via communication. Communication is asynchronous and
point-to-point, with one process sending a message to a second
process identified by its process identifier (pid). Messages sent to a
process are put in its message queue, also referred to as a mailbox.

As an alternative to addressing a process using its pid, there is
a facility for associating a symbolic name with a pid. The name,
which must be an atom, is automatically unregistered when the

Node 1

Node 2
registry

=S

-

Figure 1. An Erlang multi-node system

associated process terminates. Message passing between processes
in different nodes is transparent when pids are used, i.e., there is
no syntactical difference between sending a message to a process
in the same node, or to a remote node. However, the node must
be specified when sending messages using registered names, as the
pid registry is local to a node. For instance, in Fig. 1 let the process
Proc C be registered with the symbolic name procC. Then, if the
process Proc B wants to send a message to the process procC, the
message will be addressed to procC@Node2.

A unique feature of Erlang that greatly facilitates building fault-
tolerant systems is that one process can monitor another process in
order to detect and recover from abnormal process termination. If a
process P1 monitors another process P», and P> terminates with a
fault, process P is automatically informed by the Erlang runtime
of the failure of Ps. It is possible to monitor processes at remote
nodes. This functionality is provided by an Erlang function named
erlang:monitor.

2.3 eJason

eJason is our Erlang implementation of the Jason programming lan-
guage which exploits the support for efficient distribution and con-
currency provided by the Erlang runtime system to make a MAS
more robust and performant. It is interesting to note the similarities
between Jason and Erlang; both are inspired by Prolog, and both
support asynchronous communication among computational inde-
pendent entities (agents/processes), which makes the implementa-
tion of Jason in Erlang rather straightforward.

The first prototype of eJason was described in [8]. This proto-
type supported a significant subset of Jason. This subset included
the main functionality: the reasoning cycle, the inference engine
used by test goals and plan contexts, and the knowledge base. We
continue developing eJason by increasing the Jason subset sup-
ported (which now includes plan annotation and an improved in-
ference engine that generates matching values for the variables in
the queries upon request, instead of unnecessarily computing all
matching values), and by improving the design and implementa-
tion of eJason.

Probably the most relevant fact of the implementation of eJa-
son is the one-to-one correspondence between an agent and an Er-
lang process (a lightweight entity), enabling the eJason implemen-
tation to execute multiagent systems composed of up to hundreds of
thousands of concurrently executing agents with few performance
problems. This compares very favorably with the Java based stan-
dard Jason implementation which has problems in executing sys-
tems with no more than thousands of concurrent agents (even if
executed using a pool of threads) on comparable hardware (see [8]
for benchmarks).
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Figure 2. Sample eJason Distributed System

3. Distribution

In this section we describe the proposed agent distribution model
extension to Jason, which has been implemented in eJason. It is in-
spired by the distribution model of Erlang, as, in our opinion, it is a
sound and efficient one. The distribution model has been designed
with three goals in mind: distribution transparency (i.e., ensuring
that distributed agents can communicate), efficiency, and minimiz-
ing the impact on the syntax of Jason programming language.

3.1 Distribution Schema

Below we introduce the terminology used to describe the distribu-
tion model.

e A multiagent system is composed by one or more agent con-
tainers.

Each (agent) container' is comprised of a set of agents, and
is located on a computing host. It is given a name that is
unique in the whole system. Concretely the name has the
shape NickName@HostName, where NickName is an arbi-
trary short name given to the container when it is started and
HostName is the full name of the host in which the container
runs. For instance, home@avalor-laptop.fi.upm.es cor-
responds to a container that runs in a host whose name is
avalor-laptop.fi.upm.es.

Each agent is present in a single container. At the moment of
agent creation, it is given a symbolic name that is unique within
the container. A single agent is uniquely identified in the system
by the combination of its own symbolic name and the name of
its container. Using the unique name of an agent, agents can
communicate with each other irrespectively of the containers
they reside in.

As an example, consider the distributed Jason multiagent
system in Figure 2. This system is composed by four agents
distributed over two different hosts. The agents with the
names owner, robot and fridge reside in a container named
home@avalor-laptop.fi.upm.es. The agent supermarket
runs in the container shopping_mall@babel.ls.fi.upm.es, lo-
cated on a different host.

'we use the name container to emphasize the similarities with a JADE

container

3.2 Distribution API

Recall that Jason agents communicate with each other using inter-
nal actions. Thus, to support distribution, we add support for com-
municating in existing internal actions such as, e.g., . send, as well
as adding a few new internal actions. In practice, most of the new
internal actions are just an extension of existing ones to allow the
inclusion of the name of the container where the agent receiving the
effect of the internal action (e.g. receiving a message) runs. This
name is added as an annotation. A complete example showing how
the new API is used in practice is included in Section 6.

3.2.1 Agent Communication

The communication between agents in Jason requires the use of the
internal action

a) .send(AgentName,Performative,Message
[Reply,Timeout]),

where the parameters in brackets are optional and AgentName is the
symbolic name of the agent receiving the message. The parameters
Reply and Timeout can only be used when the performative is
of type ask. We omit the exact description of their meaning from
this article as they are present with the same semantics in “non-
distributed Jason’’; see [6] for details.

In the Java implementation of Jason, the symbolic name must
uniquely identify one agent within the system, while, as mentioned
above, the distributed extension guarantees only that agent names
are unique in a container. Thus the above internal action can be used
only to communicate between agents located in the same container
(intra-container communications).

Therefore, to permit communication between agents located
in different containers (inter-container communication) the dis-
tributed extension of Jason provides a new internal action

b) .send(Address,Performative,Message,
[Reply,Timeout])

where the parameter Address is an annotated atom with the struc-
ture AgentName [container (Container)] and Container is
the name of the container in which the agent with symbolic name
AgentName runs. Most internal actions similarly accept such an
address structure to specify an agent; in the following we will not
list these variant internal actions.

The guarantees® provided by the aforementioned internal ac-
tions differ:

e If the execution of a) succeeds, the reception of the message by
the receiver is guaranteed. However, it does not ensure that the
receiving agent considers the message socially acceptable (i.e.
considered suitable for processing, cf. not socially acceptable
messages are automatically discarded and do not generate any
event, see [6]) nor that it has a plan which can be triggered by
the reception of the message. The execution will fail if there
is no agent in the same container whose symbolic name is
AgentName.

e The execution of b) always succeeds. This internal action, thus,
provides no guarantees regarding the successful delivery of the
message.

3.2.2 Agent Creation and Destruction

Agents can create agents in a named container using the internal
action

2We encourage the reader to read the content at
http://www.erlang.org/fag/academic.html#id54296 to get a feel of how
useless and inefficient the imposition of strong guarantees on message
delivery can be for distributed systems.



e .create_agent (AgentName, Source, [InitialBeliefs])

where the parameter in brackets is optional. If Container is not
provided, using an Address structure, the new agent is created
in the same container as the agent executing the internal action.
As in [6], the parameter Source indicates the implementation
of the agent (its plans, initial goals and initial beliefs). Finally,
InitialBeliefs is a list of beliefs that should be added to the
set of initial beliefs of the new agent upon creation. This internal
action will succeed if (1) the named container exists in the system,
and (2) there is no other agent with symbolic name AgentName al-
ready in Container, and (3) Source correctly identifies an agent
implementation.

An agent can also explicitly kill other agents. The following
internal action allows this:

e .kill_agent (AgentName).

The parameters and the meaning of their absence are analogous to
those above. The execution of this internal action does not fail, even
if the agent to terminate does not exist.

3.2.3 Container Name Discovery

An agent can discover the name of its own container by executing
the internal action

e .my_container(Var)

If the variable Var is unbound, the execution of the internal action
does not fail and, as a result, Var will be bound to the name of the
container of the agent. If Var is bound to any value different from
the name of the container of the agent executing it, the internal
action will fail, otherwise it succeeds.

An agent can discover the name of the agent and container (the
complete address) from which it has received a message. Every
belief and goal generated from a communication is labeled with
the annotation

e source (AgentName [container (Container)])

Notice that this extension guarantees backwards compatibility
with Jason legacy code. The arity of the annotation source, see
[6], is maintained and the Address structure can be used to identify
the sender agent, e.g. in a . send internal action that represents the
reply to the message received.

4. Fault Tolerance

The fault detection extension that we describe in this section en-
ables an agent to express its desire to be notified when another agent
terminates or becomes unreachable. As we describe later, this noti-
fication is carried out by the runtime system by adding a new belief
to the belief base of the agent being notified.

4.1 Agent failures

The reasons why an agent may stop working are numerous. For
instance, the host in which the agent runs has been shut down, the
agent itself has been stopped or has crashed due to some error in the
source code, or the host in which the agent runs may have become
isolated from the rest of agents in the system.

4.2 Monitoring agents

Agents are not informed about failures in each other by default.
Instead, a (monitoring) agent interested in the state of a (monitored)
agent must explicitly request to be notified when the status of
the monitored agent worsens. This request is implemented as the
internal action:

e .monitor (AgentName)

where the parameter AgentName is the symbolic name of the mon-
itored agent in the desired container. This action is executed by the
monitoring agent. The execution of this internal action never fails.

After the execution of the .monitor internal action, the moni-
toring agent will be informed about failures in the monitored agent
at most once, i.e. after one error in the monitored agent is detected.
Nevertheless, the .monitor internal action can be called again af-
ter the notification. If the monitored agent fails, the monitoring
agent will receive the following new belief:

e +agent_down(AgentName [container(Container)])
[reason(RType)]

along with the corresponding belief addition event. The pos-
sible values of RType are unknown_agent, dead_agent and
unreachable_agent. Their meaning is as follows:

e unknown_agent. There is no agent whose symbolic name is
AgentName in the container Container as specified in the
invocation of the internal action .monitor.

e dead_agent. The monitored agent with the symbolic name
AgentName has stopped working.

¢ unreachable_agent. The containers of the monitored and mon-
itoring agent are not connected, e.g. caused by a network prob-
lem, or by a problem with the container host, or by a failure in
the container itself. The reconnection of the containers, which
renders the monitored agent reachable again if it is still alive,
may happen but it is not notified to the monitoring agent.

Clearly these errors are not mutually exclusive. For instance,
an unreachable agent (unreachable_agent) may be dead as well
(dead_agent).

In Section 6 we illustrate how this fault detection mechanism is
used to detect and help recover from different agent failures.

5. Implementation

In this section, we provide some details about the implementation
in eJason of the proposed extensions to Jason. We do not intend to
give a low-level description of how every single element has been
implemented. Instead, we describe the correspondence between the
elements introduced and their Erlang counterparts (recall that the
extensions are inspired by the distribution and fault tolerance mech-
anism of Erlang). A very basic knowledge about Erlang constructs
and their semantics suffices to understand the contents of this sec-
tion.

5.1 Distribution

The new concept introduced by our distribution model is the agent
container. It is implemented using an Erlang node. Therefore, each
container must be given a symbolic name unique in its host, as it is
not possible to have two Erlang nodes with the same name running
in the same host (Erlang nodes can be given short- or full-names.
For convenience, eJason only considers the latter possibility). For
each agent container in a system, a new Erlang node is started.
Besides, in eJason each agent is represented by a different Erlang
process. Therefore, given an agent with symbolic name AgentName
running in a container with symbolic name NickName in host
Host, there exists an Erlang process running in the Erlang node
NickName@Host. This process is locally registered as AgentName.

The guarantees for the message exchange achieved by executing
the internal action .send, described in Section 3, derive from the
Erlang semantics of their implementation:

e When internal action . send (AgentName ,Performative,
Message, [Reply,Timeout]) is executed, a message is sent



to the Erlang process locally registered as AgentName. This
operation fails if there is no process registered as AgentName.

e When the internal action executed is . send (Address,
Performative,Message, [Reply,Timeout]), where the pa-
rameter Address is the annotated atom described in Sec-
tion 3.2.1, a message is sent to the Erlang process that runs
in the Erlang node with name Container and that is registered
as AgentName in that same node. This operation cannot fail
even if the Erlang node does not exist (which does not ensure
the correct delivery of the message).

5.2 Faul Tolerance

The internal action .monitor is implemented by the Erlang func-
tion: erlang:monitor. Consider the case where an agent A mon-
itors another agent B. When A executes the .monitor internal ac-
tion, the Erlang process corresponding to A invokes the function
erlang:monitor giving among its parameters the identifier of the
Erlang process corresponding to B (either its registered name alone
or along with the name of its Erlang node).

If there is a failure on the agent B, the Erlang process of agent A
receives a so-called message 'TDOWN’ message, which provides,
among others, information about the failure. Depending on that
information, which is represented by an Erlang construct (atom or
tuple), one of the different failures considered is generated:

e If the information received is the atom noproc, the Erlang
process corresponding to the agent B cannot be found while the
Erlang node it should be running in can. Therefore, a failure of
type unknown_agent is detected.

o If the information received is the atom noconnection, the
Erlang node corresponding to the container of agent B cannot
be found. A failure of type unreachable_agent is detected.

e The reception of any other kind of information (e.g. the atom
killed meaning that the Erlang process of agent B has been
killed or a tuple providing information about the reason why
that process has crashed) means that the monitored agent has
died. Therefore, a failure of type dead_agent is detected.

6. Example

In this section we illustrate the Jason extensions using a sample
multiagent system that is distributed and which makes use of the
fault tolerance mechanisms described in Sections 3 and 4. The ex-
ample is inspired by a similar one provided with the Jason distribu-
tion and also described in [6]. The example runs unchanged under
eJason.

6.1 The system

The system is composed by the following agents:

e Agent owner: this agent monitors a robot (another agent) and is
continuously avid for beer. It asks the robot for cans of beer. If
it gets a beer, it drinks it whole sip by sip, then asks for another
beer. If the robot agent reports that there are no more beers in
the fridge, the owner takes a short nap and, immediately after
waking up, starts asking for a beer again. Upon reception of a
message from the robot informing that it is not allowed to give
any more beer to the owner, it disconnects the robot. The owner
monitors the robot, so if it dies (because the owner disconnects
it or otherwise), the former is immediately aware of it and starts
the robot again. Finally, if this agent drinks more beer than its
physical limit can bear, it collapses (the agent owner dies).

e Agent robot: this agent fulfills the owner’s requests for beer.
Upon reception of a request from the owner, it goes to the fridge

Supply beer

Order received

Figure 3. Flowchart for agent “supermarket”

and checks whether it contains some beer or is empty. In the
first case, it grabs one beer, goes to the location of the owner
and gives him the beer. The second case is again split in two,
depending on whether the supermarket (represented by another
agent) is open (the supermarket agent is not dead and is reach-
able) or closed (the supermarket agent is dead or is unreach-
able). If the fridge is empty and the supermarket is open, the
robot orders some beer, which will be delivered directly to the
fridge, and tells the owner that the fridge is empty. Otherwise, if
the fridge is empty and the supermarket is closed, the robot just
tells the owner that the fridge is empty, without trying to make
any order. In order to know whether the supermarket is open or
not, the robot monitors the supermarket agent. Depending on
the type of failure detected in the supermarket agent, the robot
emits a different speech (prints a different message on the stan-
dard output). Finally, the robot also monitors the owner and, if
it dies, emits a short speech and waits, idly, for future requests.

Agent fridge: this agent receives requests for beer from the
robot. If it is not empty, it gives a beer to the robot, hence
decrementing its current stock by one unit. If it is empty, it does
not hand out any beer to the robot and just reports back this fact.
Finally, anytime it receives a delivery from the supermarket, it
updates its contents.

Agent supermarket: the behaviour of this agent is the simplest
in the system. It waits for a delivery order from any agent (the
robot in this case) and fulfills it.

The eJason code for each of these agents is included in Ap-
pendix A, Figures 7, 8, 9, and 10.

For the sake of clarity, we also include a series of flowcharts in
Figures 3, 4,5, and 6 that provide the diagrammatic representation
of the behaviour of each of the agents, respectively.

Note that the environment entity is not implemented in eJason
yet, hence not allowing the execution of external actions or the
gathering of information through perception. Therefore, some ac-
tions of the system, like the displacement of the robot or checking
the contents of the fridge, have been assumed to be always success-
ful and do not require any interaction with the environment.

6.2 Code Excerpts

In this section we provide some brief code excerpts showing agent
plans, to illustrate the new features introduced in Jason (and imple-
mented in eJason).

6.2.1 Communication
Consider the following plan from the agent robot, where both intra-
and inter-container communication take place:

+no_more (beer)
(not closed(supermarket)) &

//Trigger
//Context
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address (supermarket,SupContainer) <- //

-no_more (beer) ; //Body

.print ("Fridge is empty."); //

.send (supermarket //
[container (SupContainer)], //
achieve, order(beer,5)); //

.send(owner,tell,no_more(beer)) ; //

lat (robot,fridge) . Y —

This plan is triggered when the robot notices that the fridge
is empty. The context requires the supermarket not to be closed
(i.e. the agent supermarket must be alive and reachable) and
the address of that agent to be known. When the plan is trig-
gered and the context is met, the robot executes, in appear-
ance order, the actions in the body of the plan. The first action
deletes the belief that states that the fridge is empty while the
second makes the robot print a message on the standard out-
put. The third action is a .send action of type b) according to
Section 3.2.1, where AgentName is supermarket, Container
has the value of the variable SupContainer (which in this case
is shopping_mall@babel.ls.fi.upm.es), Performative is
achieve and Message is order (beer). By executing this action,
the robot is ordering beer from the supermarket agent, which runs
in a different container. The fourth action is a . send action of type
a) and does not include any reference to the container in which the
agent owner runs, as it is the same one for robot agent. Finally, the
last action represents an achievement goal that requires the robot to
go to the location of the owner.

6.2.2 Monitoring an agent

The code for the agent robot also shows how an agent can monitor
another agent. Consider the following excerpt:

+!monitor (Agent) :
address(Agent,Container) <-
-closed(supermarket) ;
.monitor (Agent [container (Container)]).

+!monitor (owner): true <-
.monitor (owner) .

The first plan can only be executed if the full address of the
monitored agent is known.

The second plan will only be executed if the monitored agent
is the owner agent. Notice that, this time, the container of the
monitoring and monitored is the same, hence being omitted from
the parameters of the .monitor action.

6.2.3 Detecting different failures

Finally, consider these four plans, again from the source of the
robot agent:

+agent_down (supermarket)
[reason(unknown_agent)]: true <-
+closed(supermarket) ;
.print ("I cannot find the supermarket
in the shopping mall").

+agent_down (supermarket)
[reason(unreachable_agent)]: true <-
+closed(supermarket) ;
.print ("I cannot find the shopping mall").

+agent_down (supermarket)
[reason(dead_agent)]: true <-
+closed(supermarket) ;
.print ("The supermarket has just closed").

+agent_down(owner) : true <-
.print("0h, oh. My master has passed out.").

The first plan is triggered when a failure of type unknown_agent
is detected on the supermarket agent. This can only happen if the
container shopping_mall@babel.ls.fi.upm.es is reachable
but does not contain any supermarket agent. A possible reaction
from the robot agent could have been starting that agent, but we did
not consider reasonable the option of allowing the robot to “open”
the supermarket.

The second plan is only triggered when a failure of type
unreachable_agent is detected on the supermarket agent. This
failure is generated when the connection to the container named
shopping_mall@babel.ls.fi.upm.es is lost, hence leaving the
agent supermarket unreachable.

The third plan is triggered when a failure of type dead_agent
is detected again on the supermarket agent, i.e. the Erlang process
corresponding to that agent is dead. Again, a possible reaction from
the robot agent could have been starting that agent.

The fourth plan is triggered by the detection of any kind of
failure on the owner agent, as the annotation of the event is ignored.
These four plans represent all the possible agent failure detections
that are possible in the example.

Notice that, in all four plans, the [container (Container)]
annotation corresponding to each AgentName has been ignored
in their triggers, as this information is not used neither in their
contexts nor in their bodies.

6.3 Experiments

In this section we report on some experiments that we performed
on the multiagent system described above. In all of them, the



distribution of the agents was organized in the following way,
which is also depicted in Figure 2:

e The agents owner, robot and fridge run in the same container
whose name is home @avalor-laptop.fi.upm.es.

e The agent supermarket runs in a different host and container.

The name of this container is shopping _mall@babel.ls.fi.upm.es.

Checking Figure 10, one may notice that this address is hard-
coded as an initial belief of the robot agent. It is done this way
for convenience, as no service discovery is available for the
agents yet.

The experiments carried out were the following:

6.3.1 Experiment 1: distribution

The goal of this experiment is checking whether the implementa-
tion of the proposed distribution works correctly. To do it, we start
all the agents of the system but do not connect the two hosts until
some time after the start of the experiment. If the distribution works
properly, after emptying the fridge, the owner must not get more
beer until the robot can order more from the supermarket, which is
not possible while the hosts remain disconnected. Next, we list the
steps of the experiment (enumerated using letters) together with a
description of the observable behaviour of the agents that is rele-
vant to the experiment (presented between angle brackets).

a) Disconnect the hosts (isolating one of them suffices).
b) Start all the agents.

<The owner drinks all four beers in the fridge. The robot in-
forms that the fridge is empty, but does not attempt to order new
beers because it is aware of the fact that the supermarket is un-
reachable. The owner sleeps and wakes up periodically asking the
robot for more beer. The system does not evolve.>

¢) Connect the hosts via internet or intranet

<The robot orders more beer from the supermarket. The fridge
gets refilled. The owner continues drinking. >

¢) Terminate the experiment (kill all the agents).

The experiment shows that the distribution model implemented
works as expected in this case. Besides, note that the two varieties
of the internal action .send, described in Section 3.2.1, are suc-
cessfully used for both intra- and inter-container communication.

6.3.2 Experiment 2: intra-container fault tolerance

This experiment seeks to test the performance of the fault tolerance
mechanisms implemented when they involve agents running in the
same container. Briefly, it follows an execution flow in which the
agents owner and robot stop working (die) several times. Anytime
the robot is not alive, the owner must notice it and start it again
(even if the owner killed it). If the owner agent dies, the robot must
be aware of it and print a message. The steps and output of the
experiment are:

a) Connect the hosts and start all the agents but the robot.

< The owner immediately realizes that the robot agent is not
alive and starts it. The owner starts drinking beer. The robot refills
the fridge whenever it is empty. The sequence continues until the
robot tells the owner not to drink any more beer. Upon reception of
the message from the robot, the owner kills it. The owner becomes
immediately aware that the robot is dead and restarts it. The owner
continues drinking beer, killing and restarting the robot whenever
it refuses to bring more beer, until it surpasses its physical limit and

passes out (the agent dies). The robot notices the death of the owner
immediately after it happens and prints a message.>

b) Terminate the experiment (kill all the agents).

Note that the failures detected in this experiment are all of type
dead_agent. This experiment shows that the agents are immedi-
ately aware of the death of the agents they monitor, at least in the
same container, and react properly (the owner restarting the robot
and the robot printing a message).

6.3.3 Experiment 3: inter-container fault tolerance

This third experiment tests the performance of the fault tolerance
mechanisms when the system is distributed. In its execution flow
the three types of agent failures described before are generated.
The correct detection of these failures can be checked through
the reactions of the agent robot. If the agent supermarket is not
alive but its container is, the robot must say: “I cannot find the
supermarket in the shopping mall”. If the agent supermarket dies,
the robot says “The supermarket has just closed”.Finally, if the
agent supermarket becomes unreachable, the robot must say: “I
cannot find the shopping mall”. The steps followed and the relevant
observable behaviour of the agents are:

a) Connect the hosts and start all the agents but the supermarket.

<The robot is immediately aware that there is no agent with
symbolic name supermarket in the container shopping-mall and
prints the message: “I cannot find the supermarket in the shopping
mall”. The owner drinks beer until the fridge is empty, then gets
asleep and wakes up periodically.>

b) Start the agent supermarket

<The fridge gets filled again and the owner continues drinking
beer.>

¢) Disconnect the hosts

< The fridge becomes empty. Then, the robot tries to order beer
from the supermarket for a while. After about 60 seconds after the
disconnection of the hosts (due to Erlang implementation issues,
the disconnection of two nodes running in different hosts is de-
tected, by default, from 45 to 70 seconds after the network discon-
nection actually happened), the robot realizes that the supermarket
is unreachable and prints the message: “I cannot find the shopping
mall”.>

d) Reconnect the hosts.

<The fridge gets filled again and the owner continues drinking
beer.>

e) Kill the agent supermarket.

<The robot agent is immediately aware of the death of the agent
supermarket and prints the message: “The supermarket has just
closed”>

f) Start the agent supermarket.

<The fridge gets filled again and the owner continues drinking
beer.>

g) Destroy the container shopping_mall

<The robot agent is immediately aware of the death of the agent
supermarket and prints the message: “The supermarket has just
closed”>

h) Terminate the experiment (kill all the remaining agents).



The experiment shows that all the different failures are correctly
detected by the implementation of our proposed fault tolerance
system.

7. Conclusion and Future Work

In this paper we have described an extension to the Jason multia-
gent systems programming language, which provides a new distri-
bution model and constructs for fault detection and fault recovery.
Moreover, our implementation of Jason in Erlang — eJason — con-
tains a prototype implementation of the extension.

The addition of a proper, Jason based, distribution model to Ja-
son systems, removes the need of interfacing to third-party soft-
ware such as e.g. JADE. The addition of fault-detection and fault
tolerance mechanisms to Jason addresses one of the key issues in
the development of robust distributed systems. Concretely, these
mechanisms allow the detection of failures in a multiagent system
caused by malfunctioning hardware (computers, network links) or
software (agents).

The distribution model and fault-tolerant mechanisms are in-
spired by Erlang, an actor based language which is increasingly
used in industry to develop robust distributed systems, in part pre-
cisely because of the elegant approach to fault detection and fault
tolerance. Somewhat surprising, Erlang and Jason share many com-
mon features, and this has made the design and implementation of
the distribution model and the fault-tolerant mechanisms a rather
straightforward task.

The lines of future work are many. First we need to provide
higher-level agents (components) that ease the task of program-
ming fault tolerant systems. In Erlang this is accomplished, for ex-
ample, by providing a general component (the supervisor) to su-
pervise and, if need be, restart failing processes. In Jason this will
correspond to a monitoring agent. We expect to extend the usual
notion of supervision (responding to termination of agents) with
a notion of “semantic termination”, i.e., detecting when an agent
is still alive but no longer contributing useful results. In this same
line, we plan to elaborate use cases showing how higher-level fault-
tolerance properties could be implemented in eJason. Nevertheless,
some issues like the preservation of the state of an agent across
failures or the identification/development of useful high-level con-
structs must be dealt with first.

Second, we should develop at least a “semi-formal” semantics
for this extension of Jason, describing exactly the behaviour of the
internal actions (sending, monitoring, etc).

Third, we need to evaluate this extension on further examples,
to ensure that the new internal actions have sufficient expressive
power, and are integrated well enough in Jason, to permit us to
design distributed multiagent systems cleanly and succinctly, and
in the general spirit of BDI reasoning systems.

Considerably more speculative, we are not certain that the
model of distribution offered by this extension is sufficient to
model real-world multiagent system with respect to agent mobility.
It might be necessary, for instance, to permit an agent to migrate
between different process containers. This will complicate the im-
plementation, but should not be impossible

With respect to eJason, there is a need to complete the im-
plementation with regards to environment (perception of external
events, etc) handling, with all its related functionality. Moreover,
we plan to permit the interoperability between the agents running in
eJason and agents belonging to other (e.g., JADE based) agent plat-
forms. Therefore, we will study how to best interface eJason with a
FIPA based agent platform. For instance, the concept of Directory
Facilitator appears similar to the global registry service provided
by Erlang.
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A. Appendix A

contents(beer,4).

+!give(Item) [source(Who[container(Where)])]:
contents(Item,Stock) &
Stock > 0 <-
.print ("Giving beer to ",Who,
" in ", Where);
NewStock = Stock + -1;
-+contents (Item,NewStock) ;
.print ("Beers left: ",
NewStock) ;
.send (Who [container (Where)],tell,
holding(Item)).

+!give (Item) [source(Who)]
contents(Item,Stock) &
Stock < 1 <-
send (Who,tell,
no_more(Item)).

+delivered(Item,Qtd, OrderId):
contents(Item,Stock)<-
-delivered(Item,Qtd,OrderId);
.print ("Received ", Qtd,
" units of ", Item);
NewStock = Qtd + Stock;
-+contents(Item,NewStock) .

Figure 7. Code for agent “fridge”

last_order_id(1).

+lorder (Product,Qtd) [source(Ag[container(Container)])]:
last_order_id(N) &
OrderId = N +1<-
-+last_order_id(OrderId);
.print("Sending ", Qtd, " units of ",
Product, "to ", Container);
.send(fridge [container (Container)],tell,
delivered (Product,Qtd,OrderId)).

Figure 8. Code for agent “supermarket”



physical_limit(21).
beers_drunk(1).
inactive (robot) .

'monitor (robot) .

+!get (beer) :
physical_limit(Limit) &

+msg (M) [source(Ag)] : true <-
beers_drunk(prunk) & g.print(Ag,” gays: "M ;
Drunk <= Limit & ~msg (M) ;
not inactive(robot)<- .

.print ("Unacceptable!");

.print("Let’s restart my ",
"mechanic friend.");

.kill_agent (Ag) .

.send(robot, achieve,
has (owner,beer));
.print ("Getting a beer").

+!get(beer) :
physical_limit(Limit) &
beers_drunk (Drunk) &
Drunk >Limit &
not inactive(robot)<-
.print ("I feel strangg..");
.kill_agent (owner) .

+closed(supermarket): true <-
-closed(supermarket) ;
!sleep.

+no_more(beer): true <-
-no_more (beer) ;
!sleep.
+has (owner,beer) : true <-
?beers_drunk (Beers) ;
.print ("I got my beer number ",

+!sleep: true <-
.print ("No beer means nap ",
"time Zzz.");

. .Beer§, ". Yeepe!"); -closed (supermarket) ;
+remaining_sips(3); .wait (2000) ;
!ldrink(beer) . !!get(beer)t

+agent_down(robot): true <-
+!drink(beer) : gent— ( )

L . . +inactive (robot) ;
remaining_sips(Sips) & -agent_down (robot) ;
Sips > 0 <- -

.create_agent (robot,robot) ;
.print ("robot has stopped ",
"working. Start anew!");

NewSips = Sips + -1;
.print("Sip");
-+remaining_sips(NewSips) ;

. . Imonitor (robot) .
?remaining_sips(X);
t!drink(beer) . +!monitor (robot) :true <-
e . -inactive(robot);
+.dr1nk(b§e?) P ‘ .monitor (robot) ;
remaining_sips(Sips) & ! 1get (beer) .

Sips < 1 <-
?beers_drunk(Beers) ;
NumBeers = Beers +1;
-+beers_drunk (NumBeers) ;
-has (owner,beer) ;

.print ("Finished beer!");
Ilget(beer) .

Figure 9. Code for agent “owner”



consumed (beer,0) .

at (robot,owner) .

limit(beer,10).

address (supermarket,
’shopping_mall@babel.ls.fi.upm.es’).

too_much(Beverage) :-
limit (Beverage,Limit) &
consumed (Beverage,Consumed) &
Consumed > Limit.

!monitor (supermarket) .

+!has (owner,beer) :
not too_much(beer) <-
lat (robot,fridge) ;
.send(fridge,achieve,give(beer)).

+!has (owner,beer) :
too_much(beer)<-
?1limit (beer,Y);
.print ("The Department of Health ",
"does not allow me to give",
" you more than ",Y,
" beers a day! I am very ",
"sorry about that!");
?consumed (beer,X) ;
.print ("Consumed ",X,
" beers when the limit is
Y, II.Il);
.send (owner,tell,
msg("I am very sorry!")).

+'has (owner, beer):
closed(supermarket) <-
.send (owner,tell,
closed (supermarket)) ;
'monitor (supermarket) .

+holding(beer) : true <-
-holding(beer) ;
lat (robot,owner) ;
?consumed (beer,X) ;
Y = X +1;
-+consumed (beer,Y) ;
.send (owner, tell, has(owner,beer)).

+no_more(beer) :(not
closed(supermarket)) &
address (supermarket,SupContainer) <-
-no_more (beer) ;
.print("Fridge is empty.");
.send (supermarket [container (SupContainer)],
achieve, order(beer,5));
.send (owner,tell,no_more(beer));
lat (robot,fridge) .

+no_more (beer) :

closed(supermarket)<-

-no_more (beer) ;

.print("Fridge is empty.
And supermarket is closed.");

.send (owner,tell,
closed(supermarket)) ;

'monitor (supermarket) ;

lat (robot,fridge) .

+!at (robot,P):
at (robot,P) <-
true.

+!at (robot,P):
not at(robot,P)<-
-+at (robot,P) .

+!monitor (Agent) :
address(Agent,Container) <-
-closed(supermarket) ;
.monitor (Agent [container (Container)]).

+!monitor (owner): true <-
.monitor (owner) .

+agent_down (supermarket)
[reason(unknown_agent)]: true <-
+closed(supermarket) ;
.print ("I cannot find the supermarket
in the shopping mall").

+agent_down (supermarket)
[reason(unreachable_agent)]: true <-
+closed(supermarket) ;
.print ("I cannot find the shopping mall").

+agent_down (supermarket)
[reason(dead_agent)]: true <-
+closed(supermarket) ;
.print ("The supermarket has just closed").

+agent_down(owner) : true <-
.print("0Oh, oh. My master has passed out.").

Figure 10.

Code for agent “robot”
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Abstract

The integration of autonomous and reactive behavior is a rel-
evant problem in the context of concurrent programming,
related to the integration of thread-based and event-driven
programming. From a programming paradigm perspective,
the problem can not be easily solved by approaches based
on object-oriented concurrent programming or by the actor
model, being them natively based on the reactivity principle
only. In this paper we tackle the problem with agent-oriented
programming, using an agent-oriented programming lan-
guage called simpAL.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.2 [Program-
ming Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords event-driven programming, agent-oriented pro-
gramming, actors

1. Introduction

In modern concurrent programming, many interesting prob-
lems and applications call for developing software compo-
nents capable of integrating a process-oriented autonomous
behavior with an event-driven, reactive one. A simple ex-
ample is a web crawler that has to search pro-actively in-
formation over the Internet and at the same time must be
able to react to asynchronous inputs generated by the user
through a GUI, either to interrupt the crawler or to dynam-
ically refine its research. Another example is given by co-
operative distributed algorithms like Ricart-Agrawala’s or
Token-Ring’s [8], for distributed mutual exclusion and crit-
ical section. In these algorithms, the behavior of each dis-
tributed node typically includes both an autonomous part,
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periodically entering in critical section (CS), and a reactive
part, which needs to receive and send messages aside to the
first one to ensure the correct coordination among the nodes.
The two parts then need to cooperate, since the behavior of
the reactive part can depend on the state of the pro-active
one (i.e., being in CS or not). The same situation can be
found in producers-consumers architectures in which pro-
ducers and consumers, while doing their job, need to be re-
active to some kind of asynchronous events—e.g., produc-
ers should stop producing as soon as some condition related
to consumers occurs. This capability is often required also
in real-time concurrent programs doing some control task —
as exemplified by the cruise control system example [17].
The software controller has to continuously act on the envi-
ronment to keep or maintain some condition (e.g., the value
of the speed) and at the same time it must react to user in-
puts (e.g. pressing the brake) and possibly change operation
modality.

In concurrent programming literature, the problem of in-
tegrating autonomous and reactive behaviors is strongly re-
lated to the one contrasting thread-based and event-based
programming [27, 35], and to those works that look for
unifying the approaches [18]. In this paper we take a pro-
gramming paradigm viewpoint in looking at the problem,
taking as the background context object-oriented concurrent
programming [3, 13] and actor-based approaches [2]. Be-
ing based on a pure reactivity principle [13, 23], actors —
as objects as well — do not provide native means to effec-
tively integrate also pro-activity, so actor-based solutions to
this problem — as will be clarified in Section 2 — suffer of a
weak abstraction and modularity. So the question at the core
of this paper is: can we identify proper programming/com-
putation abstractions that integrate these two aspects at the
conceptual and foundation level, going beyond the reactivity
principle?

In this paper we develop an answer to this question based
on agent-oriented programming, using an agent program-
ming language called simpAL. Agents as defined in simpAL
can be conceptually conceived as an extension (or special-
ization, depending on the viewpoint) of actors introducing
high-level programming concepts (main examples are tasks
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and plans) that aim to ease the design and development of
concurrent and distributed programs. A core feature of the
agent model is the control architecture, that allows for na-
tively integrating autonomy and reactivity.

The remainder of the paper is organized as follows: in
Section 2 we describe the problem in more detail, using
some toy examples and state-of-the-art actor technologies;
then, in Section 3 we introduce our agent-oriented model
and simpAL, describing in particular the features of the agent
control loop compared to the actor event loop; in Section 4
we describe programming examples in simpAL of increas-
ing complexity, integrating an autonomous and reactive be-
havior. In Section 5 we consider a real-world example, dis-
cussing its design and programming in simpAL. Finally, in
Section 6 we discuss related work and in Section 7 we con-
clude the paper providing some remarks on the performance.

2. Background and Problem Statement

The dualism between reactivity and autonomy in the context
of concurrent object-oriented programing is discussed in
[13]. Both actors and objects are based on reactivity and the
reactivity principle [3, 13, 23]. They are reactive in the sense
that they react to an event, i.e. the receipt of a message. The
only way to activate an object or an actor is by sending a
message. In [13] this is opposed to the idea of a process, or a
pure autonomous behavior, that starts processing as soon as
it is created.

The integration of object with process (the concept of ac-
tive object) raises the issue of whether reactivity will be pre-
served or shadowed by the autonomous behavior of the pro-
cess. Two broad families are identified[13]: (i) reactive ac-
tive objects — these approaches adhere to the reactivity prin-
ciple (such as actors); (ii) autonomous active objects — in
these approaches, the active entity may compute before be-
ing sent a message. Although the models are opposite they
can easily simulate each other [13]. On the one side, a re-
active active object can have a method whose body in an
endless loop, turning it into an autonomous active object af-
ter receiving a corresponding message. On the other side, an
autonomous active object whose activity is to keep accepting
messages actually models a reactive active object.

However, this is not useful when dealing with problems
that call for exploiting both of them in an integrated way.
Abstracting from the details, all these problems have some
kind of process doing pro-actively actions to accomplish
some (possibly long-running) task that requires also to react
to some asynchronous events from their environment.

2.1 An Abstract Example

In the remainder of the section we analyze the problem by
considering an abstract example that captures some core
issues. We will use actors as reference model and related
state of the art programming technology.

public class TestActor0 extends Actor {

1

2 private int c = 0;

3

4 @message

5 public void doTaskT() {

6 ta();

7 tb O);

8 tc();

9 }

10

11 @message

12 public void react() {

13 call(stdout, "println","react! "+c);
14 ¥

15

16 private void ta(){ ¢ = ¢ + 1; }
17 private void tb(){ ¢ = ¢ + 1; }
18 private void tc(){ ¢ = ¢ + 1; }

9}

Figure 1. A first solution using ActorFoundry.

public class TestActorl extends Actor {

1

2 private int ¢ = 0;

3

4 @message

5 public void doTaskT() {

6 send (self (), "doingTa");
7 }

8

9 @message

10 public void doingTa () {

11 send (self (), "doingTb");
12 ta();

13 }

14

15 @message

16 public void doingTb () {

17 send (self (), "doingTc");

18 tb )

19 }

20

21 @message

2 public void doingTc() { tc(); }

23

24 @message

25 public void react() throws RemoteCodeException {
26 call(stdout, "println","react! "+c);
27 }

28 Ce

29 )

Figure 2. A solution in ActorFoundry that does not shadow
reactivity.

Let’s consider a task T which is supposed to be long-
term, articulated in a sequence of three sub-tasks: Ta, Tbh,
Tc—for sake of simplicity we suppose initially that these
sub-tasks are fully computational, without interactions. This
constitutes the autonomous/pro-active part of the job. Then,
the task requires to promptly react to a message react that
could be sent in any moment while doing T, and upon
receiving the message the actor must do a sub-task Td. In
this first example, we assume that such a sub-task Td is
not going to alter the execution of the sub-tasks, but simply
prints the react! message in standard output.

Figure 1 shows a first solution in ActorFoundry [22], a
Java-based framework which we will consider in the fol-
lowing as reference technology for implementing pure actor
solutions. Note that we could use any framework/language
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test_actor () ->

1
2 self () ! doTaskT, loop(0).
3

4 loop(C) ->

5 receive

6 doTaskT ->

7 c1 = ta(C),

8 self () ! doingThb,

9 loop(C1);

10 doingTb ->

11 Ci1 = tb(C),

12 self () ! doingTc,

13 loop(C1l);

14 doingTc ->

15 C1 = tc(C),

16 loop(C1);

17 react ->

18 io:format("react! “w”n", [C]),
19 loop(C)

20 end.

2 ta(C) -> C+1.
23 thb(C) -> C+1.
24 tc(C) -> C+1.

Figure 3. A solution in Erlang.

strictly implementing the actor model. The only peculiar-
ity that we exploited of ActorFoundry is the call primi-
tive, which realizes a request-reply message exchange pat-
tern. The problem with this solution is that given the macro-
step semantics adopted by the actor model, the actor can re-
act to the the react message only after fully executing the
body of the method doTask executed when receiving the
corresponding message. So the message printed on standard
output is always react! 3. In this case reactivity is shad-
owed.

In order to be reactive while doing the tasks, the au-
tonomous behavior of the actor must necessarily be broken
in sub-behaviors so as to allow the actor event loop to con-
sider the receipt of the react message. An example is shown
in Figure 2. The problem in this case is the fragmentation of
the code in handlers, which does not necessarily corresponds
to a good modularization from the point of view of organiza-
tion of the autonomous behavior. One is forced to artificially
break the behavior so that the event loop can take the control
and check the availability of messages possibly sent by other
actors. Besides, self-sending messages is needed to proceed
the computation, in the case that no messages are available,
not to get stucked. This is clearly a programming trick, de-
creasing the level of abstraction used to describe the strategy
identified at the design level.

No substantial improvements can be obtained if we con-
sider actor approaches based on explicit acceptance of mes-
sages (following the classification discussed in [13]), i.e.
providing a receive primitive to explicitly retrieve messages
from the mailbox (and not encapsulating then the event-
loop). Figure 3 shows the solution in Erlang [7], which is a
main representative case—whose model inspired other more
recent technologies, such as Scala Actors [18]. Here the frag-

mentation occurs by splitting the autonomous behavior into
the arms of the receive primitive.

No improvements can be obtained neither if we consider
the programming abstractions that have been proposed in lit-
erature upon the basic actor model — e.g., local synchroniza-
tion constraints, synchronizers [5]. This because all such ex-
tensions are finally targeted to ease the management of mes-
sages, so improving the programming of the reactive part.
The same applies for extensions introducing mechanisms
to overcome handler/callback fragmentation—by means, for
instance, of join continuations [4] or promises [26]. These
mechanisms are effective to improve the organization of the
callbacks handling asynchronous events, avoiding obscure
nesting.

A radically different approach to overcome the problem
could be using a network of cooperating actors instead of
one, in which each actor has either a purely proactive or
a purely reactive job. For instance: an actor for each sub-
task to be executed and one “input” actor responsible to
receive the react message. In that case, the input actor could
immediately react and print the message — without caring
about the other actors, which go on doing their job. However
the problem persists as soon as we consider a slightly more
complex case, in which by receiving the message one need to
have some immediate effect on the ongoing sub-tasks, such
as stopping them or adapting them according to some new
information. This would require anyway sending a message
to the actor who is in charge of autonomously doing the sub-
task, which should be able to react.

In this paper we develop a solution based on a program-
ming abstraction layer which would allow to express in a
modular way an autonomous behavior — targeted to the ful-
fillment of some task — which is capable to react to asyn-
chronous events that can occur while doing the task. The
programming model should allow to keep the same level of
modularization identified at design time. More generally, we
aim at identifying a foundational computation model that
would capture the essence of being pro-active, besides re-
activity.

3. An Agent-Oriented Approach: simpAL

Agent-Oriented Programming has been originally intro-
duced in (Distributed) Artificial Intelligence (AI) con-
texts [32], with the purpose of finding appropriate computa-
tion models and architectures to design intelligent software
entities exhibiting some level of autonomy in achieving com-
plex goals [21]. Most of the available agent programming
languages and frameworks are based on models/architec-
tures explicitly inspired to the BDI (Belief-Desire-Intention)
cognitive model of human practical reasoning [12].
Differently from this Al perspective, in our research work
in general we are exploring the definition and use of agent-
orientation as a programming paradigm for concurrent and
distributed systems, providing features that extend (or spe-
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cialize, depending from the view point) Object-Oriented
Programming (OOP) and actor-based approaches [31]. To
this purpose we designed simpAL [30], a programming lan-
guage that provides agent-oriented first-class abstractions to
deal with aspects related to concurrency, I/O, asynchronous
event management, distribution—and then using OOP for all
those parts that concern pure computation and data structure
modeling. In this paper we discuss in detail those aspects of
the simpAL agent model that allow for natively integrating
autonomous and reactive behavior.

3.1 From Reactivity to Pro-Activity Principle

Agents in simpAL can be generally defined as software com-
ponents which are designed to accomplish autonomously
tasks, both by exploiting the computational environment
where they are situated and by communicating with other
agents. Therefore, differently from objects and actors, agents
are not based on the reactivity principle, since they do some-
thing not necessarily only when receiving a message, but be-
cause they have one or multiple tasks to accomplish. In that
sense, we can say that they are based on a pro-activity princi-
ple, autonomously choosing and executing actions in order
to fulfill some tasks. Autonomously means that they fully
encapsulate the decision about what to do and the control of
their execution.

Actions are defined by the environment, which is mod-
ularized in terms of first-class abstractions called artifacts,
conceptually representing tools and resources shared and
used by agents to do their individual and cooperative tasks.
Artifacts are used to model non-autonomous computational
entities of the program that can be dynamically created and
disposed by agents, and that provide some kind of func-
tionality to agents. Examples of artifacts are a blackboard,
a bounded-buffer, a shared counter. Artifacts provide opera-
tions (e.g., put and get for a bounded buffer) which corre-
spond to the actions that agents can do. So the repertoire of
actions that an agent can do is dynamic and depends on the
set of artifacts available in the environment.

Along with pro-activity, agents typically need to be also
reactive, that is: in order to fulfill a task, they have to act upon
the environment but also to react to asynchronous events
that concern, for instance, some change in the environment
observable state. This is represented by artifact observable
properties, i.e. state variables that can be modified by the
execution of operations. Like actors, agents are reactive also
to messages sent by other agents. It is worth noting that
pro-activity could be defined in terms of being reactive but
not only to events — e.g. the assignment of a task to do,
communicated by another agent — but to also a state, i.e.
having a task which has not been fulfilled yet.

3.2 From Actor Event Loop to Agent Control Loop

In order to integrate pro-activity and re-activity, the control
architecture adopted in agents extends the actor one, based
on event-loop. From a behavioral point of view, actors can be

conceived as processes continuously executing the following
loop, sometimes called event loop [26]':

Algorithm 1 Actor Event Loop
1: while true do

2: msg < PICKMSGFROMMSGQUEUE()
3: method < SELECTHANDLER(msg)
4: EXECUTE(method)

5: end while

All the extensions introduced in literature, such as mak-
ing it explicit the receive primitive or providing a way to
order the messages to receive, can be finally translated into
this basic loop [6]. Two aspects are important in particular
for this paper: (i) if no messages are available in the queue,
the loop is blocked (this is consistent with the reactivity prin-
ciple); (ii) the method selected for handling a message must
be executed until completion, atomically, before fetching the
next message—this is also called macro-step semantics [6].

The loop characterizing agent execution (agent control
loop or reasoning cycle) in simpAL — inspired by the BDI
model/architecture [29] — can be considered an extension of
the actor event loop and is composed by three conceptual
stages — sense, plan, act — that are cyclically executed:

Algorithm 2 simpAL Agent Control Loop

1: while true do
2: > SENSE stage

3: if external events queue not empty then
4: ev < PICKEXTEVENT()
5: UPDATEAGENTSTATE(ev)
6: end if
7: > PLAN stage
8: if new tasks todo then
9: for each new task to-do task do
10: plan < SELECTPLAN(task, bel Base, planLib)
11: CREATENEWINTENTION(plan, task)
12: end for
13: end if
14: actList + ||
15: for each ongoing intention ¢ do
16: if TASKFULFILLED(%) then
17: DROPINTENTION(%)
18: end if
19: actList < actList + SELECTACTIONS(i, bel Base)
20: end for
21: > ACT stage
22: for each action act in actList do
23: EXECUTE(act)

24: end for
25: end while

!Event loops are widely recognized to be part of the actor model by re-
search community working on actors but Carl Hewitt: “[...] In any case,
‘event loop’ is confusing terminology because there can be “holes in the
cheese.” [Hewitt and Atkinson 1979, ActorScript], which means code is just
nested expressions (i.e. no loop)...” http://lambda-the-ultimate.
org/node/4453

2012/10/8



In the sense stage, the state of the agent is updated with
what perceived from the outside, fetching one event — if
available — from the external event queue. Such a state in-
cludes agent beliefs — i.e., the informational part of the state,
composed by private state variables, possibly keeping track
of the observable state of the artifacts the agent is using/ob-
serving — ongoing tasks and tasks to do. The event can con-
cern either some change in the observable state of artifacts,
or a new message sent by another agent, or the notification of
the completion with success or failure of an action executed
by the agent on the environment.

In the plan stage, first, if there are new tasks to do, then
for each one a plan is selected from the agent plan library
to handle the task and a new intention is instantiated—i.e., a
new activity committed to the fulfillment of the task, keep-
ing track of the plan in execution. Plans as programming ab-
straction will be described in next section: they are module
of procedural knowledge [29], composed by a set of action
rules that specify what to do and when to do it. For each on-
going intention, all the actions which can be executed — ac-
cording to the plans and the current beliefs of the agent — are
collected. Intentions that achieved their goal are dropped. Fi-
nally, in the act stage, all the collected actions are executed.
Internal actions —i.e., actions accessing/modifying the inter-
nal state of the agent — are executed atomically in this stage,
in one cycle. External actions instead — i.e., actions that cor-
respond to the execution of an operation provided by some
artifact of the environment — are just started. The completion
of such events may be perceived asynchronously in the sense
stage in future cycles.

Two main differences compared to the actor event loop
are important here. First, an agent can execute a cycle even
if there are no external events to process. This happens when
the agent has one or more intentions about tasks to be exe-
cuted — that have been previously assigned — and following
the related plans some actions must be selected pro-actively.
For instance: a plan stating that some action a must be con-
tinuously selected and executed, like a simple non terminat-
ing process. This is consistent with the idea that an agent
follows the pro-activity principle. So, conceptually, an agent
doing some task(s) is never blocked—always cycling until
the task(s) have been achieved or failed. At the same time,
an agent is reactive and event-driven: an event perceived in
the sense stage can result in updating some agent beliefs and
this could trigger the selection of some actions in the plan
stage.

Second, intentions — i.e., plans in execution — are not
meant to be fully executed and completed in one cycle: typ-
ically their execution requires multiple cycles, each one se-
lecting zero or one or multiple actions to be executed (de-
pending on the plan). By doing an analogy between methods
in the actor case and plans, this means that in the agent case
the macro-step semantics is relaxed, or it has finer granular-
ity, which is at the level of the actions composing a plan.

roledef = "role" id "{" { beliefdef } { taskdef } "}" ;

beliefdef = id ":" type ;

taskdef = "task" id "{" [ inputparam ] [ outputparam ]
[ understands ] [ talksabout ] "}" ;

inputparam = "input-params" "{" { id ":" type } "}" ;
outputparam = "output-params" "{" { id ":" type } "}" ;
understands = "understands" "{" { id ":" type } "}" ;
talksabout = "talks-about" "{" { id ":" type } "}" ;

Figure 4. Syntax of role and task definition.

I role RoleR {

2 task Booting { }

3 task TaskT {

4 understands {

5 react: boolean;
6

33}

Figure 5. The definition of the role RoleR used in the ex-
ample.

These features together allow to tackle the integration of
the autonomous and reactive behavior directly at the foun-
dation level—raising performance issues, that will be dis-
cussed in Section 7. Now the point is: how to program the
plans. We need to introduce a proper model which would be
effective at the programming level in specifying such pro-
cedural knowledge, eventually integrating an imperative and
declarative style in describing when to do what.

3.3 Tasks and Plans in simpAL Programming

In simpAL tasks and plans are the main first-class constructs
to specify and organize agent behavior. The notion of task is
used to define declaratively a job that has to be done, while
the notion of plan is used to define the recipes to accomplish
some task, in some condition. So tasks represents what to
do, plans how to do it.

Tasks are typed data abstraction and the definition of a
task type can be done in the context of roles. Roles are used
to define the notion of type for agents, grouping together
the definition of set of task types. So an agent of type R —
i.e., which is declared to play a role R — at runtime can be
dynamically assigned by other agents of any instance of task
T whose type is declared in the role R.

Figure 4 sketches the EBNF syntax of role/task definition
in simpAL. A task is described in terms of: input parame-
ters — information that must be specified when the task is
assigned to some assignee agent; output parameters — infor-
mation that must be specified when the task has been com-
pleted by the assignee agent; messages that can be under-
stood by the task assignee (understands block); messages
that can be sent by the task assignee (talks-about block).
The complete and detailed description of the task model,
along with all the other aspects of simpAL, is outside the
scope of this paper: the interested reader can find these in-
formation elsewhere [30]. Here we focus only on those as-
pects that are relevant for the integration of autonomous and
reactive behavior. Figure 5 shows the definition of the role
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agent-script TestScript implements RoleR {
c: int = 0;

1
2
3
4 plan-for TaskT {

5 do-task new-task Ta();
6 do-task new-task Tb();
7 do-task new-task Tc()
8

}

9

10 plan-for Ta { ¢ = ¢c + 1
}

1 plan-for Tb { ¢ = ¢ + 1
}

12 plan-for Tc { ¢ = ¢c + 1
}

13

14 task Ta {}

15 task Tb {}

16 task Tc {}

17}

Figure 6. A simple simpAL script.

agent-script TestScript implements RoleR {
c: int = 0;

1

2

3

4 plan-for TaskT completed-when: is-done tc {
5 do-task new-task Ta();

6 do-task new-task Tb();

7 do-task new-task Tc() #tc

8
9

when told this-task.react => using: console@main {

10 println(msg: "react! "+c)

1 T}

Figure 7. A simple simpAL script with a plan integrating
both autonomous and reactive behavior.

RoleR, including the task type TaskT mentioned in the pre-
vious section. An agent who is playing a role RoleR can
be dynamically requested by other agents to do instances of
TaskT tasks; in doing a TaskT task, the agent can receive
messages telling him to react?.

Plans — which specify how to concretely fulfill tasks —
are defined in scripts, which represent modules of agent
behavior collecting sets of plans useful to play some role R.
A script contains both the definition of a set of plans useful to
accomplish the tasks of the role declared to be implemented
by the script, and a set of beliefs that can be accessed by all
the plans declared into that script. By loading a script, an
agent adds to its belief-base the beliefs declared in the script
and the plans of the script to its plan library?.

The plan model adopted for plan definition is a key aspect
for this paper, discussed in next section.

2ie., telling him that the value of the react information, that in this case

can be true or false.
3 The description of the management of the conflicts that can arise is outside
the scope of this paper.

4. Integrating Autonomous and Reactive
Behavior in Plans

A plan in simpAL can describe any arbitrary combination of
sequences of actions with reactions, i.e. actions that must be
taken if/when/every time some condition holds.

4.1 Sequential Behaviors and Reactions

Sequential behaviors can be expressed by sequences of ac-
tions separated by a ;. Figure 6 shows the simpAL version
of the first example, purely autonomous, without reactivity.
The definition of a plan includes the specification of the type
of task for which the plan can be used (TaskT), a context
condition specifying when the plan can be used (not used in
the example) and a plan body, which defines the plan behav-
ior. In the example, the plan for fulling the task TaskT breaks
the task in three private sub-tasks Ta, Tb, Tc, to be fulfilled
in sequence. The body of the plan is a simple sequence of
do-task actions, which is one of the available actions in
simpAL to manage tasks. do—task action in particular self-
assigns a task and completes when the task has been com-
pleted. The parameter of the do-task is an instance of a
type of task (Ta, Tb, Tc), defined in this case the in the script
being them private. The script includes also the simple plans
to manage them, where a global belief c is incremented.

Then, reactivity can be added by including action rules
that specify reactions to some specific event/condition—
called when part. The syntax of action rule in EBNF with
the when part specified is:

("when" | "every-time") [Ev] [":"Cond]"=>" Act [#1bl] |
"always" "=>" Act [#1bl]

Ev is an event template, specifying what kinds of event can
trigger the rule; Cond is a boolean expression, specifying the
condition over the belief base that must hold for a triggered
rule to be applicable; finally Act is the action to be executed
if the rule is triggered and is applicable, and 1bl is a label
to identify the invoked action. So informally, an action rule
states that when the general condition expressed by the event
and the condition holds given the current state of the agent,
then the specified action can be chosen to be executed. The
keyword when can be used to specify that the rule can be
selected and triggered only once; every-time otherwise, to
mean the general case that the rule can be triggered every
time that the specified event/condition holds. The action to
be executed can be an internal action {...} instantiating
a new action rule block. The keyword always is syntactic
sugar for everytime true, i.e. the action can selected at
each cycle.

A first example is given in Figure 7, which extends the
previous example adding a first level of reactivity. The rule
in lines 9-11 says that when the agent receives a message
about reacting (told this-task.react is the event), it
eventually interrupts the sequential course of action of the
current intention and executes a new action rule block. Each
intention has a stack of action blocks, which is initialized
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agent-script MyClient implements Client {
inputGUI: UserView

plan-for UseServices wusing: inputGUI
completed-when: stopped {
always =>

© N U R W —

completed-when:is-done reqC || stopped
using:serviceA,serviceB {
9 doReqA () #reqA
10 doReqB () #reqB
11 when is-done reqA && is-done reqgB
12 => using:serviceC {
13 doReqC () #reqC

14 }}}}

Figure 8. Another example of plan behavior with actions
and reactions.

with the plan body when the intention is created: each time
a new action block is instantiated, it is pushed on top of the
stack. In the reaction block the agent prints the react mes-
sage on standard output using a console artifact available in
the main workspace. The attribute using: specifies which
artifacts will be used (and observed) inside an action rule
block. At runtime, when entering a block where an artifact is
used, automatically the observable properties of the artifact
are continuously perceived and their value is stored in cor-
responding beliefs in the belief base—updated in the sense
stage of the agent execution cycle. The block is completed
after the agent perceives the completion of this action and
then popped from the stack of the intention. The plan is com-
pleted when the last action labeled with tc completes. The
attribute completed-when: is used to declaratively specify
when an action rule block can be considered completed.

In this example, the action rule block is given by a sim-
ple sequence of actions and a reaction. Actually, also the se-
quence of actions is — under the hood — realized by a set
of action rules, in which the when part is set up in order to
obtain such a specific control flow. So an action rule block
is always uniformly represented by a set of action rules, ex-
pressing patterns of behavior possibly mixing sequences and
reactions. Then, some syntactic sugar is provided to specify
sequences (as rules represented only by actions, separated
by a ;), to specify rules that should be triggered only once
(when keyword), and other frequent patterns. As a further
simple example, Figure 8 shows a plan in which the agent
repeatedly does concurrently (in the same cycle) two re-
quests on two services (modeled as two artifacts: serviceA,
serviceB) and then does a further request on a third service
as soon as the two previous requests have been completed.
This is repeated until a button stop has been pressed on a
GUI (modeled by the artifact inputGUI).

It is worth clarifying how such a plan model works con-
sidering the agent control cycle. In the plan stage, when an
agent perceives that a new task has to be done, it selects from
its plan library an applicable plan given the type of the task
and the context condition, and then it instantiates a new in-
tention, representing the plan in execution. The intention is
kept until the task is accomplished or failed. Each intention

has a stack of action rule blocks, which drives the selection
of actions cycle by cycle. At the beginning, the stack con-
tains only the body of the plan. Action selection consists in
collecting all the rules of the block on the top of the stack
that are triggered in that cycle — i.e., with the when part sat-
isfied. For each action rule in the block, an action rule is se-
lected if (i) the event template specified in the rule matches
the event (if any) at the head of the internal event queue, and
(ii) the boolean expression defined in the condition part —
which may predicate about the current value of any beliefs
of the belief base — is true. At each cycle, only one event (if
available) from the internal event queue is fetched. Actions
selected in the plan stage are executed in the act stage.

4.2 Managing Tasks as First-class Entities

The capability of managing tasks in execution is an impor-
tant feature for programming more structured and complex
behaviors, in particular for those cases in which the reactive
part has to influence the execution of the autonomous one—
as mentioned in Section 2. In the following we consider two
examples, of increasing complexity.

First, we consider an extension of the previous example
with the further requirement that, as soon as the agent re-
ceives the react message, besides printing a message on
the console, it has also to stop what is currently doing and
has to complete its job by executing a further Td task. A so-
lution in simpAL is shown in Figure 9. The reaction in this
case drops the sub-task (if any) in execution and the ongoing
interrupted plan, and then does a new sub-task Td to com-
plete the job. drop-all-tasks and forget-old-plans
are an example of the repertoire of internal actions available
in the language to manage tasks in execution and intentions.
In particular, the drop-all-tasks action drops all the on-
going tasks (and related intentions) but the current one, and
forget-old-plans acts on the intention rule stack of the
current intention, by removing all the action rule blocks but
the one at top level.

Generalizing the example, an agent in simpAL can carry
on concurrently multiple tasks — which may be sub-tasks
instantiated by the agent itself in a plan of a parent task.
So multiple intentions can be in execution at a certain time;
at each execution cycle, action selection concerns all the
ongoing intentions—so it is like to say that the agent carry on
all its ongoing tasks in parallel. A family of internal built-in
actions and predicates are provided to respectively control
and inspect tasks in execution — for instance: to drop or
suspend tasks, to check if a specific task has been completed
or has failed. This support allows for keeping a certain level
of abstraction and modularity in writing plans.

In the second example we consider the case in which
the reaction is meant to produce a different future behavior
depending on what the agent was doing. In particular: if the
react message is received when doing the Ta sub-task, then
the sub-task has to be interrupted and a task Td must be
executed to complete TaskT. Instead, if the react message
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agent-script TestScript implements RoleR {
c: int = 0;

1

2

3

4 plan-for TaskT completed-when: is-done tc {
5 do-task new-task Ta();

6 do-task new-task Tb();

7 do-task new-task Tc() #tc

8

9 when told this-task.react => using:console@main {
10 drop-all-tasks ;

11 forget-old-plans ;

12 println(msg: "react! "+c) ;
13 do-task new-task Td()

14 }

15 ¥

16

17 plan-for Td using: console@main {
18 c =c¢c *x 10 ;

19 println(msg: "done td: "+c)

20 ¥

21

2 task Td{}

23 .

24}

Figure 9. An example of reaction affecting the autonomous
behavior of the agent.

agent-script TestScript implements RoleR {
c: int = 0;

1
2
3
4 plan-for TaskT completed-when: is-done tc {
5 ta: Ta = new-task Ta();

6 do-task ta;

7 tb: Tb = new-task Tb();

8 do-task tb;

9 tc: Tc = new-task Tc();

10 do-task tc

11

12 when told this-task.react

13 is-ongoing ta || is-ongoing tb =>
14 using: console@main

15 completed-when: is-done te || is-done newTc {
16 te: Te; newTc: Tc;

17 forget-old-plans ;

18 atomically: {

19 println(msg: "react! "+c) ;

20 if (is-ongoing ta) {

21 drop-task ta ;

22 newTc = new-task Tc() ;

23 assign-task newTc ;

2% } else-if (is-ongoing tb) {

25 te = new-task Te( prev: tb) ;
26 assign-task te

27 333}

28

29 plan-for Te {

30 taskToWait: Tb = this-task.prev;

31 completed-when: is-done te {

32 when is-done taskToWait => using: console@main {
33 c = c¢c x 100 ;

34 println(msg: "done te: "+c)

35 } #te

36 }

37 }

38

39 task Te {

40 input -params {

41 prev: Tb;

) 3

43 R

4}

Figure 10. A more complex example of reactive behavior,
that inspects ongoing tasks.

is received when doing Tb sub-task, then the sub-task must
be carried on until the end and after that, instead of doing a
Tc task, a new task Te must be executed. All the other cases
are not relevant for the agent.

The solution in simpAL is shown in Figure 10 and it is
a good example of what kind of flexibility is possible by
having tasks as first-class abstractions. Differently from pre-
vious cases, beliefs are used (ta, tb, tc) to keep track of
the tasks as soon as they are instantiated and assigned. Built-
in predicates are available to check the state of tasks — in the
example, is-ongoing returns true if the specified task is de-
fined and it has been assigned but it is not completed, while
is-done is true if the specified task has been completed. So
the rule reacting to the event (lines 12-27) is triggered only
if either the task ta or tb are ongoing. Then, by inspect-
ing the state of the tasks, the future course of action for the
plan is decided. In particular, if the task ta is ongoing (line
20-23), then it is immediately dropped and a new task tc is
assigned*; otherwise, if the task tb is ongoing (line 24-26),
a new sub-task Te is instantiated, without dropping tb that
can proceed until completion. The plan handling Te waits
for the completion of the ongoing task Tb — which has been
passed as input parameter of the sub-task — before proceed-
ing and doing its job, which accounts to update c and print a
message on the console.

When dealing with agents that need to carry on concur-
rently multiple related tasks (that are e.g. sub-tasks of a
main tasks), an important feature is the possibility to spec-
ify that, when doing some specific critical part of a plan,
the agent should keep the focus on that, without interleaving
with other plans in execution (that may interfere). This can
be specified at the action rule block level, by means of the
atomically: attribute. In the example, the attribute is used
in (lines 18-27), when reacting and deciding what to do, de-
pending on the state of the specific sub-task in execution.

4.3 Event Programming Without Inversion of Control

A well-known problem in literature which is strongly related
to the one discussed in the paper is the capability of doing
event-driven programming without the problems that typi-
cally are found when using call-backs and inversion of con-
trol [18, 26]. In simpAL there is no inversion of control, since
events are managed by the agent control loop.

As an example, Figure 11 shows a possible implemen-
tation in simpAL of the observer pattern [15]. simpAL na-
tively provides a support for publish/subscribe and event-
based kind of interactions. Observed objects can be directly
modeled as artifacts with some specific observable proper-
ties. Observers can be modeled as agents, simply declaring
to use those artifacts. The example shows the script of an
agent observing a counter, reacting each time the observable
property count changes, because of the execution of the inc

4differently from do-task, assign-task succeeds when the task is as-
signed, not necessarily accomplished.
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role Observer {

task Observing {

input -params {
sharedCounter: CounterUI;

agent-script ObserverScript implements Observer {

1

2

3

4

5 1}
6

7

8 plan-for Observing using: console@main {

9 println(msg: "start observing...");

10 using: this-task.sharedCounter {

1 every-time changed count => {

12 println(msg: "new count perceived! ")
13 }}}}

usage-interface CounterUI {

1

2 obs-prop count: int;

3

4 operation inc();

s}

6

7

8 artifact Counter implements CounterUI {
9

10 init () { count = 0; }

11

12 operation inc () { count = count + 1; }
13}

Figure 11. (Left) Role and script for observer agents (on the left) and usage interface and implementation of an observed

counter artifact.

operation by some (other) user agents, and the source code
of the artifact implementing such CounterUI usage inter-
face. Since this kind of interaction is part of the simpAL pro-
gramming model, no specific code for managing observer
registration / notification is necessary.

Every time the agent perceives a change of the observ-
able property count, it prints a message on the console.
The control flow executing this action is (conceptually) the
agent control loop one. No race conditions and concurrency
problems can occur even with multiple observers and users,
thanks to the computation model of artifacts (in which the
execution of operations is mutually exclusive) and of agents.

5. A Real-World Example: a Reactive File
Searcher

In this section we consider a real-world programming ex-
ample to show the effectiveness of our approach besides toy
models. The example concerns the realization of a software
component to search and then print in standard output the
list of all the files of a certain directory whose size is greater
than a threshold provided in input. As a further requirement,
the file size threshold can be changed dynamically during
the search process’.

The analysis of the problem leads quite naturally to
identify two macro-behaviors: one autonomous/pro-active —
searching and then printing the list of files that meet the
desired size — and one reactive — managing threshold up-
dates. The integration of these behaviors must be properly
designed in order to take into the account the effects that a
dynamic update of the threshold must have on an ongoing
search process—e.g., files that have been discarded can be-
come relevant and vice versa.

A solution that naturally follows from this analysis is
given by the following simple abstract algorithm: recur-
sively, starting from the directory provided in input and for
each sub-directory found, check each file and keep track of
all those that have a size which is greater than the reference

5 For sake of simplicity threshold changes that can occur when printing in
standard output the results, so when the search process is already finished,
are discarded—i.e., we consider the threshold updates arrived too late.

agent-script Searcher implements ReactiveSearcher {
foundFiles: java.util.List
currThr: int

1
2
3
4
5 plan-for SearchFiles completed-when: done printRes{
6 currThr = this-task.thr;

7 searchTask = new-task

8 SearchFilesInDir(dir: this-task.dir);

9 assign-task searchTask;

11 when done searchTask => {

12 /% print results */

13 }tprintRes

14

15 every-time told this-task.newThr

16 : !(is-ongoing printRes) => atomically: {
17 if (this-task.newThr > currThr){

18 currThr = this-task.newThr;

19 foundFiles = filter (foundFiles, currThr)
20 } else if (this-task.newThr < currThr) {
21 currThr = this-task.newThr;

22 drop-task searchTask;

23 foundFiles.clear ();

24 searchTask <- new-task

25 SearchFilesInDir (dir: this-task.dir);
26 assign-task searchTask

27 3}

28

29 plan-for SearchFilesInDir{

30 for-each elem in this-task.dir {

31 if (isDir(elem)) {

32 do-task new-task SearchFilesInDir (dir: elem)
33 } else-if (size(elem)>currentThr) atomically:{
34 foundFiles.add (foundFiles)

35 ¥

36 1)}

Figure 12. Implementation of the reactive file searcher in
simpAL.

threshold. If a new threshold is communicated while search-
ing and it is greater than the previous one, then suspend the
search process, update the threshold with the new one, fil-
ter the current list of found files — i.e. keep only the files
that are greater than the new threshold — and finally resume
the search in the file system. Otherwise, if the new threshold
is lower than the previous one, end the current search pro-
cess and restart from scratch. Files that have been discarded
because too small can now become relevant since the thresh-
old has been lowered. When the search process is completed,
print in standard output the result—i.e., the list of found files.
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The implementation of this strategy in simpAL is quite
straightforward (Figure 12), and the source code preserves
the organization and structure defined at the design level. For
sake of space, the implementation reported here abstracts
from technical details that are not important for the scope
of this paper—interested readers can find the full sources in
the example folder of the standard simpAL distribution.

There is a main task SearchFile, with dir and
threshold input parameters and newThr representing the
message(s) that can be told to notify new thresholds.
The plan for the task (lines 5-27) has an autonomous
part and a reactive one. The autonomous behavior ac-
counts for instantiating the sub-task searchTask of type
SearchFilesInDir (line 7-9) first, providing as input pa-
rameter the starting directory which corresponds to the dir
parameter of the SearchFiles task, and then printing the
results when the search sub-task is completed. The plan for
handling the SearchFilesInDir sub-task (line 29-36) col-
lects recursively, instantiating a new SearchFilesInDir
sub-task for each sub-directory found (lines 31-32), the set
of files that meet the desired size.

The reactive behavior is given by an action rule (lines 15-
27) which handles the updates of the threshold on the basis
of the strategy described above. The threshold value can be
updated by the agent that has assigned the SearchFiles
task to the ReactiveSearcher by sending to it a newThr
message. In the case of a threshold increase (line 17-19)
the action rule simply filters the list of files found so far.
In the case of a threshold decrease instead (line 20-27),
the task searchTask is first dropped (line 22) and then
re-instantiated (lines 24-26) in order to restart the search
from scratch since there is no guarantee that we have not
already discarded files that have become relevant given the
new threshold. The action rule block is executed atomically
so that all the SearchFiles sub-tasks and related intentions
are suspended until the action rule is executed up to com-
pletion, giving hence the opportunity to realize the required
integration between autonomous and reactive behaviors.

6. Related Work

This paper is strongly related to existing research work
in literature discussing the problem of integrating threads
with event-driven programming, in particular in the context
of object-oriented concurrent programming [3, 13] and ac-
tors [2].

In [18] authors describe the approach used to implement
the Scala Actors library unifying thread-based and event-
based actors. An actor can suspend with a full stack frame
(using the receive primitive) or it can suspend with just a
continuation closure (using the react one). The first form
of suspension corresponds to thread-based programming,
the second form to event-based programming. In simpAL
the agent programmer never suspends or acts upon threads
directly: concurrency at the agent level is totally logical,

threads are managed by the simpAL runtime at a lower
level, applying a classic pool-based strategy to maximize
parallelism. Unification in our approach occurs at another
level of abstraction, in terms of integration of autonomous
and reactive behavior.

Kilim [33] is one of the first actor frameworks for Java
using a Continuation Passing Style (CPS) technique to in-
tegrate ultra-lightweight threads and events; in particular,
a weaver transforms methods identied by an @pausable
annotation into CPS to provide cooperatively-scheduled
lightweight threads with automatic stack management [1]
and trampolined call stack [16].

Besides the actor context, the dualism between multi-
threaded and event-driven models is a well-known topic dis-
cussed in literature in particular in the context of Operat-
ing Systems [24, 27, 35], as well as asynchronous I/O man-
agement. This paper is related in particular to those works
that aim at integrating the models, so as to finally simplify
programming and improve modularity, avoiding problems
such as stack-ripping [1], in which the logical control flow
between operations is broken across a series of callbacks.
Recent approaches include: AC [20], extending native lan-
guages such as C/C++ with constructs for asynchronous
I/O; the asynchronous programming model of F# [34]; GHC
Haskell, combining call-back based and thread-based com-
munication abstractions [25]; TaskJava [14], proposing tasks
as a new programming model for organizing event-driven
programs in Java.

The paper is strongly related also to research works that
in general propose new abstraction levels to ease the devel-
opment of reactive systems and programs that integrate a
concurrent and reactive behavior. A recent one is Behavioral
Programming (BP) [19]. BP is based on languages for cap-
turing formal requirements of reactive systems (i.e., systems
that constantly interact with their environment) in a way that
allows their execution. In particular, system behaviors iden-
tified in the requirement analysis stage can be coded in ex-
ecutable software modules using behavioral programming
idioms and infrastructure—choosing different kinds of lan-
guages (Erlang and Java are two examples).

Finally, the design of simpAL has been strongly influ-
enced by existing Agent Programming theory and languages
in the context of Multi-Agent Systems [11]. The control
cycle adopted in simpAL derives from the BDI agent rea-
soning cycle [12]. Besides, some main concepts and fea-
tures of the language have been inspired by BDI agent lan-
guages, in particular AgentSpeak(L) [28] and its extension
Jason [10], and from our previous works about JaCa [31]
and JaCaMo frameworks [9]. Generally speaking, these lan-
guages and frameworks have been conceived specifically to
tackle Distributed Al problems—so developing in particular
those features that are important for that purpose—for in-
stance, first-order logic for knowledge representation; sim-
pAL instead has been design with a different objective, i.e.

2012/10/8



Number of lterations Erlang | ActorFoundry | Jason | simpAL
10000 Iterations 1.52s 8,92 12,56 s 1,58 s
10000 lterations (no print) | 0.04 s 0.06 s 6,30's 0.89s
25000 lterations 8.82s 56,94 s 69.57 s 4,52s
25000 lterations (no print) | 0.06s 0.14s 50.69 s 229
50000 lterations 35,34 s 218,64 s 281,168 9,15s
50000 lIterations (no print) | 0.11s 0.31s 25295 s 455 s

Table 1. Execution time in seconds of the test program in Erlan, ActorFoundry, Jason and simpAL. The time reported in each

cell refers to the average of twenty different runs.

to explore agent-oriented programming as a mainstream pro-
gramming paradigm, devising agent-oriented abstractions,
concepts and mechanisms with the purpose of improving
programming and software development.

7. Concluding Remarks

The importance of abstraction in programming is well-
known and in this paper we discussed the application of
agent-oriented programming abstractions for tackling the
problem of integrating autonomous and reactive behavior in
concurrent and reactive programming.

Often abstraction comes with a price in terms of perfor-
mance, which could be either acceptable or not depending
on the application domain considered. In this perspective,
in the abstraction layer introduced by simpAL there are two
critical points related to agent execution. The first is the un-
coupling between physical concurrency and logical concur-
rency, so that there is not one raw OS thread for each agent,
but all the agents (and artifacts) on a node® are executed by a
pool of threads—whose size depends on the number of pro-
cessors available on that node. The second one is related to
the agent control architecture and the plan model adopted to
drive the selection of actions at each agent cycle. Conceptu-
ally, the sense-plan-act cycle is executed continuously, even
in the case of, e.g., a simple sequence of actions that must
be executed without reacting to any external events. This
brings a severe penalty on performances when considering
— in particular — the execution of pure computational blocks
compared to e.g. actor technologies implementing a macro-
step semantics. When we consider — instead — behaviors that
mix computations and reactions/interactions, then the agent
control architecture could bring some benefits even from the
point of view of the performances.

To start investigating the performance issue, we made
some tests comparing the performance of simpAL with:
(i) Erlang and ActorFoundry as reference actor-based lan-
guages/frameworks; and (ii) Jason as one of the main agent-
programming languages in the state-of-the-art. The test pro-
gram we used is a slightly extended version of the first exam-
ple described in Section 2 where the execution of the task T
and the sending of the react message have been repeated for

6 simpAL programs can be distributed.

10K, 25K and 50K times respectively. Actually, two slightly
different test programs are considered: the first one in which
the test agent reacts to the message by incrementing a reac-
tion count and printing a message on the console — so in-
volving some I/O — and the second one without printing, so
a purely computational reaction. Each program has been ex-
ecuted for twenty times. The test has been executed with Er-
lang version 5.8.3, ActorFoundry 1.0, Jason 3.7 and simpAL
version 0.7, on a PC with a Intel Core 2 Duo P8400 2.26GHZ
(dual core) and 3GiB RAM’. The average of the execution
time experienced in the tests is reported in Table 1.

The results are quite promising, in particular by consid-
ering that simpAL technology (which is Java based) is still
in its infancy and no specific optimizations have been de-
vised yet. simpAL performs better than Jason of about an
order of magnitude — this result was quite expected, since
Jason (whose runtime is based on Java too) has been de-
signed for the (D)AI context and it strongly relies on logic
programming. Compared to Erlang and ActorFoundry, quite
surprisingly performances are comparable or even in favor of
simpAL when considering reactions with I/O; instead, both
largely outperform simpAL in tests with a pure CPU-bound
reaction, as expected.

Optimizations — that will be part of out future work — will
be explored in two main directions. The first one is about
optimizing the sense-plan-act cycle and in particular action
selection, avoiding as much as possible to do unnecessary
cycles and minimize the time to select actions in specific
cases, e.g. when blocks are composed by simple sequences
of actions — with no reactions. The second one is about the
management of beliefs; currently all the beliefs (that are
like variables or fields in other programming languages) are
managed through maps, accessed by a string-based key; this
naive strategy results in a severe overhead indeed, compared
to e.g. classic techniques used in compiled languages where
access to variables is index-based.

Finally, two relevant issues related to asynchronous
events have not been discussed: the management of (asyn-
chronous) errors — e.g., the failure of an action requested in
a plan, of task, of internal actions such as exceptions gener-

7The source code of the test programs is included in the appendix, Sec-
tion A
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ated by the execution of a method on a inner object — and
the management of events related to time (e.g., timeouts or
periodic temporal behaviors). In simpAL these aspects are
modeled uniformly as external events fetched in the sense
stage, so that it is possible to write action rules reacting to
them. Current support however is quite naive and we plan to
provide a more extensive treatment in future work.
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A. Sources of the Test Programs

test_actor (N) ->
statistics(wall_clock),
self () ! doTaskT,
loop(N,0,0).

loop(0,C,R) ->
trigger ! testDone;

loop(N,C,R) ->
receive
doTaskT ->
c1 = ta(C),
self () ! doingTb,
loop(N,C1,R);
doingTb ->
C1 = tb(C),
self () ! doingTc,
loop(N,C1,R);
doingTc ->
C1 = tc(C),
self () ! doTaskT,
loop(N-1,C1,R);
react ->
io:format ("react! “w"n",
loop(N,C,R+1)
end.

[R]),

-> C+1.
-> C+1.
-> C+1.

ta(C)
tb (C)
tc(C)

trigger (Who,0) ->
receive
testDone ->
{_, Time} = statistics(wall_clock),
io:format ("Time elapsed “p ms~n",[Time])
end;

trigger (Who ,N) ->
Who ! react,
trigger (Who ,N-1).

start () ->
PID = spawn(test2loop, test_actor,
register (trigger, spawn(test2loop,
trigger , [PID, 500001)).

[50000]) ,

Figure 13. Implementation of the test program in Erlang.
The test_actor function has been used to implement the actor
that has in charge the execution of the task T, while the
trigger function has been used to implement the actor that
sends the react messages.

public class TestActor extends Actor {
private int c = 0;
private int nTimes = 0;
private long startTime;
private int maxTimes;
private int nReactions=0;
private ActorName triggerActor;

@message
public void start(ActorName triggerActor,
Integer maxTimes) throws RemoteCodeException {
startTime = System.currentTimeMillis ();
this.triggerActor = triggerActor;
this.maxTimes = maxTimes;
send(self (), "doTaskT");
}
Gmessage
public void doTaskT() throws RemoteCodeException
send (self (), "doingTa");
}
@message
public void doingTa() throws RemoteCodeException
send (self (), "doingTb");
ta();
}
@message
public void doingTb() throws RemoteCodeException
send (self (), "doingTc");
tb ()
}
@message
public void doingTc() throws RemoteCodeException
tc();
nTimes++;
if (nTimes < maxTimes){
send (self (), "doingTa");
} else {
send (triggerActor,

}

"testDone", startTime);

}

Gmessage

public void react() throws RemoteCodeException {
nReactions = nReactions + 1;
call(stdout, "println","react! "+nReactions);

}

private void ta(){c

private void tb(){c

private void tc(){c

1
+ + +
o e
e

(]
oo o

public class TriggerActor extends Actor {

@message
public void start(ActorName testActor,
Integer maxTimes) throws RemoteCodeException {
for (int i=0; i < maxTimes; i++){
send (testActor,"react");
}
¥

@message
public void testDone(Long tO0)
throws RemoteCodeException {
call(stdout, "println","Time elapsed " +
(System.currentTimeMillis () - t0) + " ms");

Figure 14. Implementation of the test in ActorFoundry.
(Top) Implementation of the testActor that has in charge the
execution of the task T. (Bottom) Implementation of the trig-
gerActor that has in charge the sending of react messages to
the testActor.
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role RoleRLoop {

1
2 task TaskT {
3 input-params{
4 maxTimes: int;
1 c(0). 5 }
2 reactions (0). 6 understands {
3 7 react: boolean;
4 !start(50000). s }}}
5
6 +!start(N)
7 <- StartTime = system.time; I agent-script TestAgentScriptLoop
8 +startTime (StartTime); 2 implements RoleRLoop {
9 !loop(N). 3
10 4 c: int = 0
11 +!'loop(0) : startTime(StartTime) 5
12 <- .send(trigger, tell, done(StartTime)). 6 plan-for TaskT
13 7 completed-when: is-done tRep
14 +!loop(N) 8 using: console@main{
15 <- 1tA; 9 nReactions: int = 0
16 1tB; 10
17 1£C; 11 tRep: Trep =
18 'loop(N-1). 12 new-task Trep(maxTimes:this-task.maxTimes);
19 13 assign-task tRep
20 +!'tA:c(Val)<--+c(Val+1). 14
21 +!'tB:c(Val)<--+c(Val+1). 15 every-time told this-task.react =>
2 +1tC:c(Val)<--+c(Val+1). 16 atomically: {
23 17 nReactions = nReactions + 1;
24 +react(N):reactions (Val) 18 println(msg: "react! " + nReactions)
25 <- -+reactions(Val+1); 19 }
26 .println("react"). 20 }
21
22 plan-for Trep {
1 !loop(0). 23 nTimes: int = 0
2 24
3 +!1o0p(50000). 25 while (nTimes < this-task.maxTimes) {
4 26 do-task new-task Ta();
5 +!loop(N) 27 do-task new-task Tb();
6 <- .send(test, tell, react(N)); 28 do-task new-task Tc();
7 !loop(N+1). 29 nTimes = nTimes + 1
8 30 }
9 +done(StartTime) 31 }
10 <- CurrTime = system.time; 2
11 .println("Time elapsed ", 33 plan-for Ta {c = ¢ + 1}
12 CurrTime-StartTime, " ms"). " plan-for Tb {c = ¢ + 1}
35 plan-for Tc {c = ¢ + 1}
Figure 15. Implementation of the test in Jason. (Top) The . task Ta {}
test agent that has in charge the execution of the task T. 3 task Tb {}
(Bottom) Implementation of the trigger agent that sends the " E::E iie;}{input—params{maxTimes: int:}}
react messages to the test agent. a3

Figure 16. Implementation of the test in simpAL. Role and
script of the agent in charge the execution of the task T.

14 2012/10/8



29

31

role TriggerAgent {
task SendReact {

}
}

input-params{
maxTimes:int;

}

agent-script TriggerAgentScriptLoop

implements TriggerAgent {

nTimes: int = 0

plan-for SendReact

}

completed-when: is-done printTime
using: clock@main, console@main {

startTime: long
testAgent: RoleRLoop
taskT: RoleRLoop.TaskT

getTimeNow (currentTime: startTime);
taskT = new-task

RoleRLoop.TaskT(maxTimes: this-task.maxTimes);
new-agent TestAgentScriptLoop ()

init-task: taskT ref: testAgent;

while (nTimes < this-task.maxTimes) {

tell taskT.react = true;

nTimes = nTimes + 1

}

when is-done taskT => {
endTime: long
getTimeNow (currentTime: endTime);
println(msg: "Time elapsed " +
(endTime-startTime)+" ms") on console@main
} #printTime

Figure 17. Role and script of the trigger agent that has in
charge the sending of react messages to the agent playing
the role RoleRLoop.
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Abstract

Empirical software engineering is a branch of software engineer-
ing in which empirical methods are used to evaluate and develop
tools, languages and techniques. In this position paper we argue
for the use of empirical methods to advance the area of agent pro-
gramming. Through that we will complement the solid theoretical
foundations of the field with a thorough understanding of how our
languages and platforms are used in practice, what the main prob-
lems and effective solutions are, and how to improve our technol-
ogy based on empirical findings. Ultimately, this will pave the way
for establishing multi-agent systems as a mature and recognized
software engineering paradigm with clearly identified advantages
and application domains.

Categories and Subject Descriptors 1.2.5 [Artificial Intelligence]:
Programming Languages and Software; 1.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—Intelligent agents, lan-
guages and structures; D.2 [Software Engineering]

General Terms Design, Languages

Keywords Agent programming languages, empirical software en-
gineering, software quality, metrics

1. Introduction

Empirical software engineering is a branch of software engineering
in which empirical methods are used to evaluate and develop tools,
languages and techniques. The journal on Empirical Software Engi-
neering (see [1]) started in 1996. As stated in [12]: ‘The acceptance
of empirical studies in software engineering and their contributions
to increasing knowledge is continuously growing. The analytical
research paradigm is not sufficient for investigating complex real
life issues, involving humans and their interactions with technol-
ogy.” That is, empirical research needs to complement theoretical
studies in order to advance understanding with respect to the use of
technologies.

We argue that empirical software engineering is important not
only for mainstream software engineering, but also for agent-
oriented programming [3, 4] and software engineering. Through
empirical methods, different kinds of questions can be answered
than through analytical approaches. In this position paper we pro-
pose several such questions and thereby sketch what such a line of
research might look like. We focus on agent programming rather

[Copyright notice will appear here once ’preprint’ option is removed.]

than agent-oriented software engineering in general. However, sim-
ilar questions and issues as proposed below for agent programming
may also be translated to agent-oriented software engineering. The
term ‘agent programming’ should be understood to refer to pro-
gramming autonomous agents and multi-agent systems.

2. Research Questions

By using empirical methods, data can be gathered for several pur-
poses. For example, to get a better understanding of how software
developers use agent programming technology (problems and pos-
sible solution patterns), to perform a within technology compari-
son, i.e., demonstrating that one variant of (using) agent program-
ming technology is better than another, to improve the technology
based on these findings, and to perform across technology com-
parison, i.e., demonstrating that agent programming technology is
better than some other technology. Corresponding research ques-
tions that may be studied using empirical methods can concern any
of the set of instruments that facilitate the development of high-
quality agent programs, namely programming language, program-
ming guidelines & teaching methods, and development environ-
ment. For example:

e how do programmers use agent-oriented languages?

= which constructs do they use?

what is expressed using which constructs?

what kind of patterns do they use?

which problems do they experience while programming?

which aspects of the languages do they find difficult or easy
to understand?

what kind of processes are used during development, e.g.,
which parts of a program are developed first?

e which ways of using agent-oriented languages improve agent
software quality?

= how should constructs be used?
= which patterns and anti-patterns can be distinguished?

e how does the use of an agent programming language compare
with the use of mainstream, general purpose languages like
Java, and other paradigms for development of decentralized,
concurrent applications?

* do similar programming patterns emerge?
= how does the speed of software development compare?

= how do the resulting programs compare with respect to
software quality measures like efficiency, maintainability
and readability?

e how does the domain for which applications are developed,
influence software development?
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= which domain characteristics call for an agent-oriented ap-
proach to software development?

= which patterns are/can/should be used in which kinds of
domains?

e which features should an Integrated Development Environment
for agent programming have?

* how do programmers use existing IDEs?
= which difficulties do they encounter while programming?

» to what extent do requirements for an IDE for agent-
oriented software development differ from those for main-
stream software development?

= which approaches for debugging are needed in the context
of agent programming?

= to what extent does debugging in agent programming differ
from debugging in mainstream software development?

Of course, several of these questions have already been addressed
to some extent in various papers. For example, in [2] it is shown that
the use of BDI technology incorporated within an enterprise-level
architecture can improve overall developer productivity by an av-
erage 350%. They argue that agent technology is particularly suit-
able for applications that are “hard” to build, in which requirements
change quickly and which are event and exception driven. Testing
multi-agent systems has also been studied in several papers, e.g.,
[10, 11, 15], although only [11] reports some empirical results. In
[6], an empirical study is performed in the area of game develop-
ment, where the POSH reactive planner with a graphical editor is
compared with Java for programming high-level behavior of a vir-
tual agent in the Unreal Tournament 2004 environment. In [8], met-
rics for quantifying coupling and cohesion are proposed that can be
applied to agents as well as object-oriented software. In [17] we
have studied how programmers use the GOAL agent programming
language, making several observations concerning, e.g., the use of
programming constructs and patterns.

3. Software Quality

A recurring theme in the above research questions is software qual-
ity. We aim at developing techniques that facilitate building “bet-
ter” software. The question is then what exactly we mean by better
software, i.e., how do we define software quality? A starting point
for this is the ISO/EIC 9126 standard which provides a software
quality model. It defines several software quality characteristics
and subcharacteristics: functionality (e.g., interoperability, func-
tionality compliance), reliability (e.g., fault tolerance, recoverabil-
ity), usability (e.g., understandability, learnability), efficiency (e.g.,
time behavior), maintainability (e.g., analyzability, testability), and
portability (e.g., adaptability, co-existence).

These characteristics provide an indication of what kind of
characteristics to address when aiming for better software, but they
do not specify how to measure to what extent a certain piece of
software exhibits a characteristic. To address this, the standard
specifies that for each characteristic a set of attributes has to be
defined that can be verified or measured in the software product.
This can be done, for example by defining a set of quality metrics
which evaluate the degree of presence of quality attributes in the
software. These can be internal metrics (static), external metrics
(defined for running software), or ‘quality in use’ metrics (defined
for using the software in real conditions). These attributes and
metrics vary between technologies and software products.

Research will have to identify what software quality means in
the context of programming multi-agent systems (MAS). Questions
that need to be addressed are:

e Which ISO software quality characteristics are suitable for
MAS?

e Which ISO software quality characteristics are particularly im-
portant (problematic or strength) in MAS?

e Which are MAS-specific software quality characteristics?

e Which MAS-specific attributes and metrics can be defined for
measuring the characteristics?

It will be interesting to make precise how to measure quality char-
acteristics in MAS. Given the wide range of languages and plat-
forms for programming MAS, it should be of particular concern
to analyze to what extent language-independent measures can be
defined (as in [8]), or whether certain quality metrics need to be
defined specific to a particular technology. For example, in [13]
several existing software engineering metrics are used to evaluate
a methodology for creating affective applications. In [14] metrics
are used for evaluating the quality of message sequence charts,
in the context of evaluating a methodology for developing cross-
organizational business models. It will have to be investigated how
to compare agent-specific metrics for quantifying a certain qual-
ity characteristic with metrics for that characteristic in mainstream
technologies. Finally, it will be interesting to identify quality char-
acteristics that are specific to MAS. Examples of characteristics
that may be considered are explainability (to what extent is the
intelligent system able to explain its decisions; this can be impor-
tant for acceptance of the technology and for debugging (see, e.g.,
[7, 16])), and believability (to what extent does an intelligent (vir-
tual) character or group of characters display believable behavior;
this can be important for example for creating natural interaction
with a human user of the technology).

4. Methodological Aspects

In this paper we argue for recognition of a line of research on
empirical software engineering for agent programming, and for a
more systematic approach to addressing questions like those posed
above. This also calls for discussion and research concerning ap-
propriate methodologies for conducting empirical research in agent
programming. It needs to be investigated whether methods from
mainstream empirical software engineering can be applied in our
context. For example, [12] proposes guidelines for conducting and
reporting case study research in software engineering. In [17] we
propose an approach for empirically studying how programmers
use an agent programming language, in which we identify several
analysis dimensions, such as a functional analysis which identi-
fies what the available language constructs are used for, and which
general principles are applied when using them; and a structural
analysis which identifies structural code patterns, and which deter-
mines quantitative metrics on the code. Also we propose a step-
wise research approach for conducting case study research in agent
programming, which is based on [5].

We believe that both quantitative as well as qualitative research
should be performed. Quantitative research is used for testing pre-
determined hypotheses and producing generalizable results using
statistics, focusing on answering mechanistic ‘what?’ questions; for
example, what is the effect of using a certain debugging tool on
the number of errors in the resulting software. Qualitative research
is used for illumination and understanding of complex psychoso-
cial issues, and can be used for answering humanistic ‘why?’ and
‘how?’ questions [9]; for example, how do programmers use agent-
oriented programming languages. We believe that in particular in
the earlier stages of studying the use of agent programming lan-
guage empirically, it is very important to also perform qualitative
research. This will provide a better understanding of how they are
used, and through this the techniques can be improved. Once suf-
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ficient improvement has been realized through this process, within
and across technology comparisons can be performed in a quanti-
tative manner.

5. Conclusion

In this position paper we have argued for the use of empirical
methods to advance the area of agent programming. Through this
we will complement the solid theoretical foundations of the field
of agent programming with a thorough understanding of how our
languages and platforms are used practice, what the main problems
and effective solutions are, and how to improve our technology
based on empirical findings. Ultimately, this will pave the way
for establishing multi-agent systems as a mature and recognized
software engineering paradigm with clearly identified advantages
and application domains.
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Abstract

Applications running over decentralized systems, distribute their
computation on nodes/agents, which exchange data and services
through messages. In many cases, the provenance of the data or ser-
vice is not relevant, and applications can be optimized by choosing
the most efficient solution to obtain them. We introduce a frame-
work which allows messages with intensional destination, which
can be seen as restricted mobile agents, specifying the desired ser-
vice but not the exact node that carries it, leaving to the system
the task of evaluating the extensional destination, that is an ex-
plicit address for that service. The intensional destinations are de-
fined using queries that are evaluated by other agents while routing.
We introduce the Questlog language, which allows to reformulate
queries, and express complex strategies to pull distributed data. In
addition, intensional addresses offer persistency to dynamic sys-
tems with nodes/agents leaving the system. We demonstrate the ap-
proach with examples taken from sensor networks, and show some
experimental results on the QuestMonitor platform.

Keywords routing by content, intensional destination, mobile
agents, declarative networking

1. Introduction

Most of the applications of our everyday life (communication,
search, social, etc.), as well as those of our environment (work-
place, domotics, transportation, energy, etc.) rely on complex net-
work infrastructure. They require complex distributed algorithms
that are difficult to program, require skilled programmers, and of-
fer limited warrantee on their behavior. The dynamics of some net-
works, with nodes joining or leaving the networks, not to mention
the various types of failures increases further the complexity and
raises considerable challenges. One of the fundamental barriers to
their development is the lack of programming abstraction [28].

Such applications are decentralized and need to adapt dynami-
cally to their environment in a reactive manner. They necessitate a
high-level programming paradigm that defines a new level of ab-
straction and offers features such as interaction, reactivity, auton-
omy, modularity, and asynchronous communication.

In this paper we propose a framework which allows to pro-
gram distributed applications in a message-oriented manner, allow-
ing messages as a sort of mobile agents with implicit destinations,
that are solved in the network while they are traveling. The des-
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tinations of messages are abstracted and defined by queries. The
main contribution of the paper is (i) the design of a data centric lan-
guage, Questlog, which allows to program agents exchanging mes-
sages which admit a complex semantics associated to the queries
defining their destinations, and (ii) its implementation over a sim-
ulation platform. We thus distinguish between intensional destina-
tions, defined by queries, and extensional destinations, defined by
node addresses.

The idea of programming messages as active agents has been
proposed long ago in [36], where network programs are encap-
sulated in active messages traveling in the network. It provides a
simple way to describe and understand distributed programs. Mo-
bile code such as scripts, applets, and mobile agents is widely used
[13, 20]. Our approach though is more restricted. We propose mes-
sages that have implicit destinations, that will be solved in the con-
tact of other agents while the message is traveling. Only the query
defining the destination is mobile, while the code of the agent that
helps solving it, is static.

Recently, the notion of agent-oriented abstractions is proposed
in [32], where a new programming paradigm providing a set of
abstractions is introduced to simplify the programming of modern
applications. However, the mobility of agents as well as the abstrac-
tion of the destinations of messages are not supported.

Messages with implicit destination facilitate the programming
of a large class of applications. Publish/subscribe systems con-
stitute a good example of such systems, with publishers who do
not have to specify specific receivers, leaving the system matching
them. Publish/subscribe systems constitute an appealing paradigm
for developing pervasive systems which enable the decoupling of
interacting components, separating communication from computa-
tion. However, they generally require the use of mediators to match
interest with published events. Different forms of publish/subscribe
systems have been proposed.

Topic-based systems [16] rely on the notion of topics, a static
scheme with limited expressiveness. Content-based systems [16]
allow filtering on the content of an event, and only those events
that match the filter are delivered to the subscribers. This approach
might result in high numbers of topics and potentially redundant
events that increase the overhead. Type-based systems [16] com-
bine topic-based and content-based system. The idea is to replace
the topic classification form by a scheme that filters events accord-
ing to their type. Location-based systems [17] support location-
aware communication between participants based on positioning
mechanisms, and context-based [19] systems capture event context
in a modular way.

The major difficulty with publish/subscribe systems rely in the
events matching mechanism, the efficient routing of notifications
to subscribers, while avoiding useless transmission of notifications
that result in an extra level of complexity [29]. Different content-
based routing approaches have been proposed to route efficiently
notifications by messages based in their content. In [12], a routing
scheme is proposed based on a combination of a traditional broad-



cast protocol and a content-based routing protocol. However, it suf-
fers from a high communication complexity to build spanning trees
to send notifications. In [27], authors propose a new method to pro-
vide end-to-end reliability based on the publish/subscribe system
but with the cost of increased overhead.

To facilitate programming, we propose to use intensional des-
tinations defined by queries, and let active agents in the network
solve them on the fly. To do so, active agents have at their disposal
programs (local agents) that give a meaning to destinations. More
precisely, a destination is a pair specified extensionally, by the ad-
dress of the node, and intensionally, by a Questlog query.

Declarative query languages have already been used in the con-
text of networks. Several systems for sensor networks, such as
TinyDB [26] or Cougar [14] offer the possibility to write queries in
SQL. These systems provide solutions to perform energy-efficient
data dissemination and query processing. A distributed query exe-
cution plan is computed in a centralized manner with a full knowl-
edge of the network topology and the capacity of the constraint
nodes, which optimizes the placement of subqueries in the network
[33].

Another application of the declarative approach has been pur-
sued at the network layer. The use of recursive query languages has
been initially proposed to express communication network algo-
rithms such as routing protocols [24] and declarative overlays [23].
This approach, known as declarative networking is extremely
promising. It has been further pursued in [25], where execution
techniques for Datalog are proposed. Distributed query languages
thus provide new means to express complex network problems such
as node discovery [4], route finding, path maintenance with quality
of service [9], topology discovery, including physical topology [8],
secure networking [1], or adaptive MANET routing [22].

Declarative networking relies on the rule-based languages [5, 6,
31, 35] developed in the field of databases in the 1980’s. Quest-
log follows the trend opened by declarative networking [23, 25].
Declarative languages allow to specify at a high level “what” to
do, rather than ”how” to do it. They facilitate not only code reuse
among systems, but also the extension, and hybridization. It was
shown that such languages augmented with communication primi-
tives, allow to express distributed applications and communication
protocols with code about two orders of magnitude shorter than im-
perative programs, and with reasonable execution models. They are
more declarative, so facilitate programming, they parallelize well,
so facilitate the execution, they manipulate explicitly data struc-
tures, so facilitate verification of their properties. Simple Netlog
protocols for instance have already been verified [15] using the Coq
proof assistant.

Different languages have been proposed such as Overlog [23],
NDlog [25], Netlog [18], and Webdamlog [2] for high-level pro-
gramming abstraction. To our knowledge, however, they all follow
the forward chaining mechanism. They are very successful in ex-
pressing various applications and protocols in proactive mode, but
less than in reactive mode.

In contrast to Overlog [23], NDlog [25], Netlog [18], and Web-
damlog [2], Questlog has been designed to pull data from a network
by firing a query. The query is associated with a rule program com-
posed of a set of rules in the form head :- body that are evaluated
in parallel. The program is installed on the nodes of a network and
the evaluation of rules combines backward and forward chaining.
When a node receives a query, it identifies the rules whose head
matches the query. If there are such rules, the node applies each of
them, that is it generates their body instantiated with the variable
substitution imposed by the initial query.

The Questlog language includes complex primitives such as ag-
gregation, non deterministic choice, etc., to facilitate the program-
ming of complex application. Questlog programs are compiled into

sets of queries in an SQL dialect, which are loaded on the nodes of
the network.

We have developed a system which runs the Questlog programs,
and extends the Netquest virtual machine, initially proposed in [18]
to evaluate Netlog programs. The new functionalities include (i) a
Questlog Engine to evaluate queries and programs, and (ii) a Router
to evaluate intensional destination query that offers resilience of
the system under node failure or departure. We demonstrate the ap-
proach with examples taken from sensor networks, and show some
experimental results on the QuestMonitor [10] platform that allows
to interact with a network and visualize the behavior of declara-
tive protocols. The system has been tested on simple networking
protocols as well as wireless sensor networks, WSN, applications.

The paper is organized as follows. In the next section, we
present motivating examples to explain the use of intensional des-
tinations, and introduce the rules. Questlog, with the language’s
primitives is presented through examples in Section 3, while its
procedural semantics is defined in Section 4. Section 5 is devoted
to the implementation on top of the Netquest system, while some
experimental results are presented in Section 6.

2. Motivation

We are interested in applications running over networks, with data
fragmented over participating nodes, which in general have no
knowledge on the location of data. They communicate by exchang-
ing messages with a payload, the content of the message, and a des-
tination, the final destination. In classical networking approaches,
the flow of messages from source nodes to destinations is driven
by their addresses (e.g. IP, MAC, etc.) assigned explicitly by the
source nodes. In an increasing number of applications however, it
is desirable if not necessary to be able to delay the evaluation of
the final destination of a message. Examples of such applications
include:

e Distributed hash tables: A hash function is used to map data
items to nodes. Given a value (e.g. Id, address, data, etc.), the
hash function produces a key, in general over the domain of
identifiers of nodes. The destination can then be for instance the
closest node. In Chord [34] or VRR [11] for instance, the nodes
are organized in a ring structure, and messages are routed on
the ring to increasing or decreasing Ids, till the closest node is
reached.

Wireless sensor networks: Such networks consist of large num-
bers of sensor nodes with limited numbers of sinks, which col-
lect information from sensor nodes. For instance, a sink can
collect the positions of nodes which have a temperature greater
than some threshold. The sink can thus send messages to sub-
sets of nodes satisfying some property.

Publish-subscribe systems: Users publish services without
specifying specific destinations to them, while subscribers ex-
press their interest to services, and receive corresponding mes-
sages, without knowledge of the publishers. Such systems are
handled by appropriate middleware taking care of the messages.

Social networks: Users are organized in network structures with
their friends (symmetric links of Facebook) or followers (asym-
metric links of Twitter) for instance, with whom they exchange
information. Some messages can be addressed to sets of users
that are out of the knowledge of users, or difficult to enumerate,
such as the friends of their friends. In some social matching net-
works, it is possible to send notifications of interest to users to
be received only by users who have sent in a symmetric manner
similar notification of interest to the sender. In this example, the
destinations cannot be cleared by the users themselves.



In all these examples, it would make things easier, if it was
possible to specify the destination implicitly by a query, defining in
an intensional manner, the destination of (message) mobile agent,
which can be cleared or evaluated while traveling in the network,
in an extensional manner, as the explicit address of the destination
nodes. In Publish-Subscribe systems, this is done by appropriate
message oriented middleware. Our objective is to let mobile agent
solve intensional destinations.

Let us consider the following more complex example from
wireless sensor networks. Consider an application where some
sink node monitors the positions of nodes which have, together
with their neighbors to avoid individual measurement errors, a
temperature higher than some threshold. How to program such
queries? How to get neighbors’ temperature values dynamically?

We propose a declarative language, Questlog, which allows to
specify such problems in a rather declarative, data centric manner.
For simplicity, we consider a relational model of data, with rela-
tions of some fixed schema. Questlog is a rule-based language with
rules of the form:

head : —body

well-adapted to complex queries as well as to reactive protocols.
Questlog queries are of a very simple form:

?R(z1, - ,x4)

where R is a relation symbol of arity ,and z1, - - - , x, are variables
or constants. They are associated to rule programs which define
their semantics.

Let us illustrate the language on the previous WSN example.
The query can be expressed very simply by a predicate of the form:

WarnPos(v,z,y)

where v is a node Id and (x, y) its positions. The meaning of the
query is defined by a program (agent), which is used to evaluate it.
Let us consider the following program:

1T WarnPos(v, z,y) : — Pos(v,z,y), Tmp(v,t),t > T. (1)

We assume that each node, say v, stores its location (z,y) as
Pos(v, z,vy), and its temperature ¢ as T'mp(v, t). When the agent
on a node, say a, receives a query ?WarnPos(v, z,y), it checks
if it matches the head of a rule. In this case, it matches Rule (1).
Its body, Pos(v, z,y), Tmp(v,t),¢ > T, is instantiated with local
data, and the tuples (v, x,y) satisfying the query are produced as
answers to the query and sent (1 in front of the rule) to the source
of the query.

Let us consider now the more complex example, of nodes v
with location (z,y), which have, together with their neighbors,
a temperature greater than 7. We assume that each node v also
stores links to its neighbors, say w, as Link(v, w). The following
program defines the new query.

* WarnPos(v,z,y) : — Pos(v,z,y), Tmp(v,t),t > T,
Vw Link(v,w),?HighTmp(Qw). (2)
T HighTmp(v) : — Tmp(v,t),t > T. 3)
The program is interpreted as follows. The query now matches

Rule (2). This rule is interpreted as follows. Its body contains facts
Pos(v, z,y); Tmp(v,t); as well as an expression:

Vw Link(v,w), ?HighTmp(Quw).

The facts are instantiated locally as above. The new query
?HighTmp(Quw) is generated for each neighbor w of v (univer-
sal quantifier), and sent to each neighbor w (symbol ”@” in front
of the variable). Suppose that there are nodes 3 and -y such that
Link(a, B8) and Link(c, ~y) hold on a.. Then o generates two new
queries, ?HighTmp(Qp) and ?HighTmp(Qv), which have to
be sent to node (3 and -y respectively.

Suppose that neighbor 3 receives the query ?HighTmp(3). It
matches the head of rule (3). This matching leads to T'mp(S, t), t >
T, the body of Rule (3). If the rule is satisfied, then the head,
HighTmp(B3), of the rule is generated and sent to «, due to the
affectation operator (1), where « is the origin of the query. The
evaluation of the query ?HighTmp(~) is done in a similar fash-
ion on node ~y. The results of the initial query WarnPos(a, x,y)
will be computed by Rule (2) once all the answers to the queries
?HighTmp(Qw) have been obtained. This is the meaning of the
V symbol in front of variable w in the body of Rule (2). Then the
result is sent to the initial source of the query ?WarnPos(v, z,y).

With Questlog, complex applications and protocols can be ex-
pressed easily. Consider for instance the query ? Route(a, d, y, n),
searching for a next hop y, and a length n, for a route from node «
to destination d. The following two rules, Rule (4) and (5), define
an on-demand routing protocol, which allows to evaluate the initial
query ?Route(a, d,y,n).

1 Route(z,w,w, 1) : — Link(z,w). 4)
1 Route(z,w,z,n+1) : — Link(z, 2),
?Route(Qz, w,u,n). 5)

When node, say a, fires a query ?Route(a, d,y, n), the agent
on « checks if it matches the head of a rule. The matching results
in the body Link (o, d). Two scenarios are then possible. Either,
with Rule (4), Link(c, d) holds on node «, and the query can be
answered by Route(a, d, d, 1) (d is a neighbor of node ), or Rule
(5) generates a body Link(a, z), 7 Route(Qz, d, u, n), containing
a fact Link(c, z), and a new query ? Route(@z, d, u,n). Suppose
there is a node 3 such that Link(c, 3) holds on «. Then Rule (5)
generates a new query, ? Route(@Qg, d, u, n), which has to be sent
to node S.

Suppose now that node [ receives the previous query, and that
Link(B,d) holds on /3. The query is evaluated on node 3, in a
similar fashion. The agent on S can now run Rule (4), and answer
the query with Route(S, d, d, 1). Two actions are then performed.
First, the result is stored in the local store. This is due to the
affectation operator () in front of Rule (4). Second, the result
has to be sent to «, due to the affectation operator (1), where «
is the origin of the query. When the agent on « receives the answer
from the agent on f3, it uses again Rule (5), but now in push mode
to derive the answer to the query, Route(a,d, 3,2), and stores
it. As a side effect, intermediate nodes that aggregate answers of
subqueries save routes to the destination.

Messages are formed by a payload and a destination. The pay-
load can consist either of data or queries. Similarly, the destination
consists of an explicit address, and an implicit address, defined by a
query. When the destination of a message is only implicitly known
as a query @, two strategies are possible. Either, @ is included in
the destination part of the message, which is then handled only by
node satisfying it, or it is included in the payload, and handled by
all nodes. We will see in the sequel that it results in different eval-
uation strategies.

More generally, when the destination as well as the payload are
represented by queries, we distinguish in messages between two
queries:

® content-query: query in the payload,
e dest-query: query in the destination.

The dest-query might be very simple to solve. Only if a node
satisfies the dest-query, is it authorized to read and compute the
content-query. Interestingly, this distinction also allows to optimize
the distributed computation of queries.



3. The Questlog language

The language Questlog is used to program the behavior of nodes.
We are interested in networks, where the nodes have initially only
the knowledge of their neighbors. The Link relation is thus dis-
tributed over the network such that each node has only a fragment
of it. This can be done with an agent that communicates periodi-
cally with other agents on nodes in its transmission range to up-
date the Link relation upon node joining or leaving. The Questlog
programs are agents and are installed on each node, where they
run concurrently. The computation is distributed and the nodes ex-
change information.

Agents interact with each other on the same node. They can
query and update the data on the nodes. They interact also with
agents on other nodes in the network by producing messages to
send on the network. Questlog has been designed to pull data
from a network. As it has been shown in Section 2, agents are
used in association with a predicate, (e.g. WarnPos in Rule (2)
for instance) defining a query, which is solved by running the
associated agent.

Before describing the language, let us explain the behavior of
queries and agents. The evaluation of the rules combines backward
and forward chaining. Intuitively, when an agent on a node receives
a query, it identifies the rules whose head matches the query. If there
are such rules, the node applies each of them, that is it generates
their body instantiated with the variable substitution imposed by
the initial query.

There are two possibilities for the body. The body might be
simple, with no subquery included, it is then evaluated locally on
the node, the answer to the query is deduced by applying the rule
in a forward manner, and then sent to the requesting node. If the
body is complex, with subqueries, then the part of the body without
subqueries is evaluated locally. The partial results obtained, lead to
partial instantiation of the subqueries, which are then sent to the
appropriate nodes. Some bookkeeping is performed to keep track
of the initial queries and the corresponding subqueries. When the
answers are received, the initial query can be computed, and its
answer sent to the requesting node.

The Questlog queries are of a very simple form: ?R(x1, - - - , x¢),
where R is a relation symbol of arity ¢, and x1,- - -,z are vari-
ables or constants. They are associated to rule programs which
define their semantics. Questlog programs are agents that consist
of sets of rules that are executed in parallel.

We introduce Questlog and the primitives of the language
through examples. Let us start with routing which is a fundamental
functionality for network applications. On-demand routing pro-
tocols, such as AODV [30], are reactive protocols that flood the
network with a route request to find a route from a source to some
destination. When the route is found, each node along the route
saves locally the next hop to the destination.

We have seen in Section 2, Rules (4) and (5), which express a
simple route request. On-demand routing requires some more care
though. Indeed, the rules are evaluated in parallel, and the previous
two rules could lead at the same time to an answer to the query
as well as to useless subqueries propagated to other nodes. For in-
stance, suppose that the Link relation has two facts corresponding
to Link(a, d) and Link(a, 8), where d is the requested destina-
tion. Then, Rule (4) leads to a fact Route(a, d, d, 1) as an answer
to the query saved locally on « and sent to the source of the query,
while Rule (5) leads to a useless subquery ?Route(QpS,d,u,n)
sent to neighbor .

To prevent propagating subqueries when an answer of a query is
found locally, we use negation. Accordingly, the following routing
program, Rule (6) and (7), will be used to evaluate an on-demand
routing query. Rule (7) makes use of the literal "~ Link(z,w)”
which can be interpreted as follows: there is no link from node x to

destination w.

T Route(z,w,w,1) : —Link(z,w). (6)
1 Route(z,w, z,n + 1) : = Link(z,w), Link(z, z),
?Route(Qz, w,u,n). @)

When node « fires the query ? Route(a, d, y, n), the agent on o
checks if it matches the head of a rule. The matching rules, Rule (6)
and (7), are loaded, and executed in parallel to evaluate the query.
The two rules are instantiated by the instances of the variables in
the query. Rule (6) leads to the body Link(c, d). Suppose node d
is a neighbor of node «, then Rule (6) is satisfied.

The results of the rules can be either stored locally on the node,
or send to other nodes. The arrow in front of the rules specifies it,
with | for local storage, and 1 for results sent to the origin of the
query, and J for both. The deduced answer, Route(a,d,d, 1), is
stored in the local data store (| in front of Rule (6)), and has to be
sent (1) to the origin of the query. However, Rule (7) generates a
body that is not satisfied since the fact Link(«, d) holds on node

Intermediate nodes that aggregate answers of subqueries save
(J) routes to the destination. It would be interesting to use local
knowledge of nodes to reduce the delay and the complexity in both
communication and computation. An additional rule is required.
The following program with Rules (8), (9), and (10) defines the
semantics of the on-demand routing protocol.

T Route(z,w, oy,n) : — Route(x,w,y,n). ®)
1 Route(z, w,w,1) : — Link(z, w),
—Route(z,w, -, 1). 9)

1 Route(z,w,z,n+ 1) : — =Link(z,w),
—Route(z,w, -, ), Link(z, z),
?Route(Qz, w,u,n). (10)

Suppose intermediate node v has a fact, Route(v,d,¥0,2),
saved in the routing table. Rule (8), when receiving the query
?Route(y,d,y,n), leads to the body Route(vy,d,y,n). The rule
is satisfied, then deduced result Route(y, d, 0, 2) is sent (1) to the
source of the query. In case of plurality, one route can be cho-
sen non-deterministicaly using the choice operator, ¢ in front of y.
Alternatively, the shortest route can be chosen using aggregation,
(e.g. Route(x,w,y, min(n))). The evaluation of Rule (9) leads to
the body Link(~, d), ~Route(v, d, _, 1), where underscore means
“any value”. The fact "= Route(~, d, -, 1)” is read as follow: there
is no route from «y to d with next hop any value and number of
hop is 1. The use of the negation prevents Rules (9) and similarly
for Rule (10) to be satisfied when a route is found locally. This
concludes of the on-demand routing protocol.

Let us now consider an example of aggregation query over
sensor networks. Suppose that a tree rooted on a node « has been
constructed in the network. Each node, say z, has the relation
Tree(x,y) where y is a child of z, and stores a temperature
value ¢ in a relation T'mp(x,t). Suppose node « fires the query,
?ResultAvg(a, v), asking for the average, v, of the temperature
values of deployed sensors in the network. The following program
defines its semantics.

I ResultAvg(z,v) : — v :=t/n,?Avg(Qzx,n,t). (11)
T Avg(x, 1,t) : — = Tree(x, ), Tmp(z,t). (12)
T Avg(z,Xn+ 1,Xv +t) : — Vy Tree(z, y),
Tmp(z,t),?Avg(Qy, n,v). (13)
where Avg(x, n,t) stores the number n of nodes in the tree rooted

at x with the sum ¢ of their temperatures. When node « initially
fires the query ?ResultAvg(a,v), the agent on « checks if it



matches the head of a rule. The matching leads by Rule (11) to the
body v := t/n, ?Avg(Qa, n,t) which gives raise to a new query
?Avg(Qa, n,t).

The matching of the new query leads either to the body
—Tree(z,_), Tmp(z,t) of Rule (12) if « is a leaf (i.e. satis-
fies —Tree(a,-)), or otherwise to Vy Tree(a,y),T'mp(a,t),
?Avg(Qy, n,v) by Rule (13). In this later case, a series of queries
?Avg(Qy, n,v) are generated, which are sent to all the children y
of a in the tree. The computation will recursively walk down the
tree until reaching the leaf nodes. Suppose nodes v and \ are two
leaf nodes, and node 3 is their parent. When receiving the query
?Avg(@~,n,v) on node ~, Rule (12) is satisfied, and deduced
result Avg(y,1,t) is sent to the source 3 of the query. Node A
evaluates similarly the query ?Avg(@QA\, ¢, v).

The results of the query on parent node 8 will be computed by
Rule (13) once all the answers to the queries ? Avg(@y, n, v) have
been obtained, according to the V symbol in front of variable y in
the body of Rule (13). After the computation, the deduced result
Avg(B,¥n +1,Xv +t) is sent (1) to the source of the query. The
operator Y is the function sum and it is used to sum the number
of children as well as their temperature. Node [ increases by 1 the
number of nodes, and adds its temperature to the sum of temper-
atures before sending the result to the source node. Rule (13) will
perform a converge-cast of the intermediate results. When agent on
node « receives the answer for the query 7 Avg(a,n,t), by Rule
(11), it deduces the average temperature. It uses the assignment lit-
eral ”:=" together with arithmetic operations (e.g. division ”/”).
The result is saved locally in the relation ResultAvg.

Due to fragile conditions, the measured temperature value of
individual sensor nodes might be wrong. To improve the stability
of such systems, it is possible to update temperature stored in the
T'mp relation on each sensor node with new values such as the
average temperature of their neighbors. The query ?T'mp(w, u) is
fired from some node, say «, with all destinations.

I Tmp(z, avg(t)) : — Tmp(z,t1), Yy Link(z,y),
?GetN ghTmp(Qy,t) (14)
T GetNghTmp(z,t) : — Tmp(z,t). (15)

On each node, say 3, the query ?T'mp((, u), matches the head
of Rule (14) thus leading to the body !T'mp(8, t1), Vy Link(B,y),
?GetNghTmp(Qy,u). It gives raise to queries of the form
?GetNghTmp(Qy,u) sent to all neighbors y. Each neighbor
upon receiving the query, Rule (15), forwards (1) its own temper-
ature value to the query expeditor 5. When all answers (according
to V) are received, Rule (14) continues the evaluation in the push
mode, results in the head with a new value ¢ stored (J) on 3 where
t is the average temperature which is defined using aggregation.

The consumption operator, !, is used to delete the facts that
are used in the body of the rules from local data store. The fact
ITmp(B,t1) is deleted upon evaluating the rule in the push mode.

Consider now an application where the sink node floods a query
to sensor nodes to collect on-demand the sensed data about an
object of interest z. Each sensor node upon receiving the query
forwards its sensed data (e.g. the temperature value) to the sink
node. This query can be mapped to a rule-based program which
models its semantic. Suppose that the sink node floods the query
?GetData(w, x) to all nodes with destination all.

1 GetData(z,t) : — Tmp(z,t). (16)

Each node, say v, stores its temperature in the relation T'mp.
Upon receiving the query, the agent uses Rule (16) to evaluate it.
Deduced result Get Data(v, t) is sent (1) to the sink.

In most approaches, all deployed sensor nodes are homoge-
neous and mono-service, and run one application at a time (e.g.
measuring the temperature). It is worth noting that Questlog can

express applications and protocols running on heterogeneous de-
vices with mono- or multi-services.

In the next example, we explain the use of destination queries.
Assume the sink node sends a message that contains (i) a content-
query in the payload, and (ii) a dest-query in the destination. We
have seen in the previous example with Rule (16) that data collec-
tion might involve all nodes in a network. However, due to sensor
power constraints, it might be preferable [21] that data collection
be performed from a subset of nodes only.

Assume that the sink node calls sensor nodes that have en-
ergy level greater than a threshold as cluster heads, to collect data
(e.g. temperature) from their neighbors, aggregate the data, and
then send aggregated value with the address of the cluster head
to the sink. The sink node sends a message with content-query
?Collect(x, s) and dest-query ?Power ful(z) in the network.
Suppose that the energy level is saved in the relation Energy.
The following program defines its semantics:

Power ful(x) : — Energy(e),e > n. (17)

1 Collect(z, avg(s)) : — Yy Link(z,y),
?GetData(Qy, s). (18)
1 GetData(y, h) : — Tmp(z, h). (19)

Each sensor node, say v, upon receiving the message evaluates
the dest-query ? Power ful(v) using Rule (17) after matching the
head of the rule. If the body of the rule Energy(e),e > n
is satisfied, then the sensor node v belongs to the destination,
and is now allowed to evaluate the content-query 7Collect(v, s).
Otherwise, the message is sent further.

The content-query matches the head of Rule (18), which leads
to the evaluation of its body Vy Link(z,y), ?GetData(Qy, d)
that gives raise to queries ?GetData(Qy, s) sent to all neighbors
y of v. Each neighbor upon receiving the query ?GetData(y, s),
uses Rule (19) after matching and returns its temperature value to
the source v of the query. When all answers (V) are received, node
v continue the evaluation of Rule (18) in the push mode, leading to
a fact Collect(v, s) where s is the average temperature sent (1) to
the sink.

A simplified grammar of the Questlog language is shown below.
Optional items are enclosed in square brackets, and items repeating
zero or more times are enclosed in curly brackets.

query =7 ident " (” Qterm {”,” term }”)”

term ::= (var | cst)
rulez= (1113 ) head ” : =7 body
head ::= ident” (" term {”,” term }”)”
body ::= { literal { 7,” literal } } [7,” query]”.”
literal == ([ |! | Vvar]atom ) | condition
atom ::= ident ” ("body_term {”,” body_term }”)”
body_term ::=exp| 7
exp = exp x exp | exp + exp | cst
condition ::= exp condition_op exp
condition.op := " =" | 7 A7 |7 >7 |7 >

4. Procedural Semantics

We make little assumptions on the networks. We consider nodes
which communicate by exchanging messages as restricted mobile
agents. The communication is asynchronous with no shared mem-
ory.

Each node is equipped with an embedded machine (Figure 1)
which evaluates the Questlog programs. It is composed of three
main components: (i) a router to handle the communication with



the network; (ii) an engine to evaluate the queries; and (iii) a local
data store to manage the information (Data and Programs) local
to the node. The Questlog programs are installed on each node,
and used to evaluate Questlog queries fired by the applications or
received from other nodes through mobile agents.
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Figure 1. Global architecture of the virtual machine

The evaluation may lead to data (as answers) or subqueries sent
to other nodes in the network. Pending queries need to be stored,
some bookkeeping is thus performed in the local data store with
timeouts. When an answer of a pending query is received, the
corresponding query is retrieved and the evaluation is resumed.

4.1 Messages and Routing

‘We have seen in Section 2 that a message is composed of a payload
and a destination. To define precisely the procedural semantics, ad-
ditional informations in a message are also required. In particular,
the source node address, the payload query Id, and the TTL (time-
to-live). The TTL is the number of hops that a message is permitted
to travel before being discarded by the router. A message has thus
the following format:

msg = < src,qld,payload, dest,ttl >

The payload is the content of the message which may contain
either a query or data. It has the following format:

payload = < query | answer >

The dest is the destination of the message. It is composed of both
extensional and intensional destination. The extensional destina-
tion is defined by a node address, while the intensional destination
is defined by a query. It has the following format:

dest = < extDest : intDest >

The Router is composed of two main modules: (i) Reception
module that receives messages from the network, and (ii) Emission
module to send messages to other nodes in the network.

When receiving a message, a node first checks the destination.
Two cases have to be considered corresponding to extensional and
intensional destinations. If the extensional destination is equal to
the node address, then the node stores the received message in
a local data structure (BookKeeping) with a unique Id and a
timeout, and transfers the payload to the engine. Otherwise, the
node address is not the destination, and the message is transferred
to the emission module. For instance, when node [ receives the
message:

msg1 = < a,4,payload, < f:— >,10 >

with address specified extensionally by /3 which is equal to the node
address. Then the message is stored locally (Book K eeping), and
the payload is transferred to the engine. However, if [ receives a

message with dest = < v : — >, then the message is transferred to
the emission module since v does not match the node address.

Consider now the second case. If the extensional destination is
empty, then the router evaluates the intensional destination.

msg2 = < a,4,payload, < — : query >,10 >

The evaluation of the intensional destination query passes through
the engine, and the result is a set (0 ans) of node addresses. When
receiving the set of answers, the router checks if the node address is
in the set. If so, the router stores locally (Book K eeping) the mes-
sage msgz, and transfers the payload to the engine to be evaluated.
Otherwise, the message is discarded.

At the same time, the initial message msg- is transferred to the
emission module to be sent to other nodes. It is noteworthy to men-
tion that an alternative strategy could have been used. For instance,
instead of transferring the message msgs to the emission module,
the router could take into consideration the set of answers (e.g. o, 3,
etc.), encapsulates messages based on msg. but with new destina-
tions specified extensionally and intensionally (e.g. msgs.dest =<
« @ query > ,msga.dest =< [ : query >,etc. ), and transfers
them to the emission module. The important features of this strat-
egy is: (i) toggling from broadcast mode into unicast mode, and
(ii) benefiting from local knowledge of a node. The choice of the
strategy can be made by an agent.

The Emission module is used to send messages to other nodes
in the network. The router fetches the next hop to the extensional
destination from the routing table and sends the message if the
next hop is found. Otherwise, the message is discarded. Here again,
other strategies can be made and applied as for instance: (i) send the
message to neighbors, or (ii) fetch a route to the destination d which
in our approach requires to fire the query ?Route(s,d,nh,n)
while s is the node address, nh is the required next hop, and n
is the number of hops, as we have seen in Section 2.

4.2 Computation

A message may contain queries (content-query, dest-query) or data.
To evaluate a query, as seen in Figure 2, the mobile agent collab-
orates with local node agents such as Program agent, Timer agent,
Strategy agent, etc. to achieve the task and produce a new mobile
agent.

payload destination Feea Loeal data

Mobile agent

Discard message
if no route

Strategy agent Program agent Timer agent

Local node

payload destination

Mobile agent

Figure 2. Emission of messages seen as mobile agents

A Timer agent manages program time events and timeout. The
timer is defined as a high level specification as follows:

Timer(TimerName, Period, Occurrence, ProgramName)
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Figure 3. Propagation of subqueries and converge-cast of intermediate answers

where the name of the timer, the period to wait before sending
an event, the occurrence for repetitive events, and the name of the
program are specified.

The engine is in charge of evaluating the received queries/an-
swers. The engine is constructed around two main modules to eval-
uate them (i) the query module, and (ii) the data module. The query
module initiates the evaluation of queries, which may result either
in a direct answer to be sent to the query origin, or to subqueries
to be sent to other nodes in the network. The data module is used
to carry further the computation, and evaluate answers and sub-
sequently pending queries, which may result in an answer saved
locally or sent to other nodes.

For each message, its content/dest-query is analyzed and trans-
ferred to the corresponding module. When receiving a query, the
query module first loads the appropriate rules from the local data
store. More precisely, the received query is matched with the head
of each rule, and only matching rules are loaded. The rules are then
evaluated in parallel. The first step towards their evaluation is the
substitution of variables by constants. Rules are instantiated by: (i)
potentially the constant values of the received query, and (ii) the
local data of the node (where the evaluation is taking place).

Rules can be of two kinds: (i) simple rules, or (ii) complex rules.
Simple rules have no subquery in their body, and are evaluated lo-
cally on the node. Potentially, local data might satisfy the query,
resulting in an answer to be sent to the node source of the query.
However, complex rules have subqueries in their body, and their
evaluation leads to subqueries propagated to their appropriate des-
tinations.

After the evaluation, two kinds of outputs, either (i) a query, or
(i1) an answer can be produced.

e If the result is a query, then the destination to where the query
should be sent is extracted from the query. The destination
is the instance of the variable prepended by @ in the sub-
query (e.g. ?Route(Qp,d,y,n)). After that, the result is en-
capsulated in a message which is stored in the local data store
(Book K eeping), and then transferred to the router.

If the result is an answer, as a fact (e.g. Route(f, d,~, 2)), then
according to the affectation operator of the corresponding rule,
the result (i) is stored locally ({), or (ii) sent (1) to the source
node, or both stored and sent (J). The result will be sent in

a message, and that requires to collect some information. In
particular, the address of the source node of the query is the
destination of the message to which the result will be sent.
The qId of the message should be the same as the Id of the
initial query. The corresponding entry that holds these data is
retrieved from the local data store (Book K eeping). After that,
the message is encapsulated and transferred to the router.

Let us consider for instance the on-demand routing protocol,
and suppose node source s fires the query ? Route(s, d, y,n) ask-
ing for a route to destination d. Figure 3 shows an example of a
trivial network where node s fires the query. On node s, the engine
matches the query with the head of Queslog rules saved in the local
data store, and loads only the corresponding rules with matching
heads. Loaded rules correspond to Rules (8), (9), and (10) shown
in Section 3. The engine evaluates the rules in parallel. Only Rule
(10) is satisfied, since there is neither a direct link to the destina-
tion d, nor a route, thus leading to a subquery ? Route(@b, d, y, n)
as shown in Figure 3(a). Similarly, node b loads relevant rules
and evaluates them leading to subqueries ? Route(@s, d, y, n), and
?Route(Qc, d,y,n) since node s and c are neighbors as shown
in Figure 3(b). However, the subquery ? Route(@Qs, d, y, n) can be
avoided either by the engine upon evaluation of the initial query (do
not send subquery to the source of the initial query) or discarded by
the router of node s.

The engine on node c loads and evaluates the relevant rules
in a similar fashion. However, the evaluation leads to the head of
Rule (9), Route(c,d,d, 1), as an answer of the query since the
destination d is a neighbor as shown in Figure 3(c). The answer is
saved in the local data store of node c and sent to the source node of
the query. The engine determines the source node by retrieving the
appropriate entry in the local data store based on a unique local Id.
When receiving the answer Route(c,d, d, 1), the engine on node
b uses the data module to continue the evaluation as we will see in
the following.

The data module is used to continue the evaluation of pending
queries stored locally on a node. When receiving an answer, the
data module first loads the appropriate rules from the local data
store. More precisely, the engine knows the message ¢/d, com-
municated by the router, with the payload. The engine matches
the received qId with each entry in the Book K eeping data struc-



ture, and retrieves the corresponding Questlog rules if the head is
matched. Then, the engine evaluates the rules in parallel but now in
the push mode. Deduced results are again sent to their appropriate
destination exactly as we have seen previously.

When receiving the fact Route(c, d, d, 1), the engine on node
b in Figure 3(d), matches the ¢Id with the query Id on the
BookKeeping data structure and loads the corresponding rule,
Rule (10), which is evaluated in push mode. The evaluation leads
to a new fact Route(b, d, ¢, 2) saved locally on b and sent to the
source node s.

5. Implementation

In this section, we present the system which supports the Questlog
queries together with their corresponding programs. The network
is constituted of nodes that have a unique identifier, Id, taken from
1,2,--- ,n, where n is the number of nodes. Their communication
are based on asynchronous message exchange, and have no shared
memory. We make no particular assumption on the nodes/devices
which all have the same architecture and the same behavior.

The Questlog programs are transformed into a sort of bytecode
that can be smoothly handled. We compile the Questlog programs
into an SQL dialect that is executed by the engine. An SQL query is
built for each Questlog operator (query ”?”, store ”|”, push ”1”” and
deletion ”!”) in a rule. Consider the following rule witch contains a
subquery in the body:

1 Route(z,y, z) : — ~Link(x,y),
Link(z, z), ? Route(Qz, y, s). (20)

The compiler transforms Rule (20) into two SQL queries, as
shown in the following, corresponding to: (i) the results of the
operator ”?” (body SQL query) to be used in the pull mode for
subquery, and (ii) the operator 1" (head SQL query) to be used in
the push mode when receiving an answer in the body of a rule.

SELECT Link.z,Route.y,Route.z
FROM Route, Link AS Lkl
WHERE Lkl .x=self ,

AND NOT EXISTS (
SELECT Link.x, Link.y
FROM Link AS LK
WHERE LK. x=LKI.x
AND LK.y=Route.y);

SELECT Link.x, Route.y, Link.z
FROM Link AS Lkl, Route
WHERE Lkl .z=Route.z
AND Lkl .x=self ,
AND NOT EXISTS (

SELECT Link.x, Link.y

FROM Link AS LK

WHERE LK. x=LKl1.x

AND LK.y=Route.y);

The first attribute in the predicate of the head of a rule represents
the node address, and it is used as a location specifier. The negation
of Link is translated with the SQL subquery into the section
not exists. It is worth noting that the operators ”}” and ”!” in a
Questlog rule are transformed into an insert and delete SQL query
respectively.

Each node is equipped with an embedded machine as we have
seen in Section 4. We implemented an extended version of the
Netquest machine (Figure 4) presented in [18]. Two important
functionalities have been introduced (i) a Router module to evaluate
intensional destinations and to communicate with the network,
and (ii) a Questlog Engine to execute the Questlog queries and
programs.

The Netquest Virtual Machine executes the bytecode, generated
by the compiler, and manipulates data and messages. It is working
as a daemon in the device, and applications can use it to commu-
nicate with other devices on the network. The virtual machine is
portable and can be installed in small devices with embedded DMS.
A previous implementation was done in iMote sensors [7].

Application API
¥
]

™ e Netlog- | Questlog
Engine | | Engine

] DMS

)

Router -
[

Device Wrapper

Figure 4. Architecture of the Netquest virtual machine

The Netquest Virtual Machine was initially proposed to evalu-
ate Netlog [18] programs. It is composed of six components; (i) the
device wrapper receives and sends data over the network, (ii) the
DMS evaluates the bytecode and manipulates data, (ii) the router
receives and sends Netquest messages through the device wrapper
and chooses the next hop to route a message, (iv) the Netlog engine
evalutes Netlog programs by loading the rules and evaluating them
through the DMS, (v) the timer manager creates and manipulates
timers and manages the time event of the system, and (vi) the ap-
plication API is in charge of the interaction with local applications.

We next describe the new modules which were added to the
Netquest machine, the Questlog Engine and the Router, together
with their functionalities.

The Questlog engine executes received queries, either from
local application or from mobile agents, based on the Questlog
programs stored in the local data store. In the proposed model, the
message is a mobile agent that may contain a Questlog query. It
interacts with local agents that have Questlog programs at their
disposition in order to execute the query. They all collaborate to
achieve a task. More precisely, the query received by mobile agent
is matched with the head of rules of an agent program, that in its
turn may use the timer agent, the routing agent, the neighborhood
agent, etc. to finally solve the query.

The engine maintains a data structure, BookKeeping, to store
queries and answers together with information such as the origin of
the query. The Questlog engine is composed of four modules:

(a——aa)

Preprocessing

Query Data
Processing Processing

v v
[ Postprocessing ]
N\ Transfer’Message S

Figure 5. Architecture of the Quesltog engine



1. Preprocessing: This module analyses the incoming messages,
in particular the payload of the messages. If the content is a
query, then the module query processing is called to treat the
query, otherwise the content is an answer and so the module
data processing is called.

2. Query processing: This module computes the Questlog queries.
For each query, the corresponding rules are retrieved from the
local data store. More precisely, a matching operation is per-
formed between the received query and the head of Questlog
rules, and then the corresponding SQL queries are retrieved.
After that, the SQL queries are executed through the DMS, thus
resulting either in an answer for the query, or to the generation
of a subquery to be sent to other node. In both cases, the result
will be transferred to a postprocessing module.

3. Data processing: This module handles data as answers of
queries. The corresponding SQL queries are retrieved based
on the g/d of the received message and the query Id stored in
the BookKeeping table. Then, if the corresponding rules con-
tain forall (V), the SQL queries will not be executed till getting
all answers. A local data structure is used to save correspond-
ing received answers. Otherwise, the SQL queries are executed
through the DMS and deduced facts are transferred to postpro-
cessing module.

4. Postprocessing: This module generates payloads in Questlog
form by collecting subqueries or facts, fetches their correspond-
ing destinations, encapsulates them in messages, and finally
transfers the messages to the router.

The router handles the incoming and outgoing messages through
the device wrapper. The specification of the router was described
previously in Section 4.

Finally, to facilitate the programming of Questlog programs and
to ensure their compilation, we extended the code editor presented
in [10] with Questlog syntax coloring and error detection.

6. Simulation Results

The Questlog language is well-adapted to messages with inten-
sional destinations as well as to application queries coming from
an API or from external applications running in the network. The
queries are on-demand and nodes may enter or leave the network at
any time. Our objective here is to monitor the Questlog programs at
run time and show their behavior. We thus used a platform that of-
fers these functionalities. The QuestMonitor [10] system is a visu-
alization tool that allows to interact with a network on a 2D graphi-
cal interface, and visualize the behavior of declarative protocols. It
has three main components:

e The Network Editor: it allows to create groups of nodes, display
their status, and install protocols on them;

e The Network Monitor: it allows to visualize different groups of
nodes, modify the configuration (e.g. radio range) and interact
with the network at run time (e.g. move nodes, delete links,
delete nodes);

e The Node Monitor: it exhibits informations about the node
selected by the user, allows to monitor the activity, display their
data, color nodes and edges, and interact with individual nodes.

We have modified the API of the QuestMonitor system in or-
der to allow a node to send Questlog queries in the network at
run time. Figure 7 shows the API where we select a node that
sends the query (e.g. Node 1), the program to be used (e.g.
OnDemandRouting), and the appropriate query to be sent in
the network (e.g. ? Route(1, 10, y, n)). Figure 6 shows a small net-
work where node source ”1” fires a query ?Route(1,10,y,n) to
find a route to the destination ”10”. The parameters y and n are

variables corresponding to the next hop and the number of hops
respectively.

Figure 6. Network topology
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Execute query
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{ Run )
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Figure 7. Application programming interface

The Questog programs are installed on each node of the net-
work. Upon running the query ? Route(1, 10, y,n) from the API,
it is transferred to the engine of node source ”1” to be evaluated
using, as we have seen in Section 4, Rules (8), (9), and (10). Each
node propagates subqueries to neighbors (except neighbor source
of the query) if it has no link to the destination. For clarity, we show
in Figure 8 a reduced network that demonstrates the propagation of
queries (e.g. ?Route(1,10,y, n)) in messages.

L

Ly

Figure 8. Propagation of queries/answers

The source node sends subqueries to its neighbors (L) which
in turn repeat the same process (L;) if no link or route to the des-
tination is found. Intuitively, different routes with different lengths



will be received by the source node. The converge-cast of answers
by intermediate nodes on the OnDemandRouting program follows
the same paths of subqueries propagation. Suppose that intermedi-
ate nodes have no route to the destination, and that the charge is
distributed uniformly over all the nodes in the network, then the
first answer received by the source node will be the shortest route.
In Figure 8 for instance, node 5 is the first node that answers the

query.

Figure 9. Routes coloration
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Figure 10. Visualization of ItemSet route

Intermediate nodes aggregate answers to the source of the query.
When receiving the answers, the source node 1 stores their discov-
ered routes in the routing table as seen in Figure 10. Each time
a route is built, it will be colored using the coloration feature of
QuestMonitor, Figure 9. That allows us to visualize the behavior
of declarative network protocols upon link or node failure or de-
parture through direct interaction with the network. In addition, the
tab ”Statistics” in Figure 10 calculates the number and the kind of
queries executed on a node, and results on an average bound of
complexity in communication and computation.

7. Conclusion

We have developed a setting which offers messages with implicit
destinations, which can be seen as mobile agents, with limited mo-
bile code. They are solved when meeting local agents which have
the corresponding code and data to find the best available destina-
tion. They ease programming complex applications where the net-
work is used as an active middleware. We proposed a data-centric
language, Questlog, that allows to handle intensional destinations
as queries and program complex strategies to evaluate them. We

have illustrated the language over classical networking protocols,
such as routing, and are currently developing sensor network ap-
plications as well as social network functionalities including com-
munication, matching, games, etc. The operational semantics of
Questlog has been implemented over the Netquest system, and we
ran simple examples over the QuestMonitor platform, whose API
has been extended to support interactive queries, and to visualize
the execution of programs.

We are currently experimenting with the different programming
strategies offered by intensional destinations, as well as studying
the resulting overhead. These strategies allow to balance the re-
quest between the payload and the destination queries, leading to
different evaluation schemes. In particular the use of intensional
destination can offer persistence to data sent to nodes which have
disappeared, and can be rerouted by reevaluating the intensional
destination. We have demonstrated such techniques in another con-
text in [3]. Social networks offer challenging reachability problems
that we plan to address using this framework in the near future.
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A Decentralized Approach for Programming
Interactive Applications with JavaScript and Blockly
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Abstract

We present a decentralized-control methodology and a tool-
set for developing interactive user interfaces. We focus on
the common case of developing the client side of Web ap-
plications. Our approach is to combine visual programming
using Google Blockly with a single-threaded implementa-
tion of behavioral programming in JavaScript. We show how
the behavioral programming principles can be implemented
with minimal programming resources, i.e., with a single-
threaded environment using coroutines. We give initial, yet
full, examples of how behavioral programming is instru-
mental in addressing common issues in this application do-
main, e.g., that it facilitates separation of graphical represen-
tation from logic and handling of complex inter-object sce-
narios. The implementation in JavaScript and Blockly (sep-
arately and together) expands the availability of behavioral
programming capabilities, previously implemented in LSC,
Java, Erlang and C++, to audiences with different skill-sets
and design approaches.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Concurrent programming struc-
tures; D.1.3 [Programming Techniques]: Concurrent pro-
gramming

General Terms Languages, Design, Human Factors

Keywords Behavioral Programming, JavaScript,
Coroutines, HTML 5, Google Blockly, Visual Programming,
Client-side, Web application, Browser

1. Introduction

The behavioral programming (BP) approach is an extension
and generalization of scenario-based programming, which
was introduced in [4, 11] and extended in [17]. In behavioral
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programming, individual requirements are programmed in a
decentralized manner as independent modules which are in-
terwoven at run time. Advantages of the approach include fa-
cilitation of incremental development [17], naturalness [10],
and facilitation of early detection of conflicting require-
ments [18]. A review of research and tool development in
behavioral programming to date appears in [14]. While be-
havioral programming mechanisms are available in several
languages such as live sequence charts (LSC), Java, Erlang
and C++, its usage for complex real-world application and
development of relevant methodologies are only beginning.

The purpose of the research summarized in this paper was
to examine behavioral programming in a specific application
domain, and to adjust it to languages, technologies and work
methods that are used in this domain. The paper also sheds
light on the principles of programming behaviorally and the
facilities required of behavioral-programming infrastructure.

The paper describes and demonstrates the implemen-
tation of behavioral programming in JavaScript and in
Google’s Blockly for the client side of Web applications, and
then discusses general usability and design principles high-
lighted by these implementations. Clearly, in addition to the
combined Blockly-and-JavaScript implementation shown
here, behavioral programming can be used with JavaScript
without Blockly, or with Blockly with translation to another
language, such as Dart. In this regard, Blockly is a layer
above our JavaScript implementation, which can simplify
development and facilitate experimenting with a variety of
programming idioms. We hope that together with previously
described ideas about scenario-based and behavioral pro-
gramming, this paper will help drive the incorporation of
these principles into a wide variety of new and existing en-
vironments for development with agents, actors, and decen-
tralized control, and will help add them into the basic set of
programming concepts that are understandable by and useful
for novice and expert programmers alike.

We propose that decentralized scenario oriented program-
ming techniques offer significant advantages over traditional
programming metaphors in this specific domain. Consider,
for example, an application with some buttons on a screen
where there is a requirement that the software reacts to a
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sequence of button clicks in a certain way. Using a non-
behavioral style with, e.g., JavaScript, one of the standard
programming languages in this domain, the programmer
would handle each button-click separately, and introduce
special code to manage state for recognizing the specific se-
quence of events. We argue that with behavioral program-
ming such a requirement can be coded in a single impera-
tive script with state management being implicit and natural
rather than explicit. See Section 5.1.

Our choice of the domain of interactive technology is
influenced also by the current debate about the relative
merits of Flash and JavaScript/HTMLS technologies (see,
e.g., [28]). We believe that the technological discussion
conducted mainly in industry should be accompanied with
academic revisiting and analysis of software engineering and
methodology aspects.

About the terms block and blocking

As we are dealing with languages and programming idioms,
the reader should note that the term block appears in this
paper in two different meanings: (a) a brick or a box - refer-
ring to programming command drawn as a two-dimensional
shape; and (b) a verb meaning to forbid or to prevent, as-
sociated with the behavioral programming idiom for declar-
ing events that must not happen at a given point in time. It
is interesting to observe that these meanings are individu-
ally commonly used and are appropriate for the intent, that
finding alternative terms for the sole purpose of disambigua-
tion, is unnecessary, in the least, and in some cases, artificial
and even detrimental to the understandability of the text. In
this context, of course, the language name Blockly fits nicely
with its proposed use in programming behaviorally. Still to
minimize confusion, we avoided using the terms block and
blocking in two other common software-related meanings,
namely, (c) stopping a process or a subroutine while wait-
ing for an event or resource; and, (d) a segment of program
code which contains all the commands between some end-
markers such as curly braces or begin and end.

2. Behavioral Programming

In this section we outline the technique of Behavioral Pro-
gramming for the development of reactive systems. Formal
definitions and comparisons with other programming tech-
niques appear in [14, 17, 19].

A preliminary assumption in our implementation of be-
havioral programming is that an application, or a system,
is focused on processing streams of events with the goal of
identifying and reacting to occurrences of meaningful sce-
narios. Detected event sequences are then used to trigger ab-
stract, higher level, events, which in turn may trigger other
events. Some of these events are translated to actions that the
system takes to effect changes in the external world. This cy-
cle results with a reactive system that translates inputs com-
ing from its sensors to actions performed by its actuators.

‘ Requested Events

b-thread

Blocking

e )

|
Selected Event ‘

Figure 1. Behavioral programming execution cycle: all
b-threads synchronize, declaring requested and blocked
events; a requested event that is not blocked is selected and
b-threads waiting for it are resumed.

More specifically, in a behavioral program, event se-
quences are detected and generated by independent threads
of behavior that are interwoven at run time in an enhanced
publish/subscribe protocol. Each behavior thread (abbr.
b-thread) specifies events which, from its own point of view
must, may, or must not occur. As shown in Figure 1, the in-
frastructure consults all b-threads by interweaving and syn-
chronizing them, and selects the events that will constitute
integrated system behavior without requiring direct commu-
nication between b-threads. Specifically, all b-threads de-
clare events that should be considered for triggering (called
requested events) and events whose triggering they forbid
(block), and then synchronize. An event selection mech-
anism then triggers one event that is requested and not
blocked, and resumes all b-threads that requested the event.
B-threads can also declare events that they simply “listen-
out for”, and they too are resumed when these waited-for
events occur.

This facilitates incremental non-intrusive development as
outlined in the example of Figure 2. For another example,
consider a game-playing program, where each game rule
and each player strategy is added in a separate module that
is oblivious of other rules and strategies. Detailed examples
showing the power of incremental modularity in behavioral
programming appear, e.g., in [17-19].

In behavioral programming, all one must do in order to
start developing and experimenting with scenarios that will
later constitute the final system, is to determine the common
set of events that are relevant to these scenarios. While this
still requires contemplation, it is often easier to identify these
events than to determine objects and associated methods. By
default, events are opaque and carry nothing but their name,
but they can be extended with rich data and functionality.
Further, the incremental traits of BP and the smallness of
b-threads (see Section 5) facilitate subsequent adding and
changing of event choices.

The behavioral programming technique facilitates new
automated approaches for planning in execution [12, 15],
program verification and synthesis [13, 18, 22], visualization
and debugging of concurrent execution [5], natural language
coding of scenarios [9], and program repair [20] .
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Figure 2. Incremental development of a system for controlling water level
in a tank with hot and cold water sources. The b-thread WhenLowAddHot repeat-
edly waits for WaterLevelLow events and requests three times the event AddHot.
WhenLowAddCold performs a similar action with the event AddCold, reflecting
a separate requirement, which was introduced when adding three water quanti-
ties for every sensor reading proved to be insufficient. When WhenLowAddHot and
WhenLowAddCold run simultaneously, with the first at a higher priority, the runs will
include three consecutive AddHot events followed by three AddCold events. A new
requirement is then introduced, to the effect that water temperature should be kept sta-
ble. We add the b-thread Stability, to interleave AddHot and AddCold events using
the event-blocking idiom.

3. Infrastructure Implementation
3.1 Coordinating behaviors written in JavaScript

In principle, the concepts of behavioral programming are
language independent and indeed they have been imple-
mented in a variety of languages using different techniques.
However, certain language facilities are needed in order to
control the execution, synchronization and resumption of
the simultaneous behaviors. In LSC this is done by the con-
trol mechanism which, interpreter-like, advances each chart
along its locations (see,e.g. [16]). In Java [17], Erlang [32]
and C++ the mechanism is implemented as independent
threads or processes and uses language constructs such as
wait and notify for suspension and resumption. When ex-
ecuted in a browser, a JavaScript application is typically ex-
ecuted as a single thread in a single process, hence another
mechanism is needed. Note that for the present proof-of-
concept, the choice is indeed JavaScript, but the language-
independent principles can be implemented also in other
technologies, say, Flash ActionScript, if appropriate con-
structs are available for suspension and resumption.

In JavaScript 1.7 [27] (currently supported in the Fire-
fox browser) the yield command was introduced which al-
lows the implementation of generators and coroutines, and
we chose to use it for our BP implementation - providing
suspension and resumption in single-threaded multi-tasking.
Briefly, the yield mechanism allows a method to return to
its caller, and upon a subsequent call, continue from the in-
struction immediately after the most recent return. Thus, in
the context of coroutines, coordinated behavioral execution
can be described as follows:

Behavior threads are implemented as coroutines. For ex-
ample, the b-thread Stability of the water-tap example is

function() {
while (true) {
yield ({

request: [],
wait: ["addHot"],
block: ["addCold"]

1)

yield ({
request: [],
wait: ["addCold"],
block: ["addHot"]

1

The infrastructure executes in cycles. In each cycle, the
b-threads are called one at a time. The coroutine of each
b-thread returns, using the yield command, specifying this
coroutine’s declaration of requested events, blocked events
and waited-for events. Once each of the b-threads has been
called and has returned in this manner, and its declarations
have been recorded, the infrastructure selects for triggering
an event that is requested and not blocked. The infrastructure
then resumes all b-threads that requested or waited for the
event, by calling them (and only them), one by one, as part
of the new cycle.

In fact this description summarizes the majority of what
was needed for our implementation of behavioral program-
ming in JavaScript. More details appear in Appendix A. The
b-threads are, of course, application specific and are pro-
vided by the application programmer.

Since JavaScript requires that the yield command be
visible in the source of the coroutine at least once, in the
present implementation we chose not to hide it within a
method dedicated to behavioral synchronization and decla-
rations, such as the bSync method in the Java implementa-
tion. Indeed, we feel that this diversity in command name
usage across languages emphasizes that BP benefits, such as
ease of state management and incrementality (see Section 5),
can be gained by implementing and using BP principles in
any language and with a variety of idioms.

3.2 Behavioral blocks for Blockly

The Google Blockly environment [8] is built along princi-
ples similar to those of the popular Scratch language [30].
Other languages and environments in this family include,
among others, BYOB/SNAP! [26], MIT App Inventor [1],
and Waterbear [6]. In these languages, the programmer as-
sembles scripts from a menu of block-shaped command tem-
plates that are dragged onto a canvas. The Blockly blocks
contain placeholders for variables and sub-clauses of the
commands and can express scope of program-segment con-
tainment, relying on the notation of a block containing phys-
ically other blocks, with possible nesting. The popularity
of the Scratch language suggests that this style of coding
is more accessible to children than standard programming
languages, and perhaps even other visual languages, such as
LSC. However, we also feel that the combination of visu-
alization and language customization make Blockly an ex-
cellent platform for demonstrating coding techniques that
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would otherwise require pseudo-code or abstraction, and it
may also provable suitable for complex applications.

While Scratch and BYOB are interpreted (in SmallTalk
and now also in Flash), Blockly and Waterbear diagrams are
translated into code (we use JavaScript) which can later be
manipulated and executed natively without dependency on
the development environment.

Our implementation of behavioral programming in Blockly
includes new (types of) blocks: the b-thread block

b-thread

for the b-thread logic (the string b-thread in the template
can replaced by the programmer with the b-thread’s name or
description); the b-Sync block

b-Sync: request=

walit-for=
block=

for synchronization and bidding of requested, waited-for,
and blocked events; and, a 1lastEvent block where b-threads
that wait for a number of events can examine the one that in-
deed happened.

For illustration, the Stability b-thread of the water-tap
example, is coded in Blockly as

= while J e
do  b-Sync: request=

waitfor= [ “ [EXEEED "

| e = addCold |
b-Sync: request=

wait-for= [ “ [EREeRLD

block=" N ELERER

and is automatically compiled into the JavaScript code
shown in Section 3.1.

The advantages of programming in this manner are dis-
cussed in Section 5. We will only mention here that the vi-
sualness of Blockly adds to the usability of BP principles,
while behavioral decomposition should simplify the devel-
opment of complex applications in Blockly .

As the Google Blockly environment is in early develop-
ment stages, we had to also add some basic capabilities, such
as list concatenation, that are not specific to behavioral pro-
gramming.

4. Programming an Interactive Application
Behaviorally - an Example-driven Tour

In this section we present the underlying design princi-
ples for applications coded with Blockly, JavaScript, and

HTML, via a review of several small applications. The
code and additional explanations are available online at
www.b-prog.org

4.1 Sensors and Actuators

A key design principle is separating the “real” world from
the application logic using appropriate interfaces for trans-
lating occurrences in the environment into entities that can
be processed by the application, and application decisions
into effects on the environment.

We begin our example-driven tour with examination of
the sensors and actuators of a simple application which con-
sists of the following three buttons:
Button2

Button Hello, world!

The requirements for this application are that when the
user clicks Button1 the greeting should be changed to “Good
Morning” and when the user clicks Button2 the greeting
should be changed to “Good Evening”. We first have to
create a sensor for the button clicking:

<input

value = "Buttonl"

type = "button"

onclick = "bp.event (‘buttoniClick’);"
/>

The clicking is captured by the standard use of the HTML
verb onclick and the ensuing activation of JavaScript code.
The function bp. event is part of the behavioral infrastruc-
ture in JavaScript, and it creates the behavioral event passed
as a parameter. Details about event triggering appear in Sec-
tion 4.3

To transform application decisions into effects on the en-
vironment, an HTML entity can activate JavaScript code us-
ing another part of the behavioral infrastructure we added in
Blockly/HTML/JavaScript, the verb when_eveniName, as fol-
lows:

<input
value = "Hello, world!"
type = "button"

when_buttoniClick = "value=‘Good Morning?’"
when_button2Click = "value=‘Good Evening’"

/>

In this simple example, there are no application-logic
b-threads and the actuator is driven directly by the behavioral
event generated by the sensor.

In the present implementation, events are simply charac-
ter strings. The semantics of triggering a behavioral event in
Blockly is notifying (or resuming) any b-thread or HTML
entity that registered interest in the specified event, using the
b-Sync block or the when_evensName idiom, respectively.

We believe that the design of a reactive behavioral ap-
plication should start with analysis and determination of the
sensors and actuators and the associated events. For exam-
ple, Figure 3 in Section 4.3 shows such an event list for a
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richer example. The behaviors can then be added incremen-
tally, as requirements are analyzed. Of course, as needed,
sensors and actuators can be modified or replaced. In this
approach the role of GUI design can be separated from that
of application logic programming, and deciding about sen-
sors and actuators can be seen as a development stage in
which negotiation and agreement between individuals act-
ing in these capacities take place.

4.2 Application-logic b-threads

We now move to a slightly richer example - a water-tap
application similar to the one described in Section 2. This
application’s logic is coded in the following b-threads. One
b-thread adds five quantities of hot water and terminates:

Add hot five times

count with u from to |

do b:Sync: request=

wait-for=
block=

Another adds five quantities of cold water and terminates:

Add cold five times

count with from x‘ to L,.:

do b:Sync: CPESSEH addCold

wait-for=
block=

And, the third b-thread which interleaves the events is the
same as the one shown in Section 3.2. The result is of course
the interleaved run of ten events alternating repeatedly be-
tween addHot and addCold.

Each b-thread is contained within the Blockly block of
b-thread. The b-thread can use any Blockly block for
implementing the desired logic. To synchronize with other
b-threads the b—Sync block is used, with the three parame-
ters of requested, waited-for, and blocked events.

In contrast with the BPJ Java implementation, where
b-thread priorities were assigned explicitly, in the Blockly
implementation, b-thread priority is implied by its physi-
cal location on the development canvas, with the topmost
b-thread being called first, and the lowest b-thread being
called last in every execution cycle. When a new b-thread is
added some dragging may be needed in order to insert it at
the desired priority.

When starting an application, the Blockly infrastructure
also triggers a behavioral event called start to activate
the JavaScript behavioral programming infrastructure and
execution of all b-threads.

4.3 Execution Cycle Details

To show finer points about the interweaving of b-threads in
the Blockly/JavaScript environment, we examine an applica-
tion for a computer game where the player attempts to land
a rocket on a landing pad on the surface of a planet, or per-
haps a space shuttle on a space station. The rocket moves at
a fixed speed in the vertical direction. Using GUI buttons,
the player can move the rocket right and left to be positioned
directly above the landing pad. The player can also press the
Up button to suspend the rocket and prevent it from going
down in the next time unit. A small challenge is introduced
as the landing pad keeps moving right and left either ran-
domly or subject to an unknown plan. Two walls mark the
sides of the playing areas, and the rocket cannot move past
them (but does not crash when it touches them).

StartGame Status:  Playing <- UP -> TIME=0

Rocket

WALL1 WALL2

Landing Pad

The game is won when the rocket lands safely on the
landing pad, and is lost if the rocket either lands on the
landing-pad when it is not aligned with it, or if it misses the
landing-pad altogether.

As suggested in Section 4.1 we first agree on the events,
and the associated sensors and actuators in the game. They
are listed in Figure 3.

As described in the infrastructure section, at every syn-
chronization point, the declarations of all b-threads are con-
sulted, an event is selected for triggering, and b-threads that
requested or waited for that event are resumed. Events that
are generated by sensors are handled as follows. The func-
tion bp.event dynamically creates a b-thread which re-
quests the event at the next synchronization point, and ter-
minates once the event is triggered.

When an execution cycle ends and no event is triggered,
the system is considered to have completed a superstep.
The next behavioral event, if any, must come from a sen-
sor reporting some external environment event. The sensor-
generated event initiates a new superstep which then con-
tinues until, again, there are no events to be selected. To
force a sensor-generated event to be triggered only at a be-
ginning of a new future superstep, the sensor code should
not call the event-triggering function directly, but should set
it as a timer-driven JavaScript event. Due to the JavaScript
single-threaded non-preemptive events mechanism the code
will run as soon as the current function (the super-step)
ends. This is shown below where a RocketLeft actuator
uses a when_ clause and the function trigger to serve as a
RocketTouchedLeftWall sensor.
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Sensor / Actuator | Event Event Meaning (Description)
Sensor BtnLeft User clicked <-
Sensor BtnRight User clicked ->
Sensor BtnUp User clicked Up
Sensor TimeTick A unit of time passed
Sensor RocketAtLeftWall Rocket started touching left wall
Sensor RocketAwayFromLeftWall | Rocket stopped touching left wall
Sensor RocketAtRightWall Rocket started touching right wall
Sensor RocketAwayFromLeftWall | Rocket stopped touching right wall
Sensor TouchDown Rocket touched launch pad and is aligned with it
Sensor Missed Rocket reached or passed launch pad without being aligned with it
Actuator RocketLeft Request to redraw rocket 10 pixels to the left
Actuator RocketRight Request to redraw rocket 10 pixels to the right
Actuator RocketDown Request to redraw rocket 10 pixels down
Actuator DisplayWin The application determined that the player won
Actuator DisplayLose The application determined that the player lost
Actuator GameOQOver The application determined that the game should be stopped
Actuator PadLeft The application wishes the pad to move 10 pixels to the left
Actuator PadRight The application wishes the pad to move 10 pixels to the right

Figure 3. The external world in the rocket-landing game is represented to the behavioral application via sensors and actuators.

<script>

function trigger (exEvent) {
setTimeout ("bp.event (‘"+exEvent+"’)",0);

¥
</script>
<input
value = "WALL1"
type = "button"
style = "position:absolute;left:10;top:
150;width:52;height : 500"
when_RocketLeft =
"if (rocketX<=(leftWall+1)){
trigger (‘RocketTouchedLeftWall ’);
}ll
/>

As shown here, to avoid unnecessary delays, the specified
time can be zero.

Note that a separate RocketLeft listener is responsible
for moving the rocket on the screen, and that multiple lis-
teners can be coded for a given behavioral event. The rel-
evant when_ clauses may be coded under a wide selection
of HTML objects — the approach does not require that the
programmer chooses “correctly” HTML entities associated
with a given sensor or actuator.

Two of the central questions in real-time system design is
whether two events can occur exactly at the same instant, and
how much time is required for the processing of all system-
generated events that follow a single sensor-generated event.
The user should consider the following assumptions and
implementation choices as ways to simplify the application,
when applicable:

* Always trigger sensor-generated events in a new super-
step (using the time-out technique above)

* As in Logical Execution Time [21], assume that a su-
perstep which consists of one sensor-generated event
followed by system-generated events takes (practically)
zero time.

Note that the second assumption is common, e.g., in real-
time interrupt handling and in user interface programming,
where event handlers must respond quickly. Thus, the BP
semantics is well defined, and when b-threads communicate
only through behavioral events also does not allow race
conditions. SImplicity emerges partly from the fact that each
b-thread can declare the events which affect it at a given
state, and then handle the effects of their triggering, and
completely ignore the existence of events that should not
affect its state.

5. Key Scenarios where BP Benefits Emerge

Below we outline and exemplify some of the advantages and
desirable capabilities of behavioral programming techniques
, and the software development scenarios in which they ap-
pear. For additional comparison of BP with standard pro-
gramming techniques as well as other publish/subscribe and
rule-based environments see [14, 17]

5.1 Incrementality and alignment with the
requirements

The first and foremost benefit of programming behaviorally
is the ability to structure application modules such that they
are aligned with the requirements. As discussed at length
in [14, 17], modules can be written to reflect individual re-
quirements with little or no change to existing code. Fur-
ther, as requirements are added, refined, or merely taken se-
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quentially from a requirements document, the corresponding
b-thread code can be developed and added to the application
incrementally.

In the rocket-landing game, for example, assume that one
first codes the following b-threads without any requirement
for walls — hence without the wall-related b-threads and the
four wall-related events. The coded b-threads are thus:

* Attempting to move the rocket down in response to the
passing of time,

* Attempting to move the rocket right or left in response to
a corresponding user click,

* Blocking the rocket’s down move in response to clicking
Up,
* Moving the landing pad right and left, and

* Detecting and announcing user winning or losing.

Then, the developer or the customer realize that walls
may be required and describe the desired behavior: no ad-
vancement past the wall, but hitting a wall does not mean a
crash. The appropriate sensors and b-threads to block rocket
movement like

RocketAtLeftWall
repeat  true |

do b;Sync:

request=

wait-for=
block=

RocketTouchedLeft\all -

=
b-Sync:  request=

wait-for=

P
block= - RocketLeft

can then be added incrementally. Other capabilities which
can be added with no change to the existing b-threads in-
clude additional obstacles (with behavior similar to that
of the walls), increasingly hard-to-track movements of the
landing pad, and a facility for advanced human players to
automate their own play by programming strategy b-threads
that request prescribed sequences of button-clicking events
(this last example is, of course, not needed for this sim-
ple game, but is desirable and common in more advanced
games).

The independence of behavior threads is also manifested
in that scripts and scenarios do not have to communicate
with each other directly. In the native Blockly or Scratch,
broadcasting and publish/subscribe techniques can suffice
for rich processing, relying only on local variables and
avoiding global or shared variables. With the addition of
behavioral synchronization and event-blocking (i.e., forbid-
ding) the integrated runs are enriched, without adding a bur-
den of peer-to-peer communication. Specifically, any event

or condition that a b-thread blocks may be generated by any
existing or yet-to-be-developed b-thread or sensor.

5.2 Easy state management for long scenarios

Scenarios are, of course, central to behavioral programming,
and go substantially beyond the rule-based capability of
waiting for an event and then triggering another event based
on the system’s state. For example, consider the nullification
game application[31] — a combinatorial game where the
player attempts to push in an entire array of switches placed
on a rotating wheel, and where an adversary attempts to
reverse the switch settings.

A game move consists of optionally pressing the switch
(Switch), and then rotating the wheel to the next switch
position (Shift).

In this example the animated drawing of the rotation
of the wheel and the changes in switch position are per-
formed by the GUI-processing JavaScript application pack-
age Raphael [2]. Following a game move , multiple anima-
tions have to occur, including the moving of an arrow indi-
cating the pressing of a switch, the movement of the switch
itself, wheel rotation, and the flyover of the arrow from the
human player side to the adversary side and vice versa, in an
indication of whose turn it is.

In native JavaScript, without coroutines, this sequence of
events would have to be programmed with callbacks and/or
independent event handlers, and with variables to keep track
of the evolving state and would generally look similar to:

when_UserWantsSwitchAndShift=
state = SwitchandShiftO ;
trigger( ResponseStart );

when_ResponseStart =
if ( state = SwitchAndShifto ) {
state = SwitchAndShiftl ;
trigger( startAnimation-MoveArrow );
} else {

}
when_AnimationEnded -MoveArrow =
if ( state = SwitchAndShift1l ) {
state = SwitchAndShift2

trigger( startAnimation-SwitchCurrentButton );

} else {

}
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Switch and Shift
repeat true
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Figure 4. A scenario of consecutive instructions (shown here in Blockly) facilitates natural and implicit state management.

In our implementation this sequence is handled naturally
in a b-thread as consecutive instructions as shown in Fig-
ure 5.2.

Thus, our solution facilitates waiting for events in-line
and not only by callbacks. It should be noted that several
JavaScript pre-compilers, such as Narrative]S [25], Strati-
fiedJS [29], and others, allow for sequential event handling
in JavaScript, similarly to the ability described in this sec-
tion. These extensions to JavaScript can be viewed as imple-
menting a subset of the complete behavioral protocol, often
without events blocking or multiple b-threads. In this con-
text it should be noted that BP is different from rule-based
systems is in that blocking in BP is targeted at events, re-
gardless of their originator, as opposed to rule-based system
in which blocking is by disabling rules (see, e.g., [7].

5.3 Integration with standard programming

Coding behaviorally does not mean that all calculations and
data processing performed by the application must be based
on events. A behavioral application can contain substantial
pieces that are coded in standard programming languages.
In the context of JavaScript and Blockly, JavaScript func-
tions can be called from Blockly blocks, or from the sen-
sors and actuators. In the nullification game example the
calculations of the adversary strategy which is based on de-
Bruijn sequences[31], are performed by calling a JavaScript
function. Needless to say, the Raphael animations discussed
above also demonstrate the power of such integration capa-
bilities.

5.4 Programming with parallel continuous entities
with well-defined semantics

As in the LSC language, the basic units of program code
(the actors) in the current Blockly and JavaScript environ-
ment are scripts that run “all the time”. These scripts take
desired actions when specific conditions are met, or con-
stantly express their opinion about the global state from a
narrow viewpoint based on events that they listen-out for.
As observed in [10, 23], this design appears to be “natural”
in the sense that it was adopted by children who were not
explicitly guided to use it.

In behavioral programming, instantiation, activation and
repeated synchronization of such scripts is easy, often “free”,
i.e., automatic, in comparison to the more elaborate setup
commonly needed in other languages and contexts.

A problem in Scratch pointed out by Ben-Ari and dis-
cussed in Scratch forum [3] is that the semantics of inter-
weaving scripts depends on intricate properties of the model
whose effects on scheduling are sometimes hidden from the
programmer. For a less intricate but illustrative example,
consider the scripts

- ——
‘when I receive mymsg |

cﬁa“nge LJ by a
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The programmed flow is that once the green flag is
clicked, the first script broadcasts mymsg, waits 1 second
and then broadcasts the message again. Whenever this mes-
sage is received by the second script, the variable X is incre-
mented, and after 2 seconds, the variable Y is incremented.
However a result of running and stopping the scripts is

11 |
y W) 8@

suggesting that when the message is broadcast a second
time, the first execution of the second script is interrupted
and is never resumed, thus Y is incremented only once.
When the delay in the first script is set to 5 seconds instead
of 1, the final value of Y is 2. We did not find documentation
of this semantics of Scratch.

Our approach, in this paper, is to view scripts as global
entities with well-defined scheduling, synchronization pro-
tocol, and interweaving semantics. Using our Blockly and
JavaScript environment, an application similar to the above
example will have to be coded differently. Depending on the
programmer’s solution, when the behavioral event associ-
ated with second message is triggered, this event will either:
(a) cause no effect, as at the synchronization point when it is
triggered no b-thread will declare it as a requested or waited-
for event (instead, the second b-thread is only waiting for
time-delay to pass), or (b) it will be processed by another
running instance of the second b-thread class, which would
be explicitly started by the application to catch such events
while other instances wait for the time-delay to pass. In ei-
ther case, the semantics will be well defined and the com-
posite behavior will be readily predictable.

5.5 Priority as a first-class idiom

When multiple simultaneous behaviors are active and vote
with their event declarations as votes’ with regard to the
progress of an application, priority becomes a useful con-
struct. In our implementation, b-thread priorities are based
on their easy to manage order on the canvas, i.e., a b-thread
laid higher on the canvas has a higher priority. The priori-
ties of b-threads that are perfectly aligned with each other
vertically are ordered based on the b-threads’ left-to-right
horizontal order. In addition, the single-threaded sequential
calling of JavaScript coroutines provides for well-defined se-
mantics of the “simultaneous” part of the behavior, and of
the corresponding effects on any variables that are shared
between b-threads.

5.6 The secondary role of the behaving objects

In Scratch, scripts are anchored on game characters called
sprites which are perceived as the behaving entities. On one
hand, the sprites can be readily thought of as agents or ac-
tors in their own right, which in turn rely on scripts as their

implementation or as another level in their hierarchy. On
the other hand, following the detailed discussion of inter-
object versus intra-object behavior in [11], behavior scenar-
ios are not necessarily anchored on a given object. For ex-
ample, in [23] the researchers observed that when forced to
associate scripts with sprites, young programmers split the
scripts of the (correct) behavior of one game character on
multiple sprites, and game rules were associated with ar-
bitrary sprites. This further puts into question the need to
focus on “the behaving entity” when observing a behavior.
The Blockly/JavaScript environment presented here does not
force the programmer to associate desired behaviors with be-
having objects.

We propose that there is an important distinction between
objects in general, as in object oriented programming, and
the concept of behaving entities that are tangible in the user’s
eyes. For example, in an application with a graphical user
interface, it is not always best to anchor the code on the el-
ements on the screen. It may be better, instead, to code sce-
narios that involve multiple tangible entities as standalone
modules. Of course, scenarios, events, screen objects, etc.,
may be coded with object-oriented programming.

6. Discussion and Future Work

We presented an implementation of behavioral programming
principles in JavaScript and in Google Blockly. The result is
a proof-of-concept for a programming environment which
appears to be natural and intuitive, and highlights interesting
traits of behavioral programming. An important next step is
to show the scalability of the concepts and their applicability
to complex systems. As our understanding of BP develops, it
will also be interesting to expand the discussion of compar-
isons of BP to other paradigms, which appear in [14, 17], to
additional platforms such as rule-based (e.g., [7]) and func-
tional reactive programming environments (e.g. [24]).

The ease of creating new language constructs in Blockly
and the fact that visual block-based programming seems
natural to individuals with little computer training, call for
using Blockly as a test-bed for investigating the naturalness
of new programming idioms. For example, nesting blocks
which state things like “while forbidding events a,b,c do”,
or “exit the present block when event e is triggered” have
the potential of making behavioral programs simpler and
more readable than when written with just basic b-Sync.
Specifically, they can simplify the management of the sets
of requested, waited-for and blocked events, and reduce the
need to wait, in a single command, for multiple events and
then check which of them was indeed triggered.

The availability of Blockly and JavaScript 1.7 for mo-
bile platforms, such as Android smartphones, opens the way
for a wide range of applications, and the single-threaded
JavaScript implementation may further facilitate running be-
havioral applications with many b-threads in environments
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which do not readily accommodate large numbers of con-
current Java threads.

The combination of implementations of behavioral pro-
gramming principles in popular languages, with IDEs that
are particularly user friendly, and with a growing set of natu-
ral programming idioms, may further facilitate programming
in a decentralized-control mindset by wider communities of
beginners and professionals.
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A. Appendix: Behavioral Programming
using Coroutines

This appendix presents a generic algorithm for implement-
ing the behavioral programming event-driven loop using

coroutines. The motivation for pursuing coroutines for b-threads

is twofold. First, coroutines consume less resources than
threads or processes, and therefore can be found in em-
bedded scripting languages that aim at minimizing resource
allocation, such as JavaScript and Lua. Second, this imple-
mentation does not require concurrent execution, that is not
always desirable, e.g., when debugging or verifying the sys-
tem.

A.1 Introduction to Coroutines

Coroutines provide a mechanism for executing two or more
control-flows independently, without requiring a thread
scheduler. Instead, the control is passed from one corou-
tine to the other explicitly, together with a given value. For
this reason, coroutines are also referred to as non-preemptive
multi-threading.

While coroutines are supported by a wide range of pro-
gramming languages, each language has its own syntax for
defining and using them. In this section we will use the fol-
lowing notation.

* A coroutine is a function that instead of the standard
return statement uses the special yield statement. Sim-

ilarly to return, yield passes the control flow back to
the caller together with a given value. Unlike return,
when the coroutine is called again, it resumes at the state
of the previous yield, as if it was paused and resumed.
When the coroutine is resumed, the yield expression
evaluates to the value sent to the coroutine by the caller.

The create statement takes the name of a coroutine and
creates a coroutine object. This object acts as a unique
identifier of the state of the coroutine. Each subsequent
call to the same identifier will continue from the state of
the last call to yield. Notice that create does not run
the coroutine itself.

The send statement takes a coroutine object and a value,
and resumes the coroutine with the state of the last call
to yield, returning the given value. If this is the first call
after create, the coroutine will start, ignoring the given
value.

The alive predicate tests if a coroutine object is still
running. It returns true after the coroutines is created,
and as long as the coroutine function is not completed. It
returns false otherwise.

A.2  The Algorithm

In this implementation, the programmer codes each applica-
tion b-thread as a coroutine. We use a JavaScript-like nota-
tion for lists and records.

// Queues of b-threads and their bids
running = []
pending = []
[/ mmmmmmmmm oo
// Adding a b-thread translates to pushing it
// to the running queue and creating a coroutine
// for it
[/ mm
function addBThread(prio, func) {

push running, {priority: prio,

bthread: create func}

// Run is called to begin a superstep. It invokes
// the coroutines sequentially, collects the bids,
// selects the next event, and calls itself

// recursively

function run() {
while (running is not empty) {

bid = unqueue running
bt = bid.bthread
newbid = send bt, lastEvent

if (bt has not finished) {
newbid.bthread = bt
newbid.priority = bid.priority
queue pending, newbid

}

the first event that some
b-thread requested and
no b-thread blocked

lastEvent =

if (lastEvent is not equal to undefined) {

temp = []
while (pending not empty) {
bid = unqueue pending

if (bid specifies waiting-for
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or requesting lastEvent)

queue running, bid
else
queue temp, bid
}
pending = temp
run ()
}
}
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Abstract

Using high level coordination primitives allows enhancegres-
siveness of component-based frameworks to cope with tiezenh
complexity of present-day systems designs. Nonetheless,dis-
tributed implementation raises multiple issues, regardtiath the
correctness and the runtime performance of the final impteme
tation. We propose a novel approach for distributed implame
tion of multiparty interactions subject to scheduling doaisits ex-
pressed by priorities. We rely on new composition operaois
semantics that combine multiparty interactions with obeton.
We show that this model provides a natural encoding for {bigsr
and moreover, can be used as an intermediate step towaxdbyro
correct and optimized distributed implementations.

Categories and Subject Descriptorg=.1.1 [Theory of Computa-
tion]: COMPUTATION BY ABSTRACT DEVICES; C.5 Com-
puter Systems OrganizatibnCOMPUTER SYSTEM IMPLE-
MENTATION; C.2.4 [Coputer Systems OrganizatioROMPUTER-
COMMUNICATION NETWORKS

Keywords multiparty interaction, priority, observation, conflict
resolution, distributed systems

1. Introduction

Correct design and implementation of computing systembbes
an active research topic over the past three decades. Dhiepr is
significantly more challenging in the context of distribdigystems
due to a number of factors such as non-determinism, asymatso
communication, race conditions, fault occurrences, etodd#
based development of such applications aims to ensurectoess
through the usage of explicit model transformations.

In this paper, we focus on distributed implementation fodmo
els defined using the BIP framework [3]. BIP (Behavior, later
tion, Priority) is based on a semantic model encompassinmgpoe
sition of heterogeneous components. Hledaviorof components

* The research leading to these results has received fundingthe Euro-
pean Community’s Seventh Framework Programme [FP7/20Q3]2un-
der grant agreement no. 248776 (PRO3D) and no 257414 (AST&NE
from ARTEMIS JU grant agreement ARTEMIS-2009-1-100230 ESBY)

[Copyright notice will appear here once "preprint’ opti@rémoved.]

is described as an automaton extended by arbitrary dataszod a
ciated functions written in C. BIP uses an expressive seboffo-
sition operators for obtaining composite components fragetaof
components. The operators are parameterized by a setltparty
interactionsbetween the composed components angiigrities,
useg1 to specify different scheduling mechanisms betwetenaio-
tions'.

Transforming a BIP model into a distributed implementation
consists in addressing three fundamental issues:

1. Enabling concurrency.Components and interactions should be
able to run concurrently while respecting the semantichief t
high-level model.

2. Conflict resolution. Interactions that share a common compo-
nent can potentially conflict with each other.

3. Enforcing priorities. When two interactions can execute si-
multaneously, the one with higher priority must be executed

We developed a general method based on source-to-source

transformations of BIP models with multiparty interacsdaading
to distributed models that can be directly implemented [8T8is
method has been later extended to handle priorities [10]optiel
mized by exploiting knowledge [6]. The target model corssist
components representing processes and Send/Receiactiuns
representing asynchronous message passing. Correciratamd
is achieved through additional components implementinglicd
resolution and enforcing priorities between interactions

In particular, the conflict resolution issue has been adekby
incorporating solutions to theommittee coordination problefth2]
for implementing multiparty interactions. Bagrodia [1]Joppses
solutions to this problem with different degrees of pataie.
The most distributed solution is based on the drinking [Sui{o
phers problem [11], and has inspired the approaches ozRsre
al. [18] and Parrow et al. [17]. In the context of BIP, a tramsf
mation addressing all the three challenges through emmagn-
tralized schedulers proposed in [2]. Moreover, in [8], we propose
transformations that address both the concurrency issiedak-
ing the atomicity of interactions and the conflict resolntissue by
embedding a solution to the committee coordination prolite
distributed fashion.

Distributed implementation of priorities is usually catsied as
a separate issue, and solved using completely differembappes.
For example, in [10], priorities are eliminated by addingleit
scheduler components and more multiparty interactionis.tfdms-
formation leads to potentially more complex models, havded

1 Although our focus is on BIP, all results in this paper can ppliad to
any model that is specified in terms of a set of componentshsgnized by
interactions with priorities.
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initely more interactions and conflicts than the originakoin
[4, 5, 7], the focus is on reducing the overhead for implerngnt
priorities by exploiting knowledge. Yet, these approadmee the
implicit assumption that multiparty interactions are axed atom-
ically and do not consider conflict resolution. In a similerel of
work, [6] aims at detecting false conflicts, that is, stdljodetected
but never occurring during execution. However, this methtid
relies on conflict resolution protocols, at least for statbéere no
false conflicts exist.

In this paper, we propose a combined implementation of tioe tw
coordination mechanisms, that is, multiparty interactiand prior-
ities. We propose an appropriate intermediate model amdfoe
mations towards fully distributed models dealing adedyaitgth
both of them. The contribution is twofold:

1. First, we introduce an alternative observation-basedastic
model for BIP. We show that this model is general enough to en-
compass priorities and multiparty interactions and, mezgdo
capture knowledge-based optimization as in [6]. Obsermati
based semantics reveals two types of conflicts occuringdmatw
interactions, that can be handled using different confiisbtu-
tion mechanisms (see below).

. Second, this model is used in an intermediate step of aftrn
mation leading to a distributed implementation. We show tha
observation conflictghat usually follow from encoding of pri-
orities, can be dealt more efficiently thatructural conflicts
due to sharing of components between multiparty interastio
We extend the counter-based conflict resolution protocbls o
Bagrodia in order to handle these types of conflicts. These ex
tensions have been fully implemented. We report some prelim
inary results on benchmarks.

The paper is organized as follows. Section 2 introduces the
main concepts of the BIP framework together with the alterna
tive observation-based composition semantics. Sectiendls the
principles for distributed implementation of BIP modelsctising
on conflict resolution by using counter-based protocolstiSe 4
defines the method for distributed implementation of BIP eisd
with observation and in particular, the necessary adayptati the
conflict resolution protocols. Experiments are reporte8éntion 5.
Section 6 provides conclusions and perspectives for futor.

2. Semantic Models of BIP

In this section, we present BIP[3], a component framework fo
building systems from a set of atomic components by using two
types of composition operators: Interaction and Priokitee then
present an alternative model based on Observation thaxpaess
Priority. Finally we present a transformation from a comgain
with Observation into a equivalent component with only tate
tion.

Atomic Components. An atomic componenB is a labelled tran-
sition system represented by a tup@, P, T') whereQ is a set of
control locationsor states P is a set oftommunication portand
T C Q x P x Q is aset oftransitions

Interactions. In order to compose a set afatomic components
{B; = (Qs, Pi, T;) }s=1,n, we assume that their respective sets of
control locations and ports are pairwise disjoint; i.er, doy two

i # jin{l..n}, we require tha®; NQ; = P andP;, N P; = (. We
define the global seP = _, P; of ports. Aninteractiona is a
set of ports such that contains at most one port from each atomic
component. We take = {p;}:cr with I C {1..n} andp; € P;.

If a is an interaction, we denote byipport(a) the set of atomic
components that participate i This notation is extended to sets

of interactionsy, that is,support (vy) def UaE'y support(a).

ﬂ'
rb 7 req on
I‘b ™ aCk ‘ [T
@ @ . 4
off s ons &
off g

Figure 1. BIP component. Initial state i®jff, dwn).

Priorities. Given a sety of interactions, we define a priority as
a strict partial orderr C v x ~. We writeabd for (a,b) € = to
express that has lower priority tharb.

Composite Components.A composite componenty(Bi, ...,
B,,) (or simply componentis defined by a set of atomic com-
ponents{B; = (Q:, P;,T;)}i=1,» composed by a set of inter-
actionsv and a priorityr C ~ x ~. If « is the empty rela-
tion, then we omitr and simply writey(Bi, ..., B,). A global
stateq of my(B,..., By) is defined by a tuple of control loca-
tionsq = (q1,...,¢n). The behavior ofry(Bu,...,By) is a la-
belled transition systertQ, v, —=+), WhereQ = ®_, Q; and
—~, ==~ are the least sets of transitions satisfying the rules:

a = {pi}ie[ cy

Viel (¢,pi,q) €Ty Vigl.q =g
- , , [INTER]
(q17~~~7Qn) _>'Y (Q17~~~7Qn)
g-%,qd Vd evy.ard = ¢%

7 [PRIC]

q i>7r'y q/
Intuitively, transitions—, defined by rule INTER] specify the be-
havior of the component without considering priorities. dmgo-
nent can execute an interactiare +y iff for each portp; € a, the
corresponding atomic componeB; can execute a transition la-
belled byp;. If this happensq is said to beenabled Execution ofa
modifies atomically the state of all interacting atomic comgnts
whereas all others stay unchanged. The behavior of the azenpo
is defined by transitions» -, defined by rule $riq]. This rule re-
stricts execution to interactions which are maximal witbpect to
the priority order. An enabled interactiencan execute only if no
other interactior’ with higher priority is enabled.

Example 1. A BIP component is depicted in Figure 1 using a
graphical notation. It consists of two atomic componentez

M andS. ComponentS is a server, that may receive requests;]

and acknowledge them{k). Componeni\/ is a manager that may
perform upgradesufpg) and needs to reboot#) the server for the
upgrade to be done. Interactions are represented usin@ciong
between the interacting ports. There are 4 unary intenasténd

2 binary interactions. The component goes up and down throug
the binary interactionsn and off respectively. Prioritydb 7 regq,

rb m ack is used to prevent a reboot whenever a request or an
acknowledgement are possible.

2.1 Replacing Priority by Observation

According to BIP semantics, a low priority interaction iseexted
only if all higher priority interactions are not enabled.daneral,
detecting such situations requires information about awrepts
that are not involved in the low priority interaction. We pose
here an alternative semantics of BIP parameterize®bgerva-
tion. This semantics makes explicit the sets of components to be
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Figure 2. Example of a component with observation.

observed and the global state condition to be met for awtimori
execution of each interaction.

Observation. Given a BIP componeni(Bi, ..., Bn), we define
an observation as a pair of functiod® = (obs, pred), that are
both defined overy. Let a € ~ be an interaction pbs(a) is a
subset of By, ..., B, } including the set of componentdserved
by the interactiora. We require thabbs(a) N support(a) = @.
The observed components and the suppodt arfe the components
visible toa, that isV, = support(a)Uobs(a). Fora € ~, pred(a)
is a predicate defined on the states of componeri in

Composite Component with ObservationA composite compo-

nent with observatiorO~ (B, ..., By) is defined by a compo-

nent~(Bi,...,Bs) and an observatiod over this component.

The behavior ofD(Bs, ..., By) is the labeled transition system
(Q,7, —0~), whereQ = @, Q: is the set of global states,
and— o+ is the least set of transitions satisfying the rule:

7%) i>"/ (q177q;1) pred(a)((qi)BiEVa)
(q17"'7qn) L>OW (qi,,q;)

The rule pBg)] states that a transition can take place in the
component with observation if it is already a valid trarmitin the
componenty(Bu, ..., B,) and if the predicatered(a) holds for
the current state of components . The predicatered(a), is
a boolean expression involving atomic predicate§g) for each
stateq € J!'_, Q:. The atomic predicatet(q) evaluates to true
whenever the corresponding atomic component is at gtatel to
false otherwise. The ruleBs] requires thapred(a) depends only
on states of components that are visiblextdhat ispred(a) is a
boolean expression art(q) predicates foy € [ v, Q-

(q17~-~

[oBS]

Example 2. Figure 2 depicts a composite component with observa-
tion. Each interaction is labeled by the set of observed corapts
and the corresponding predicate. Here, the only intenagtith ad-
ditional observation igb, with obs(rb) = {S}. The predicate for
executingrb is written between square brackets.

Observation-based semantics violates the component smcap
lation principle as it needs access to inner states of coemgenWe
use components with observation as an intermediate moslatds
a distributed implementation where we exploit the locatityob-
servation: observing only the components visible to arraugon
is sufficient to decide whether the interaction can takeeplac

Priority vs. observation. In Figure 2, we presented an example
of composite components with observation. Note that thdipate
associated tob actually encodes the priority rule of Figure 1, since
it guarantees that noteq neitherack are enabled when executing
rb. We show that given a priority one can obtain an observation
O- such that the behaviors of the components with priority and
observation are identical.

Using at(q) predicates, we define the predicaieV, stating
whether the interactiom is enabled. First, we define the predi-
cateENgi characterizing enabledness of pprtin a component
Bi = (Qi, P, Ty), thatisENy, = \/(, . cp at(qi). Then,
the predicaté” N, can be defined by N, = A, ., ENj,. Note
that this predicate depends only of componentsuipport(a).

Definition 1 (Priority Observation) Given a prioritized BIP com-

ponentry (B, . . ., Bn), we define theriority observationO, =
(obs, pred) for the componeny (B, . . ., By), for each interaction
a €y

® obs(a) contains all components involved in an higher priority
interactionb that do not participate im. Formally: obs(a) =
(Uens support (b)) \ support(a).

¢ pred(a) ensures that each higher priority interactiois not
enabled. Formallypred(a) = A, ., ~ENs. Obviously, this
predicate depends only on componentsupport(a)Uobs(a).

For the example in Figure 1, the only low-priority interactiis
rb. For all other interactions;bs(a) andpred(a) are respectively
¢ and True. The component with observation obtained from the
component with priority is exactly the one depicted in Fag@:
Indeed, b observes the componesst and the predicate on this
interaction is—at(Ist) A —at(srv) = 7"ENyeqg A 7ENgck.

Proposition 1. Given a component with priority-y(Bu, . .., Br)
and the component with observatiéh (B, . . ., By ), whereO,
follows Definition 1, we have— ,=—0,.~.

Proof. For each interaction, the predicatgred(a) = A, ., ~ENs

is equivalent tovb € v amb = ¢ —’3%,. Thus the rulesqRIQ]
and [oBs] define exactly the same set of transitions. |

In [6], we provided a heuristic to reduce the scope of obser-
vation while preserving behavior equivalence. More pegighis
heuristic takes an observatid@®. = (obs, pred) and returns an-
other observatio®’ = (obs’, pred’), such that

e Ya € v |obs'(a)| < |obs(a)| the scope of the observation is
reduced, and

¢ —o,C—0,~ the obtained behavior using observatioh
is correct with respect to the original one.

Furthermore, the heuristics ensures either that if theusich is
strict, no deadlocks are introduced or otherwise, that thained
component has precisely the same behavior as the origieal on

2.2

We start from a component with observati@y (B, ..., By)
and translate it into an equivalent observable BIP componen
v (Bi,...,By). In order to implement observation, each atomic
component has to make explicit its current state, both farac-
tions where it is involved and for interactions where it isetved.
Observation is therefore encoded by extending interagtiorob-
served components.

Implementing Observation with Interactions

Transforming Atomic Components. Given an atomic component
B = (Q,P,T), we define the corresponding atomic observable
component as a labeled transition systéth = (Q', P/, T"),
where:

e (Q = Q' the states are the same than in the original component.
e P’ = (P U{obs}) x Q: we add a new port denoteds, that
will be used for observation. All ports contain the inforioat
of the current state. We denote bf) the port(p, q) € P'.
e For each transitior{q,p,q’) € T, T’ contains the transition
(¢,p(q),q") where the current state of the component is explicit
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in the offered port. Foy € @, T’ contains the loop transition
(g, 0bs(q), ¢) that is used when the component is observed.

Transforming Interactions. Given a sety of interactions and
an observationD = (obs, pred), we define the new set of in-
teractionsy’ as follows. For each interaction € ~, wherea =
{pi}ic1, We extend its support to the componestgport(a) U
obs(a) = {Bj,,...,Bj,}, and we denote by the set of in-
dices {j1,...,Jjx}. For each state of this set of components
(¢jys---5qj,) such thatpred(a)(gj,,...,q; ) holds, v' con-
tains the interactiom(q;, , - - . , ¢;,,) = {Pj(¢;)}jes, wherep} =
obs; if B; € obs(a), that is B; is observed by, andp; =

p; otherwise. This transformation associates to any intemact
a of Oy(Bi,...,B,) a set of interactions:(gj,,...qj,) of
~'(B1,.., By), each interaction ofy’ being enabled by states

(gj1,- - -, a4, ) satisfyingpred(a).

Proposition 2. We have—; ., =— 0~ by mapping the interac-
tionsa(gj,,---,q;,) of v toa.

Proof. The states o0~(B, . .., B,) andy'(Bi, ..., B;,) are the

same. The transitiopn — 0., ¢’ can be fired if and only if the com-
ponents visible ta, namely{ B; };c s, are in a statéqg;, , ..., q;, )
satisfying the predicatgred(a). In that casey’ contains an inter-
actiona(gj,, - .-, qj, ). This interaction only changes the state of
participants im, thus we have iw q. a

Note that the duplication of interactions can be avoidedsiggi
models extended with variables and guards on interactlortbat
case, instead of creating a new paf¢) for any pair inP x @, each
port exports a state variabje Thenpred(a) is the guard associated
with the interactioru, and depends only on variables exported by
the ports involved in.

3. Decentralized Implementation of BIP

We provide here the principle of the method for distributed i
plementation of BIP presented in [8, 9]. This method relies o
a systematic transformation from arbitrary BIP comporfeitt®
distributed BIP components with Send/Receive interastidinese
are binary point-to-point and directed interactions frame sender
component (port), to one receiver component (port) implging
message passing, from the sender to the receiver. Thedraresf
tion guarantees that the receive portis always enabled thieszor-
responding send port becomes enabled, and therefore e/
interactions can be safely implemented using any asynolson
message passing primitives (e.g., MPI send/receive conwarun
tion, TCP/IP network communication, etc...).

In a distributed setting, each atomic component executiss in
pendently and thus has to communicate with other atomic cemp
nents in order to ensure correct execution with respectamtiy-
inal semantics. Thus, a reasonable assumption is that eagboe
nent will publish its offer, that is the list of its enabledrts and
then wait for a notification indicating which interactionshbeen
chosen for execution. This is achieved by splitting eachsition
in atomic components: one part sends the offer, the othéripar
triggered by the notification and executes the chosen ictiera

The main difficulty when transforming a BIP component into
a distributed Send/Receive BIP component is to resolve ictsfl
between simultaneously enabled interactions. In a cérdchlex-
ecution, only one entity is responsible for executing iations,
and has exclusive access to all components. In contrastdis-a
tributed setting, several entities may be responsible feceting
interactions. A conflict occurs if two different entitiey to execute
two interactions involving a common component. If both &edi

2with or without priorities

send a notification to this component, then the original seitsis
jeopardized, since a component cannot participate in tnzwo
rently enabled interactions. For conflict resolution, agcol must
be used in order to ensure that conflicting interactions at@exe-
cuted concurrently. This protocol takes into account tliersffrom
components and sends back notifications so that the ditedlmx-
ecution is correct with respect to the original semantics.

Distributed conflict resolution boils down to solving them-
mittee coordination problenfil2], where a set of professors or-
ganize themselves in different committees, a meeting reguhe
presence of all professors to take place and two committess t
have a professor in common cannot meet simultaneouslyer®iit
solutions have been provided, using managers [1, 12, 17 cit8]
culating tokens [15], or randomized algorithms without @gers
[14] to implement the conflict resolution.

We first describe how atomic components are modified to send
offers and receive notifications. Then, we focus on the Bdigi®
solutions from [1], that use managers and counters to imghem
conflict resolution. Finally, we recall how these protocate used
for building a 3-layer distributed component.

3.1 Distributed Atomic Components

The transformation of atomic components consists in ggigach
transition into two consecutive transitions: (i) affer that pub-
lishes the current state of the component, and (ipgficationthat
triggers the transition corresponding to the chosen intena. The
offer transition publishes its enabled ports through a gepecial
ports, labeled( Off ) where Off is the subset of enabled ports.

Definition 2 (Distributed atomic componentshet B = (Q, P,T)
be an atomic component. The corresponding transformedi@tom
component isB*+ = (Q*, P+, T%), such that:

e Q+ = QU{L, |¢g € Q} is the union ofstablestates and
busystates{ L, |¢ € Q}.
e P = P U {o(Off)|Off C P}, whereo(Off) is a port
indicating that ports irOff C P are enabled.
e the set of transitiong™" include, for every transition =
(¢,p,q') €T
1. anoffer transition (Lq, o({plg =}), q2 that goes from a
busy to a stable state and publishes the offer.
2. anotificationtransitiong 1, that goes from a stable
to a busy state and executes the transition from the original
component.

Notice that we introduced a new port for each possible offer.
This allows us to using the same model as for non-distributed
atomic components. However, as the notation suggests, nvesea
a single porb with exported variables as described in [9].

3.2 Bagrodia’s Counter-based Conflict Resolution

In Bagrodia’s solutions, the protocol is made of one or saver
managers that receive offers from the atomic componentsegohyl
with notifications.

Centralized (Single) Manager. The first solution consists of a
single manager. In order to ensure mutual exclusion of adinftj
interactions, the protocol maintains two counters for eattimic
componentB;:

e The offer-countn; which counts the number of offers sent
by the component. This counter is initially set to 0 and is
incremented each time an offer froB) is received.

e The participation-countN; which counts the number of times
the component participated in an interaction. This couiger

2012/10/4



initially set to 0 and is incremented each time the manager Lemma 1. If n; > N;, then the componet®;* is in a stable state
selects an interaction involving; for execution. g and Off; = {plq: Lh.}_

Intuitively, the offer-countn, associated to an offer from a . I .
component3; correspond to a time stamp. The manager maintains Proof- The construction of3;* implies that |tla_lte_rnates offer and
the last used time stampV¢) for each component. If the time stamp ~ €Xecute transitions. Initially,; = N; and B;" is in a busy state.
(n:) of an offer is greater than the last used time stafip),(then The only possible transition is an offer, which brings thsteyn to
the offer from B; has not been consumed yet. Otherwise, some @ Staté where,; = N; +1 > N; is true and the offer transition
interaction has taken place and the manager has to wait fewa n  €nsures the property to prove. Next possible steBjn is an

offer from this component. execute action, after which again = N; andBj" is a busy state.

Furthermore, the manager recalls the last offer sent by each This behavior repeats forever. . u
component. Thus in order to schedule an interaction, it rwivstk _ In order to show observational equivalence, we have to de-
that (1) the interaction is enabled according to the lagtreffe-  fine the observable actions of both systems. For the componen
ceived and (2) these offers are still valid according torthand N; 7(Bi, ..., Bn) the observable actions are the interactigng-or
counters. We define formally the behavior of the centralizedo- the counter-based implementation, the visible actiongterexe-
col as a composition operator over distributed atomic carepts. cute actionsy. We denote byj the offer actions.

We define a relation between stat@®f the centralized compo-

Definition 3 (Centralized Counter-based Implementatiojiven nent and state@ ™" of its distributed implementation. To each state
a BIP componenty(Bs, ..., B,) we define the behavior of the gt € Q7 of the distributed implementation, we associate a state
counter-based centralized implementation as an infingtie 4TS e(q™) € Q of the original component. For each componéht,
(Q*,~*, T+) where: q*[i] is either a stable statg or a busy statel 4, . In both cases,

we takee(qt)[i] = ¢i. We say that a state € Q andg™ € Q*
e The set of state@* is the product of the states of the atomic  are equivalent, denoted ly- ~ q, if ¢ = e(¢™).
components with the state of the protocol:
n n Proposition 3 (Correctness of Centralized Counter-based Imple-
Q= ® QF x ® (N x N x 2Pi) mentation) Given a componeni(Bs, ..., By,), the labeled tran-
i=1 i=1 sitions systemé&R,~, T') and (Q*,~*, T™) of its distributed im-

The state of the manager is defined hytriplets m;, = plementation are observationally equivalent.

(ni, Ni, Off ;), one for each componet®;, wheren; and N;

are the values of the corresponding counters @xffl is the Proof. We have to prove that:
last offer fromB;. We denote by g, m) a state ofQ*, ¢[i] and
m/[i] represent théth component of the tuplesandm. 1. If gt Byt thenvg ~ g+, r ~ g*.

The interactionsy! consists of interactions of the original
component and the offers:

v=yuld U eaof)

2. Ifgt L rhthenVg ~ g, IreQ g, rAr ~ 1t

3. If ¢ % r, thenvgt ~ ¢, Irt € Q+ ¢* B8l Aot

1. This is a consequence of the definitionaf

"mhogez’ 2. The transition(g*, a, 1) is possible at statg" e Q+ if for
e There are two types of transitionsTn": each participanB; in the interaction, the counters verify > N;,
(1) offer transitions:From stateq, m) € Q*, there is an offer ~ and for each pon; € a, we havep; € Off ;. The Lemma 1 ensures
transition inT* if for some componenB; an offer is enabled: that in the equivalent state € Q, we have as wely —*5 7.
(qli], 0:(Off), q}) € Ti-. ThenT™ contains the transiton  The cf)nstruction of distributed atomic components enstiras
o (Off) /v . re~TT.

(g, n?). - (¢',m), where : 3. If ¢ =% r, then for each statg™ ~ ¢, each participanB; in a

"4 [f], = _ ) is either in a busy or in a stable state. In the first case, ipesform

* m'[i] = (ni + 1, N, Off ), with m[i] = (ns, Ni, Off ), an offer transition, labele@, and reach a stable state. By point 1.,

= forall j # i, ¢'[5] = q[j] andm/[5] = m[j].
(2) execute transitionsErom state(q,m) € Q™, there is an
execute transition i+ if for some interactioru = {p; }:c1,

the stable state’* such thatg™ LN ¢'* is also equivalent tq.
At stateq’L, all offers transitions for. have been executed and we

B a ,

we have, for alk € I (with m[i] = (ns, Ni, Off,)): haveg" = ¢'* — r*, with 7 ~ 7. N O
* p; € Off,: the interaction is enabled according to the last In Definition 3, the enabling of offer transitions dependslex
offers, sively on the state of the component sending the offer. &iyjlthe

enabling of execute transitions is decided by the managereal
Thus we can assume an asynchronous execution where an offer
transition is executed first by the atomic component, by isgnd

* n; > Nj: the last offers are still valid.
Then, the transitiofg, m) — (¢/,m’) isin T+, with:

. s . . 1
“Viel,q [2] is the state such théh[d], p:, ¢lil) € T, a message and then by the manager when receiving the message.
* Vi € I,m[i] = (ni, Ni+1, Off ;): counters of participants  similarly, the execute transitions are performed afterrttamager

are incremented. sends messages to components involved in the interaction.

* Vi ¢ I,q'[j] = qls] Am'[j] = mlj] _ : :
Decentralized (Multiple) Manager(s). In [1], Bagrodia decen-

We show that the component(Bs, ..., B,) and the corre- tralizes the manager into a set of distributed managers, ralg-
sponding counter-based implementation are observalyoeguiv- ing on counters to ensure correct execution of the interastiThe
alent in the sense of Milner [16]. We first prove the following correctness is guaranteed as long as each manager can cldeck a
lemma. modify atomically all theN; counters corresponding to an interac-

tion. Bagrodia proposes two protocols guaranteeing toiniity:
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e The token ring protocol, where a token circulates throudh al
managers. This token stores td& counters for the whole
system, which guarantees atomic access for each manager.

e The dining philosophers protocol, where two interacticmet t
involve a common component share a fork with a copy of the
N; counter on it. In order to execute an interaction, the manage

Conflict Resolution Protocol. This algorithm embeds one of the
Bagrodia’s counter-based protocols as presented in théopse
section. The protocols have been slightly modified sinceagers
do not receive offers one by one from components but instead r
ceive the set of offers corresponding to an interaction bgrdne

of the interaction protocols. The protocol can either beredined,

needs to acquire all forks and can then check and update if or distributed e.g. token ring or dining philosophers. Theiface

necessary alN; values simultaneously.

It can be shown that these protocols are trace equivaleht wit
the centralized implementation [9]. However, they are rxstsova-
tionally equivalent with the centralized implementatigimce the
position of the token or of the forks may prevent some choioes
be made (see [9] for details).

3.3 3-layer Distributed Architecture

The obtained distributed components must meet the follptviree
properties: (1) preserve the behavior of each atomic coemo(R)
preserve the behavior of interactions, and (3) resolve ictsith a
distributed manner. To ensure these properties, we staiclis-
tributed components according to a hierarchical architectvith
three layers. The lower layer includes the transformed mteom-
ponents. The second layer deals with distributed intevactixe-
cution by implementing interaction protocols (IP). Therdhiayer
deals with conflict resolution. Since several distributkpbethms
exist for conflict resolution, this layer is generic with appriate
interfaces. An example of 3-layer architecture obtainemnfithe
component presented in Figure 1 is depicted in Figure 3.

CRP
TSV (;f ; TSv ok ; rsv oIk' ;
1P 1P, IPs
"ng nvrb Ogl O‘W Non Toff O.S O.S ”;eq ﬂ$k
L L L . 2 L L 2 1 L L
upg rb OM onnoff \, off g ons 0s req gck

Mt St

Figure 3. 3-layer distributed implementation
Figure 1.

of component from

Components Layer. This layer contains the distributed version of
the atomic components, as described in section 3.1. In E&igpit
corresponds to componentg andS—.

Interaction Protocol. This layer consists of a set of interaction
protocols each hosting a set of interactions from the osigBiP
component. Conflicts between interactions included in #raes
interaction protocol are resolved by that component lgcalin
Figure 3,/ P, handles interactionpg andrb, I P> handleson and
off , andI Ps handlesreq and ack.

The interaction protocol evaluates the guard of each iotiera
and executes the code associated with an interaction theleisted
locally or by the upper layer. The interface between thistay
and the component layer provides ports for receiving offerm
each component (through ports suchaag) and notifying the
components on permitted port for execution (through pantshs
asn,,). Sender ports are denoted by triangles and receiver pprts b
bullets. Interactions with one sender and multiple reagsiveeans
that the sender sequentially sends a message to each receive

between this layer and the Interaction Protocol involvesspfor
receiving requests teeservean interaction (labelledsv) and re-
sponding by either success (labell@g or failure (labelledf).

4. Distributed Implementation of Observational
Semantics

Applying the transformation presented in Subsection 2l2ved
by the distribution method presented in 3 allows to obtairisa d
tributed model from a component with observation. This radth
leads to anultiparty-basedmplementation. We show here that a
multiparty-based implementation is costly, as it treatobserva-
tion conflicts as structural conflicts. We propose an opttizer-
sion of Bagrodia’s counter-based protocol presented ipit&@ous
section, that allows us to build abservation-awarémplementa-
tion.

4.1 Observation Conflicts

Using the transformation presented in 2.2, we can transéocom-
ponent with observation into a observable component. Thisst
formation implements observation of components througi ne
ports denotedbs. However, it introduces new structural conflicts
between interactions on the observation pobts

aat(q)] blat(q)]
{B2}] [(B:}
D1 b3
By p? pBZ Bs

Figure 4. Model with observation.

As an example, consider the model depicted in Figure 4. k con
tains three atomic components and three fragments of aitena
Interactionse andb observe the atomic componeBt. Execution
of a or b will not change the state d8» since none of its transitions
is involved. Intuitively,a andb can be executed in parallel, they do
not really conflict. However, execution efthanges the state of the
atomic componenB; and may disable the predicate associated to
a or b. Thusa andc cannot be executed simultaneously. They are
conflicting.

This type of conflicts also appears in transactional memo-
ries [13]. In this context, different transactions (intians) can
simultaneously read (observe) a variable (an atomic coemdn
but writing on a variable (executing a transition) requiegslusive
access to the variable.

When we transform such a model with observation into a ob-
servable model, as described in subsection 2.2, we ob&mdiel
depicted in the Figure 5. The observation is implementectiora
a new portobs(q) and extending interactionsandb to that new
port. In this model,B; becomes a participant in the interactions
a andb by executing a loop transition. This results in a structural
conflict betweern andb.

The 3-layer distributed implementation generated fromra-co
ponent obtained with the transformation presented in Subse
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alqr,q,--.) b(¢:q2,...)
p1(q1) Obs(q)( ) p3(q3)
obs(q
B r(q) B3
P(.(I) B,

C

Figure 5. Observable model obtained from the model with obser-
vation in Figure 4.

tion 2.2 involves an unnecessarily high number of exchamgest

sages. Consider the model presented in Figure 5. Execufion o

interactiona followed by interactiorb requires at least 4 messages
between the componei®, and the protocol. Indeed, each inter-
action requires at least one offer and one notification. &tiear
messages could be replaced by a single one, indicatingBha

at stateg to the protocol, since the componeBit does not need to
be notified when it is observed.

4.2 Counter-based Conflict Resolution for Observation

The transformation from a component with observation to lan o
servable component adds new conflicts and results in a messag
inefficient distributed implementation. In order to avofdst we
modify the conflict resolution protocol to take observatioto ac-
count. The particularity of observation is checking thabanpo-
nent is at a particular state, without state change. Thisrdifrom
multiparty interactions, where observation is combinethwtate
change.

e The interactions of - include the interactions from the original
component and the offers:

vr=rulU U eof)

i=1 ofre2Pi

e There are two types of transitions '
(1) offer transitions:From state(q, m) € Q*, there is an offer
transition inT* if for some componenB; an offer is enabled:
(qld], 0:(Off), q}) € Ti-. That is, T+ contains the transition
(¢,m) "L (¢, m"), where:
*q'li] =g,
» m/[i] = (ni+1, N, Off, q[i]) (Withm[i] = (n:, Ni, Off ;, @),
= forall j # i, ¢'[5] = q[j] andm/[5] = m[j].
(2) execute transitionsErom state(q, m) € Q*, there is an
execute transition iff"* if for some interactiors = {p; }:e1,
we have, for alt € I (with m[i] = (ni, Ni, Off;, ¢i)):
» p; € Off,: the interaction is enabled according to the last
offers,
» n; > N;: the last offers are still valid.
Furthermore, we require thated(a)((¢:)B,ev, ) holds.
Then, the transitiofg, m) — (¢/,m/) is in T, with:
= Vi € I, ¢'[i] is the state such th&[i], p:, ¢'[i]) € T;-,
Vi e I,m'[i]| = (ni, Ni + 1, Off ;, ¢;): counters of partici-
pants are incremented.
*Vj ¢ 1,q'[j] = ali] Am/[5] = mlj]
As for the counter-based implementation, we prove the ctrre

ness of the adapted version using Milner's observationalvag
lence.

The proposed adaptation of the counter-based protocol pre- proposition 4 (Correctness of adapted Counter-based Implemen-

sented in Definition 3 can be reused in the 3-layer BIP model to tation). Given a componen®~(B;, .

encompass observation and thus priority.
This adaptation relies on the following key facts:

¢ Observation of a component does not imply state chafgesh-
ness of the offer from a component (the observation) is still
validated by checking; > N;. However, upon execution of
an interaction, théV; counters corresponding to the observed
components are not incremented. Thys> N; still holds and
another interaction observing the same component cated|
place.

The state predicates need to be checkEdis assumes that
every component sends its local state with its offer andttiet
manager knows the state predicate for each interaction.

Definition 4. Given a BIP component with observati@pry (B,

..., By) we define the behavior of the adapted counter-based cen-

tralized implementation as an infinite state LT®*,y*,7")
where:

e The set of state§ is the product of the states of the atomic
components with the state of the protocol:

QLzéQilxé(NXNXQPiXQi)
i=1 i=1

The state of the manager is defined byquadruplesm; =
(ni, Ni, Off ;,qs), one for each componei®;, wheren; and
N; are the values of the corresponding counte&?g’, is the
last offer fromB; andg; is the last known state from®;. We
denote by(g,m) a state oiQ*, ¢[i] andm/[i] represent theth
element of the tupleg andm.

.., Bn), the labeled transi-
tions systemé&Q, v, T) and (Q+, v+, T+) of its distributed imple-
mentation are observationally equivalent.

The proof has the same structure as for the Proposition 3, and
uses the same equivalence relation. The only differencepsints
2. and 3. where we have to take into account the additionaliega
condition. More precisely, we have to show that the trutlueadf
the enabling condition is preserved by the equivalencdioalae-
stricted tostablestates. This is obtained by considering the counters
of observed components.

The correctness is guaranteed through the fact that chetihén
freshness of offers sent by visible components and incrénten
the counters of participant components is an atomic aclibos
as for Bagrodia’s original version, the manager can beibigtd
provided this atomicity is ensured, either by the token ndy
the dining philosophers solutions.

Observation-aware
implementation

Multiparty-based
implementation

Figure 6. Exchanges of messages to execute the sequerice
in the model of Figure 4, for the two implementations.
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Example 3. To illustrate the behavior of this new protocol, con- E;
sider again the model depicted in Figure 4. We obtain a nartyp - - ___
based implementation by transforming it into the model giufé 5 eat;— ‘J eat;

and then using the original protocol from Bagrodia. The rfiedi eat R P; ot Fitq cot

protocol presented here allows to obtain an observaticareim- D) D)
plementation directly from the model in Figure 4. In Figuren@ clnﬂ cat Clnat n Teat
compare the behavior of the two approaches, when exectuteg t L L : ‘

P bp g Qsed Cleaning>—Ceating | | e

interaction sequenceg b, c. On the left, we show the messages ex- clny

changed in the multiparty-based implementation. On thiet rige cln clng  clny cln

show the messages exchanged in the observation-awareneple q F

tation. For each process (the distributed componéhtand the - ____ ! -
protocol P) Figure 6 presents the sequence of messages received ~cleanright; ; cleanleft; cleanright;  cleanleft;

and sent. The black circles indicate that an interactiocheduled
by the Protocol. Note that the componéd® is observed by andb
and is participant ire. With the multiparty-based implementation,
the observation is treated as a participation. Both executf «
andb trigger the emission of a notification(s) to B- followed by

a new offer 6()). With the observation-aware implementation, the
first offer sent byB: is observed but not consumed byndb. So, This example has a particularly strong priority rule. Indlee
there is no need to se_nd notifications and wait for co_rrespgnd executing one ¢lean” interaction requires to check thatl “ eat”
offers. Only the execution afconsumes the offer. For this particu-  interactions are disabled, that is to observe all compsndtiis

lar configuration, the new protocol spares 4 messages ar@hB®s o, mple allows to compare both implementations under gtron
par.a'llellsm sincé andc can be launched directly after without priority constraints.

waiting for a new offer. As explained in Section 3.3, the construction of our distibl
implementation is structured in 3 layers. The second layqrar
rameterized by a partition of the interactions. For thisnepi, the
partition is built as follows. There is one interaction pl F;

for everyeat; interaction and one interaction protoed) for every

pair cleanright,_,, cleanleft,. Only the latter deals with low prior-

ity interactions that need to observe additional atomicponents.

We compare multiparty-based and observation-aware imple-
mentations. For both, once we have built the distributed pmm
nents, we use a code generator that generates a standalene C+
program for each atomic component. These programs communi-
cate by using Unix sockets.

C; Cit1

Figure 7. Fragment of the dining philosopher component. Braces
indicate how interactions are grouped into interactioriquols.

The observation-aware implementation is more messagzeseii
than the multiparty-based implementation. If there is neenta-
tion, both implementations behave exactly the same. Ietiean
observation, executing the observing interaction regultse emis-
sion of a notification to each observed component in the pauity-
based implementation. This notification is not generatedhn
observation-aware implementation. Moreover, in the olagem-
aware implementation, an offer may be shared between $evera
interactions observing the same component, reducing€uttie
overall number of messages.

5. Experiments

18000 T T T T T T —
i i Multiparty-based —
We compare the execution time and the number of exchanged mes 16000 L Observation-aware tooo ]
sages for several distributed implementations of a computonith
14000 | -

priority. The first step involves transformation of this qooment
into a component with observation. Then we consider the tlo f

<]

©

g
] ) 3 12000

lowing sequences of transformations. 2
S 10000

(53
e Transform the component with observation into an obseevabl £  gggo

component as explained in Subsection 2.2. Then generate a 3- £
layer distributed model embedding Bagrodia’s conflict heso 5 6000
tion protocol described in Subsection 3.2. This methodltesu é 4000
in a multiparty-based implementation. 2 00

¢ Directly transform the component with observation into a 3- o
Iayer distributed model e.mbeddlng 'the modlflfed conflict reso philo3 philo4 philo5 philos philo?7 philog philo9
lution protocol described in Subsection 4.2. This methadlts
in a observation-aware implementation.

Example

) ) ] Figure 8. Number of interactions executed in 60s for the dining
For both implementations, we used the centralized versfon o philosophers example.

the conflict resolution protocol.

. . The obtained code has been run on a UltraSparc T1 that allows
5.1 Dining Philosophers parallel execution of 24 threads. For each run, we count time-n
We consider a variation of the dining philosophers problee, ber of interactions executed and messages exchanged inc60 se
noted by Phildv where N is the number of philosophers. A frag-  onds, not including the initialization phase. For eachadnse we
ment of this composite component is presented in Figure 7. In consider the average values obtained over 10 runs. The mwhbe
this component, an “eat” interactiosut; involves a philosopher interactions executed by each implementation is presentedy-

and the two adjacent forks. After eating, philosoptfgrcleans ure 8. The total number of messages exchanged for the esrcuti
the forks one by onecfeanleft, then cleanright,). We consider of each implementation is presented in Figure 9.

that eacteat; interaction has higher priority than amjeanleft ; or The comparison of the two implementations shows a huge dif-
cleanright ; interaction. ference both in performance (humber of interactions exehund
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Figure 10. Jukebox component with 3 discs.

philo3 philo4 philo5 philo6 philo7 philo8 philo9
Example

same example without taking priority into account resuftsan

Figure 9. Number of messages exchanged in 60s for the dining - g X
implementation that does lesgetd” interactions.

philosophers example.

300000

8000

T T
Multiparty-based  m—
Observation-aware =2

T T
Multiparty-based
Observation-aware

7000

T
!

communications needed (total nhumber of messages exchanged 250000 |-

The observation-aware implementation is fastest and niesds
messages than multiparty-based implementation. This eagxb
plained as follows. In both caseat; interactions can execute in
parallel, provided they do not involve a common fork. Howeve-
solving priority conflicts requires to observe all compatseior ex-
ecuting acleanleft; or acleanright; interaction. In the multiparty-
based implementation, observed components must synebremi
execute some interactiotieanleft; or cleanright;. Between two
“clean” executions, each component has to receive a notification
and to send a new offer. This strongly restricts the parsitelIn

the observation-aware implementation, a component odfestil
valid after execution of an interaction observing that cormgnt.

For a “clean” interaction, only two components will need to send a  Figure 11. Number of interac-Figure 12. Number of messages
new offer before anotherclean” interaction can be executed. This  tion executed in 60s for the jukeexchanged in 60s for the jukebox
explains the speedup. box example. example.

6000

T

200000 [
5000

T

4000 150000 -

T

3000

T

100000
2000

T

Number of interactions during 60s
Number of messages during 60s

50000 -
1000 -

i ! 0 il !
jukebox3  jukebox4 jukebox3 jukebox4
Example Example

5.2 Jukebox We performed the same measurements, in the same conditions
) . ) . as for the previous example. The number of interactionsiggedn

The second example is a jukebox depicted in Figure 10. lerepr  gos js presented in Figure 11. Here performance of bothoresss
sents a system, where a set of readers. . [, access datalocated  the same. The main reason is that no or few parallelism isatio
on N disks D, ... Dy . Readers may need to access any disk. We petween low priority interactions, i.e. twauhload” interactions
denote by jukebaX' the jukebox component withy disks. Access  from the same jukebox cannot be launched sequentially anihru
to disks is managed by jukeboxés, J> that can load any diskto  parallel since they involve the same jukebox. However, Figi2
make it available to the connected readers. The interabiiof, shows that fewer messages are exchanged, with the observati
(respectivelyunload; x) allows loading (respectively unloading)  aware implementation. Intuitively, this difference capends to
the diskD; in the jukeboxJ,. Each reader; is connected to @ the notifications and subsequent offers to and from obsezwet
jukebox through thecad; interaction. Once a jukebox has loaded ponents, that are not necessary with the observation-awenle-
a disk, it can either take part in a “read” or “unload” inteian. mentation.
Each jukebox repeatedly loads all disks in a random order.

If unload interactions are always chosen immediately adter

disk is loaded, then readers may never be able to read datee-Th 6. Conclusion

fore, we add the priorityinload, i, 7 read;, for all i, 5, k. This en- We proposed different methods of generating a distributgule-
sures that “read” interactions will take place before ceponding mentation for multiparty interactions with observatiorheTpro-
disks are unloaded. Furthermore, we assume that readarsated posed model ensures enhanced expressiveness as thegnahlin
to J1 need more often disk 1 and that readers connected:to  ditions of an interaction can be strengthened by state qmish
need more often disk 2. Therefore, loading these disks ircdine of components non participating in that interaction. ledity en-
responding jukeboxes is assigned higher priofityid; 1 ™ load 1 compasses modeling of priorities which are essential faetiog
for i € {2,3} andload; 2 mloads 2 for i € {1,3}. Each interac- scheduling policies. We have proposed a transformatiodiriga
tion is handled by a dedicated interaction protocol. from a model with observation into an equivalent model with i
Compared to the Dining Philosopher example, this one has teractions. The transformation consists in creating everdaking
more localized priorities, in the sense that they do not iregto visible state-dependent conditions.
observe the global state of the system. Here a priority silesed Expressing observation by interactions allows the apfidina
to express a scheduling policy that aims to improve the efiicy of existing distributed implementation techniques, suslh@ one

of the system, in terms ofréad” interactions. Generating the  presented in [9]. We have proposed an optimization of the con

9 2012/10/4



flict resolution algorithm from [1] that takes into accouhetfact
that an observed component does not participate in the abger
interaction. Preliminary experiments show significanf@enance
improvement of this optimized implementation method.

Future work directions include the study of knowledge-base
techniques [6] for efficient conflict resolution, in partiauby min-
imizing the set of the observed components for each interact
We also plan to study optimized implementations of systeritis w
multiparty interaction and observation, for other implerations
based on other conflict resolution protocols, such-@re [18].
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Abstract

For distributed computing, orchestrations along predefined com-
munication paths are used to obtain agreement between system
components on the next chosen transition. Although the communi-
cation overhead can be high, it can be efficiently reduced by the in-
troduction of knowledge, which provides each local component im-
perfect view on the global state during run-time. In this paper, given
a safety criterion, we formulate the problem how to automatically
orchestrate components in a system using stateless precedences be-
tween actions under the assist of statically computed knowledge.
If the system is diagnosed as unsafe, the use of knowledge can be
integrated in the synthesis process to enlarge the set of legal fix-
ing candidates. These new solution candidates may disrespect pre-
defined communication paths but their defined priorities are still
guaranteed to be deployable.

Keywords component-based systems, knowledge, synthesis

1. Introduction

In distributed computing, knowledge — algorithmic methods for
each component to reason global execution from a local view — is
essential to reduce communication overhead in distributed orches-
tration of system components. Consider, for example, the situation
where component A is prohibited from executing action 7 when-
ever component B is able to execute action o. These kinds of de-
pendencies between actions are called priorities and each priority
is of the form 7 < o. In situations where A intends to execute
T, it needs to be informed by B that B does not intend to exe-
cute o. This requires an explicit communication from B to A. In
general, these kinds of communication and synchronization over-
head at runtime may lead to inefficient execution of the distributed
systems. In many interesting cases, however, component A may al-
ready infer from, a priori, knowledge about certain aspects of the
global behavior. For example, if it is known by A that it is impos-
sible for B to execute o in the current configuration, then it is safe
for A to execute 7 without initiating any further communication.
We refer the above use of knowledge posterior to design, i.e., it is
used at run-time to reduce the communication. The problem of us-
ing knowledge to assist system execution can be found in several
recent works [2, 6, 7].

[Copyright notice will appear here once ’preprint’ option is removed.]

ruess@fortiss.org

saddek.bensalem@imag.fr

C) informs Cy
-—
(' informs C

Cy informs Cy
- C d
Cj informs Cy

Figure 1. A simple component-based system.

In this paper, we investigate the dual problem, i.e., how can
the use of knowledge assist system design, where the knowledge
is computed statically and prior to the design process. The impor-
tance of this problem is that the integration of knowledge allows
to automatically find distributed controllers, where in some cases
the synthesis process without knowledge can not provide a solu-
tion (shown in later sections). Here we constrain “’design” to the
process of synthesizing appropriate orchestration mechanisms on a
system from a given set of components, together with fixed interac-
tions between components and pre-defined communication topolo-
gies. More precisely, our developments are based on generating
distributed controllers in terms of stateless precedences (i.e., priori-
ties) between transitions to control a system such that the controlled
system is deadlock-free and respects given safety properties, as in
distributed priority synthesis [4]. We show that this framework of
distributed priority synthesis can be extended, such that under the
assistance of knowledge, we can synthesize a set of priorities which
may disrespect the defined communication paths but such a prior-
ity set is still guaranteed to be deployable due to the precomputed
knowledge. Nevertheless, knowledge is used differently apart from
the example above: for such examples we consider that the knowl-
edge is used negatively by guaranteeing the absence of certain ac-
tions. In synthesis, as introducing a priority 7 < o is used to block
7 under the condition that o is also available, the knowledge shall
be used positively by guaranteeing the presence of certain actions.
Unfortunately, due to the interleaving semantics and nondetermin-
ism, methods which compute knowledge might only return a weak
form, i.e., for a given local state s, a set X of actions where at least
one of them is enabled. This implies that when a component is ex-
ecuting 7 at its local state s, the use of weak knowledge requires
to introduce a complete set of priorities {r < ¢ | o € X}, such
that the local component can use the inferred knowledge and block
executing 7.

2. Knowledge and Distributed Priority Synthesis

In this section, we formulate the problem of synthesizing priority-
based distributed controllers using knowledge. The underlying sys-
tem is a simplified form of the Behavior-Interaction-Priority (BIP)
framework [1], where we omit many syntactic features of BIP such
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as hierarchies of interactions and disallow the use of variables. In
addition, uncontrollability from the environment is not modelled.
We use the system in Figure 1 as a running example.

2.1 Component-based Systems and Global Semantics

Let X be the set of interactions. A component C; of the form
(Li, 24, T3, 19) is a transition system, where L; is a nonempty,
finite set of control locations, ¥; C X is a nonempty subset of
interaction labels used in C;. T; is the set of transitions of the form
(1,0,1), where I,1' € L; respectively are the source and target
locations, and ¢ € ¥; is an interaction label (specifying the event
triggering the transition). Finally, I € L; is the initial location.

A system S of interacting components is of the form (C =
UL, Ci, %, P), where m > 1, all the C;’s are components, the
set of priorities P C 2%%® ig irreflexive and transitive [5]. The
notation o1 < o2 is usually used instead of (o1,02) € P, and
we say that oo has higher priority than oi. A configuration (or
state) ¢ of a system S is of the form (I1,...,ln) with I; € L;
forall i € {1,...,m}, and let Cs be the set of all configurations.
The initial configuration co of S is of the form (19,...,1%,). An
interaction o € X is (globally) enabled in a configuration c if,
first, joint participation holds for o, that is, for all o € X; with
i € {1,...,m]}, there exists a transition (I;,0,l;) € T;, and,
second, there is no other interaction of higher priority for which
joint participation holds. X, denotes the set of (globally) enabled
interactions in a configuration c. For o € ¥, a configuration ¢’ of
the form (I3, ...,1.,) is a o-successor of c, denoted by ¢ =+ ¢/,
if, forall i in {1,...,m}: If ¢ &€ %;, then [ = I;, otherwise (i.e.,
o € %;) there exists transition of the form (I;, o, 1}) € T;.

A trace is of the form co . . . ¢, with ¢ the initial configuration
and c; RERZN cj+1 forall j : 0 < j < k. In this case, ¢y is
reachable, and Rs denotes the set of all reachable configurations
from cp. The system is deadlocked in configuration c if there is
noc¢ € Rsandno o € X. such that ¢ % ¢/, and the set of
deadlocked states is denoted by Cgeqq- A configuration c is safe if,
given a set of risk configurations Crisk, ¢ ¢ Cdead U Crisk, and a
system is safe if no reachable configuration is unsafe.

DEFINITION 1 (Priority Synthesis). Given a system S = (C, %, P)
together with a set Cr;si; C Cs of risk configurations, P+ C 3 x %
is a solution to the (centralized) priority synthesis problem if the
extended system (C, X, P U Py) is safe, and the defined relation
of P U P4 is also irreflexive and transitive.

(Example in Figure 1) The system S has three components
C1, Cs, Cs, uses interactions 2 = {a, b, ¢, d, e, f }, and has no pre-
defined priorities. The initial configuration is (so, s3, sg). Define
the set of risk states to be {(s2, s5, ss), (s2, S5, 89) }. Then priority
synthesis introduces the set {b < ¢, b < f} to avoid deadlock and
risk states. E.g., in state (s1, s5, sg) (see Figure 2), interaction b is
not enabled due to priority b < ¢, and the subsequent state can only
be (517 S6, 89).

2.2 Communication Architecture and Knowledge

We now use the notion of communication architecture to define
distributed execution. Intuitively, a communication architecture is
defined as a set of communication paths such that intentions of
executions are properly transmitted. Formally, a communication
architecture C'om for a system S of interacting components is a set
of ordered pairs of components of the form (C;, C;) for C;, C; €
C. In this case we say that C; informs C; and we use the notation
C; ~» (. Furthermore, the communication architecture defines,
foreach,j € {1,...,m}, afunction avail] : L; — 2% such that
given a configuration (I1,...,Im): If C; ~ C; then avail! (I;) =
{o |3t = (4, 0,1}) such that t € T;}. Else avail! (I;) = 0. Such

\‘1 (80, 83, Ss) ‘_(1»{ (s1, 84, 88) ’—b>{ (s2, 54, S8) ‘
R
‘ (51, 55, 58) |2 (52755,58)‘
af;
d ‘ (51,57, 58) }<d—‘ (s1,56,59) ’—bﬁ (52,565 59) ‘
]

Figure 2. The state transition graph (reachable from the initial
state) of Figure 1.

a communication architecture Com is deployable if the following
conditions hold for all o, 7 € ¥ and i, 5 € {1,...,m}:
o (Self-transmission) C; ~~ C; € Com.
o (Group transmission) If o € ¥; N X, then C; ~ C;, C; ~~
C; € Com.
o (Priority transmission) If o < 7 € P,o € ¥j,and 7 € %;
then C; ~ Cj e Com.
Therefore, components that possibly participate in a joint interac-
tion exchange information about next intended moves (group trans-
mission), and components with a high priority interaction 7 need to
inform all components with an interaction of lower priority than 7
(priority transmission). In this paper, we make an explicit assump-
tion that a system under synthesis is deployable on the given com-
munication architecture.

(Example in Figure 1) The communication architecture C'om in
Figure lis {C1 ~ 01,02 ~ 02,03 ~ 03701 ~ CQ,CQ ~
Cy,Cs ~ C5,C5 ~~ C3}, which disallows C; and C5 to com-
municate to each other. At configuration (si,s4,Ss), we have
availi(s1) = {f} (later we write it as {Co.f} to clarify that
such an information is obtained from C) and avail;(si) = 0.
Intuitively, the avail function indicates that Cy is able to see what
are the possible moves of Cy but not C's. Concerning deployabil-
ity, the original system S under Com is deployable, as it satisfies
self-transmission and group transmission. However, the modified
system which includes the synthesized priorities {b < ¢,b < f}
is not deployable, as it requires C's ~» C'; to support the use of
priority.

Given a communication architecture Com for a system S, an
interaction o is visible by C} if Vi where o € 3;, C; ~» Cj; (such
information can be computed statically). Now we present the notion
of knowledge of every component, which is used to define its partial
view on enabled interactions in the system. Here for simplicity
we restrict the use of knowledge to be history-unaware, i.e., the
knowledge helps a local controller to decide the global information
based on (1) its current control location and (2) the communicated
intention from other components.

DEFINITION 2 (Knowledge). Consider a system S = (C, %, P),
for component C; = (L;, %, Ty, 19), define two functions IC5™
(strong knowledge), KC)'* (weak knowledge) which map from 3; x
Li x NJL, 2% 1027,
o strong knowledge: Y1 € ¥5™ = IC$™ (o, ;, Nty avail! (1;)),
Joint participation holds for T in all states of S = {(l1, ..., s, ...
Iy ylm)} C Rs where Yk € {1,...,m}: if o €
avail¥ (1) then (Iy, ox, ) € Th. _
o weak knowledge: V1 € TV = K% (0, 1, N, avait] (1:)),
Jjoint participation holds for T in at least one state of S =
{(Tyeoyliy eyl ooy lm)} € Rs whereVk € {1,...,m}:
if oy, € avail? (I;) then (I, 0%, ) € Th.
e N {0} =2V N {0} = TN VX = ). No element in
TSR o VK s visible by C;.

Intuitively, the above definition is used for component C; to under-

stand whether there exists another available interaction 7 when C;
intends to execute o: Based on the global execution semantics, if
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there exists predefined priorities of the form o < 7, o shall be sus-
pended when realizing the knowledge. The knowledge is computed
according to the available interactions from the current view of a
component and the filtered locations that can fire transitions labeled
by these interactions. Strong knowledge provides a guarantee that
every interaction from the returned set satisfies joint participation,
and weak knowledge only ensures that at least one of them satis-
fies joint interaction. We perform explicit partition on the strong
and weak knowledge, and differentiate knowledge from what can
be summarized from the observation (no element in 5™ or ZV¥
shall be visible by C}).

(Example in Figure 1) As stated previously, for priorities {b <
¢,b < f}, b < ccan not be deployed. However, starting from the
initial configuration, the system first proceeds with interaction a.
Then for component C at s1, when it intends to execute b:

e As (s ~» (1 on its intentions, C is only unaware on the
situation of C's.

e It can be observed from the reachable states that when C raises
its intention on ¢, C'3 also raises its intention on c. The similar
case also appears for d. Therefore, we can derive the following
strong memoryless knowledge IC3™ (b, s1, {C1.b}, {Ca.d}, 0) =
{d}, K™ (b, s1,{C1.b}, {Ca.c}, D) = {c}. Notice that IT™ (b,
51,{C1.b},{Ca.f},0) = 0. Ttisnot { f }, as f is visible by C
due to the communication path C ~~ C}.

Computing Knowledge Statically We explain how knowledge
can be computed statically, following the definition. For intu-
ition, we use the example in Figure 1. The base step is to com-
pute the set of all reachable states, i.e., our knowledge is de-
rived from the invariant of the state space. Figure 2 shows the
corresponding state-transition graphs. Consider we want to derive
KCE™ (b, 51, {C1.b}, {C2.d}, 0), i.e., the knowledge of C; at loca-
tion s; with C> informing its availability on d.

e The first step is to collect all possible control locations of C5
that can signal d. This is done by checking component C. In
this example, we derive the set {s¢}.

Then perform an intersection with the set of all reachable states
whose control location of C7 is s1 and control location of C>
is within set {s¢ } (derived from the first step). In this example,
we produce the set S = {(s1, s¢, S9) }.

By checking the enabled interactions at {(s1, s¢, S9) }, we de-
rive that, other than b, d is guaranteed to be available. Overall,
if an interaction o appears in all states in S, o can be placed in
the strong knowledge. Otherwise, the set of all interactions that
are available in S constitutes the weak knowledge.

Algorithm 1 describes the above procedure. Line 1 and 2 perform
filtering of states, and line 3 adds an interaction 7 to the strong
knowledge only when the enableness of 7 is an invariant of know.
Recall that knowledge is used to detect whether another interaction
is possible to be enabled. Therefore, if the condition in line 4 holds,
we can not guarantee that within weak, at least one interaction is
enabled to block o. In this case, the previously computed weak
knowledge is not valid and shall be replaced by @ (line 5). The
method can be implemented symbolically using binary decision
diagrams [3], enabling efficient generation of knowledge.

2.3 Distributed Execution

In the following, we define distributed notions of enabled interac-
tions and behaviors based on knowledge.

DEFINITION 3. Given a system S = (C, X, P) under communica-

tion architecture C'om, for configuration ¢ = (l1,...,lm), an in-

teraction o € X is distributively-enabled (at ¢) if (¢ € {1,...,m}):
o (Joint participation: distributed version) Vi with o € 3;, o is
visible by C;, there exists (1;, 0, -) € T;.

Algorithm 1: Knowledge generation (sketch)

input : System S = (C, X, P), reachable states R s, query
parameter (o, [;, /\;":1 i) where ;; C X5

output: (IC?TR(U, l;, /\;":1 2ij)s ’C;NK(O', l;, /\;":1 i)

begin

let strong := 0, weak := 0

1 let know := Rs N{s = (I],...

forj=1...mdo

let L;. C L; be locations where all o; € ¥;; is locally

enabled at locations in L/,

2 know :=know N {s = (I},...

7l:”n,)|s € RSvl; = ll}

for 7 € X, 7 # o and T € {k|k is visible by C;} do

if 7 is globally enabled in every state of Know then

3 | str:=strongu {7}

else if 7 is globally enabled in one state of know then
| weak :=weakU {7}

4 if exists a state of Know where no interaction or only
interactions in StrU {o} U {k|k is visible by C; } is enabled
then

5 | return (str,0)

6 else return (strong, weak)

o (No higher priorities enabled: distributed version) for all T €
Y witho < 7, T is visible by C;, and there isa j € {1,...,m}
such that 7 € ¥; and (1;,7,-) € T}.

® (No higher priorities enabled: strong knowledge version)
Vr € Switho <1 € P: 7 & Ki™(o,1;, Ty avail] (1)

® (No higher priorities enabled: weak knowledge version) VT €
Switho <1 € P: 7&K (o,1;, NjL, availi (l:)).

PROPOSITION 1. Consider a system S = (C, %, P) under a de-
ployable communication architecture Com. (a) If o € X is glob-
ally enabled at configuration c, then o is distributively-enabled at
c. (b) The set of distributively-enabled interactions at configuration
c equals 3. (c) If configuration c has no distributively-enabled in-
teraction, it has no globally enabled interaction.

A configuration ¢’ = (11, ..., l;,) is a distributed o-successor
of c if o is distributively-enabled and ¢’ is a o-successor of c.
Distributed runs are runs of system S under communication archi-
tecture C'om. Any move from a configuration to a successor config-
uration in the distributed semantics can be understood as |C| pro-
cesses, where each local controller Ctrl; works on component C;.
In contrast to the global semantics, Ctrl; now is only informed on
the intended next moves of the components defined by the knowl-
edge and the communication architecture (notice: such a knowl-
edge has no relation with the visible region as defined by the com-
munication architecture). The semantics of distributed execution is
that local controllers agree (cmp. Assumption 1 below) on an inter-
action o € Y. and perform a joint move.

ASSUMPTION 1 (Runtime Assumption). For a configuration c
with |X:| > 0, the distributed controllers Ctrl; agree on a
distributively-enabled interaction o € X, for execution.

With the above assumption, we then define, given a system S =
(C,X,P) under a communication architecture Com, the set of
deadlock states of S in distributed execution to be Cqist.dead = {¢}
where no interaction is distributively-enabled at c. We immediately
derive Cgist.dead = Cdead, as the left inclusion (Caist.dead <
Cdeaa) is the consequence of Proposition 1, and the right inclusion
is trivially true. With such an equality, given a risk configuration
Crist and global deadlock states Cgeqq, We say that system S
under the distributed semantics is distributively-safe if there is no
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Figure 3. Another example with uni-directional communication.

distributed run co, . .., cg such that ¢y € Cgead U Crisk; a system
that is not safe is called distributively-unsafe.

2.4 Knowledge-based Distributed Priority Synthesis
We define distributed priority synthesis using knowledge.

DEFINITION 4 (Knowledge-based Distributed Priority Synthesis).
Given a system S = (C,%,P) together with a deployable
communication architecture Com, the set of risk configurations
Crisk C Cs and knowledge functions K™, ICV< ... ICOTR KWK
a set of priorities Pq+ is a solution of the knowledge-based dis-
tributed priority synthesis (KDPS) problem if the following holds:

1. P U Pay is transitive and irreflexive.
2. (C, X, P UPqyy) is distributively-safe.
3. Foralli,j € {1,....m} st o € X;,7 € 5, ifc < T €
P U Py then
(a) (Priority by communication) C; ~ C; € Com, or
(b) (Priority by knowledge) if C; v Ci, and C; is at location
li, then
o cither 7 € Ki™ (o, s, /\;":1 avail{ (1)),
eort € IV = K¥¥(q,1;, Nt avail’ (1;)), and ¥V~ €
SV 0 <y € PUPy.

We call Pa+ a solution of the (normal) distributed priority synthesis
(DPS) problem when 3.(b) can not be used.

The 3rd condition in KDPS states that every newly introduced
priority 0 < 7 is either deployable, or the derived knowledge
from C; is sufficient to assist blocking o under the case where 7 is
enabled. As overall for weak knowledge, XV* only guarantees that
one of the interaction is enabled, to successfully block o, we have to
conservatively include every o < , where v € 2%, to P U Pas,
if components executing ~y is also unable to inform its intention
to components executing o. If only 0 < 7 is included, then the
knowledge =V* is unable to give definite answer concerning the
availability of 7. From this C; needs information from C; (which
is impossible due to architectural constraints), making the newly
synthesized system (C, 3, P U P44 ) undeployable. For DPS, the
last condition states that knowledge only faithfully reflects the
passed intention from the communication architecture.

(Example in Figure 1) We can observe that using the previously
stated strong knowledge is sufficient to block the execution of b
when c is distributively enabled, as the enableness of ¢ locally in
(5 can be used to deduce the enableness of ¢ in global sense.

(Example in Figure 3) Consider the scenario in Figure 3, where
no communication exists from Cs to C1. Therefore, C1 only pro-
cesses a weak knowledge {c, d, e}. Admittedly, {a < d,c < b}
is a solution for global priority synthesis, but the weak knowledge
is not informative enough to support distributed execution (C; can
freely execute a if {c, e} is enabled, but not when d is enabled).
Then during execution, C needs to acquire information on C', vi-
olating the communication architecture. When we additionally add
a < cand a < e (following KDPS 3.(b)-ii), as at least one of the
interaction is distributively enabled, at least one priority is activated
to block b.

In the following, we prove that when distributively executing a
system with new priorities from KDPS, the system under execution

has the same trace behavior as the system under centralized execu-
tion. By doing so, a solution under distributed priority synthesis is
also a solution of centralized priority synthesis.

PROPOSITION 2. Given a system S = (C, X, P) together with a
deployable communication architecture Com, the set of risk con-
figurations Crisi. C Cs and knowledge functions K3™, KKV .. .,
KCSTR KWK Let the set of priorities Pay be a solution to KDPS.
Then for (C, 3, P U Pqy), the set of traces for centralized execu-
tion is the same as that of distributed execution using knowledge.

Our second conclusion is that KDPS is more powerful than DPS.

PROPOSITION 3. KDPS is strictly more powerful than DPS, i.e.,
(i) for every system S under architecture Com, every solution
from DPS is a solution to KDPS, while (ii) there exists a system
under a communication architecture, such that only KDPS returns
a solution.

3. Concluding Remarks

The contributions of this work are three-fold: (1) we have defined
a history-unaware knowledge and its integration to the synthesis
process to create priority-based distributed controllers (the KDPS
process). The key ingredient relies on the fact that the knowledge
guarantees the presence of actions. (2) We have presented an algo-
rithm to compute such knowledge to be used in synthesis. (3) We
have proven properties of the integrated synthesis process, such as
the preservation of global semantics and its superiority over DPS.

In [4], we present algorithms and tools for DPS, together with an
NP-completeness proof: an intuitive idea is to non-deterministically
pick some priorities from all possible candidates, and check if (1)
the set of priorities is transitive, irreflexive, and contains existing
priorities, (2) all priorities are supported by the communication
architecture, and (3) the system augmented with new priorities
is safe. In [4] we further developed an algorithm that performs
fault-localization (using game solving) and fault-fixing (using SAT
solver). Due to space limit, we do not present details how to in-
tegrate knowledge into our previous work, but the integration is
not difficult to achieve: Based on the statically computed knowl-
edge, the synthesis algorithm can freely use the strong knowl-
edge, but shall dynamically decide whether to use weak knowl-
edge or not, as using a weak knowledge can raise an additional
constraint on the synthesized artifact (KDPS 3.(b)-ii: Vy € 2K,
o=<7v€E PU Pd+).
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Abstract

Applying imperative programming techniques to process
event streams, like those generated by multi-touch devices
and full-body motion detection, has significant engineering
drawbacks. Declarative approaches solve these problems but
have not been able to scale on multicore systems while pro-
viding guaranteed response times.

We propose PARTE, a parallel scalable complex event
processing engine which allows a declarative definition of
patterns and provides soft real-time guarantees for their
recognition. It extends the state-saving Rete algorithm and
maps the event matching onto a graph of actor nodes. Us-
ing a tiered event matching model, PARTE provides up-
per bounds on the detection latency. Based on the domain-
specific constraints, PARTE’s design relies on a combination
of lock-free data structures, safe memory management tech-
niques, and message passing between Rete nodes. In our
benchmarks, we measured scalability up to 8 cores, outper-
forming highly optimized sequential implementations.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent programming; D.3.4 [Program-
ming Techniques]: Processors; 1.5.5 [Pattern Recognition)]:
Implementation

General Terms Algorithms, Design, Performance

Keywords multimodal interaction, gesture recognition,
Rete, actors, soft real-time guarantees, nonblocking, com-
plex event processing, multicore
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1. Introduction

To improve the quality of interactions between users and
computers, interest in multi-touch input, gesture recognition,
and speech processing on consumer hardware has recently
emerged. To power natural user interfaces, primitive sensor
readings, which are collected by devices for multimodal
input, need to be correlated to create higher-level events.

Hard-coding these complex correlations in imperative
programming languages is cumbersome, error-prone, and
lacks flexibility [14]. On the other hand, the domain of ma-
chine learning requires a lot of training data to build a sta-
tistical model of the gesture. Gathering and manually anno-
tating this data (in positive and negative examples) and ad-
ditionally parameterising important features, is usually time
intensive. Hammond and Davis [12], Scholliers et al. [20],
and Hoste et al. [14] demonstrate that declarative defini-
tions for sketch recognition, multi-touch gestures, or multi-
modal correlation have important benefits on multiple levels.
Firstly, they provide important software engineering abstrac-
tions to help the programmer to express their intended event
patterns. Secondly, they offer an alternative solution com-
pared to ad-hoc implementations when training data is lack-
ing or hard to gather. Finally, expert programmers are able
to refine their event correlations with explicit programming
code. These declarative approaches all require an inference
engine, which compares sensor events with declarative rules
describing the gestures.

The Rete algorithm [7] is one possible foundation for
such inference engine. It is a forward-chaining, state-saving
algorithm that is used to build rule-based expert systems.
More concretely, declarative gesture approaches benefit
from it as the execution engine incrementally interprets the
events of various input sources based on predefined patterns,
i.e., rules defining the possible interactions of a human with
a computer. Since the majority of the information is con-
stant, the Rete algorithm minimizes the necessary computa-
tion that has to be performed whenever a new fact is asserted
to the knowledge base, and thus reduces the computational
overhead of continuous pattern matching.

In a multimodal system with many possible interactions,
the required computational power outgrows easily what to-
day’s processors provide in terms of sequential performance.
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This is problematic for server-sided pattern recognition, for
instance to process surveillance camera-input, as well as for
embedded devices and mobile phones with various sensors
such as an accelerometer, gyroscope, multi-touch, and a mi-
crophone. A wide range of applications has been proposed
to utilize such sensors by extracting meaningful information
from the raw data. Examples are discovering a phone drop,
detecting whether the user is “throwing” data to another de-
vice!, or performing multi-touch gestures to quickly access
information®. Additionally, in certain multimodal applica-
tions, this information must be correlated to speech-based
input. Fusing these primitive and higher-order events eas-
ily becomes excessive for a single processing unit, such that
utilizing the steadily rising degree of available parallelism
becomes a necessity to provide the required degree of inter-
activity to the users.

We present here a variation of the Rete algorithm called
PARTE, built on a Rete network represented by a set of
actors, that provides both scalability and responsiveness. The
contributions of our work are:

Design and implementation of PARTE, a parallel Rete en-
gine tailored towards recognition of user interaction pat-
terns with soft real-time * guarantees.

Validation of PARTE’s real-time guarantees by charac-
terizing the execution properties of the implemented al-
gorithm, ensuring freedom of unbounded loops and free-
dom of blocking concurrent interactions.

Validation of PARTE’s practicality by showing the scal-
ability of the parallel implementation and demonstrat-
ing that the sequential overhead compared to CLIPS*,
a highly optimized sequential implementation, is accept-
able.

The remainder of this paper is structured as follows: First,
we will discuss in section 2 in more detail the context of mul-
timodal input systems, their requirements, and constraints
and assumptions we can make for a solution. Then, in sec-
tion 3, we will describe our solution PARTE in detail and
discuss the parallel Rete algorithm used. Afterwards, we will
evaluate the resulting system in section 4, characterizing its
execution semantics both with respect to non-blocking be-
havior and with respect to unbounded loops, as well as pre-
senting the performance evaluation. Finally, we will contrast

! Hoccer, exchanging data using gestures.

Youtube: http://www.youtube.com/watch?v=eqv8Q6M106Y

2 Gesture Search for Android
http://wuw.google.com/mobile/gesture-search/

3In soft real-time systems, the usefulness of results degrades past their
deadline, while in hard real-time systems the usefulness drops to zero on
a missed deadline. Hence, delays in a soft real-time system undermine
the system’s quality of service, where delays in hard real-time systems
undermine the system’s correctness

4 CLIPS: A Tool for Building Expert Systems, Gary Riley, 13 March 2011
http://clipsrules.sourceforge.net/

our approach with the related work in section 5 and summa-
rize our conclusions and future work in section 6.

2. Context and Requirements

The domain of gesture recognition comes with a set of prop-
erties that is different from many domains in which Rete-
like inference engines are commonly used. Since we utilize
these particularities of the problem domain in the design of
PARTE, we will sketch the application domain briefly and
detail a list of requirements for inference engines in this do-
main.

2.1 Inference Engines for Gesture Detection

To provide a high-quality user experience, an inference en-
gine used for gesture recognition has to correlate events in
a timely manner: When a user for instance interacts with a
system through a multi-touch interface, changes should be
reflected immediately and with a predictable delay to give
the user a natural feedback. The same is true for multimodal
interaction: When a user gives a series of voice and ges-
ture commands, the right action should be performed with-
out random delays that confuse the user about whether the
command has been accepted or not.

Systems such as Mudra[14] embed inference engines
which only tap the computational power of a single process-
ing unit. However, the rise in sequential processing power
offered by single processing units is stagnating, because
efforts for instance to increase clock-speed, instruction-
pipeline depth, memory-bus width, and cache size, offer di-
minishing returns. This severely limits the possible number
of rules, their complexity, and the rate of events the system
can handle. The only way to recognize more complex user
interaction patterns without undermining the user experi-
ence by increased delays, is to embrace parallel processing
power.

In addition to recognizing patterns in a timely manner, the
system also needs to guarantee predictable response times.
This ensures that the system feels interactive and respon-
sive. Akscyn et al. [2] show that long delays in interactive
systems can distract users, and even cause them to stop us-
ing the system altogether. Consider for instance a user of a
multi-touch gesture recognition system, who taps a certain
location. If the user interface does not reflect this change
within the timeframe users have grown to expect, they will
assume the command was not received, and may tap again.
When the system then finishes processing the overdue ges-
tures, the action will be executed twice. Users will rightfully
blame the gesture detection system for this mistake. To pre-
vent such errors, the detection of complex user interaction
patterns should happen within a timeframe that can be pre-
dicted reliably up front.

However, the requirements of responsiveness and pre-
dictable runtime conflict: To offer the best performance on
current hardware, the rule engine needs to use the available
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Figure 1. Contextual Framework

parallelism, and should provide soft real-time guarantees to
ensure responsiveness. Current rule engines do not combine
both requirements. They either are single-threaded in nature,
or do not guarantee predictable worst-case execution times.

To give an example, Figure 1 visualizes the data-flow
of the multimodal approach presented by Hoste et al. [14].
Event sources such as multi-touch displays, skeletal track-
ing [21], accelerometer readings or the history of RFID tags
contain potential valuable patterns that need to be processed.
This unified architecture allows for low-level events to be
processed using machine learning-based approaches, as well
as declarative definitions. Fusion and refinement of resulting
higher-level events can be handled by consecutive declara-
tive rules.

Given these observations, we will use a tiered architec-
ture for event processing. In this architecture, rules of tier N
can consume only events that were generated by lower-level
tiers (1 to NV — 1). It enables developers to easily modular-
ize and compose their rules. For instance, a wave gesture
can be composed of two lower-level gestures flick right and
flick left, which themselves where extracted from the low-
level skeletal data provided by a Kinect system. A declar-
ative approach enables this kind of efficient composition
and helps developers to improve gesture recognition code.
Enforcing tiering however, implies that a rule of tier N
should not insert additional lower-level events to help pat-
tern classification on lower levels. Although certain multi-
modal use-cases benefit from using high-level event infor-
mation to improve the accuracy of lower-level event detec-
tion [14], avoiding feedback loops is required for computa-
tional predictability.

Finally, the application layer uses a publish-subscribe
model to register for high-level events processed by the in-
ference engine. Depending on the application, it is useful to
support different subscription modi. Topic-based subscrip-
tions are used to filter by the type of the event and are
the most common ones. However, for instance GUI compo-
nents use content-based subscriptions to only react on events
that happen at a specific spatial location. To enable such
application-specific usage, the system needs to provide the
necessary extensibility.

This contextual framework is tailored to the domain of
multimodal interaction and gesture recognition and guided
the design of PARTE. However, similar properties can be
found in the broader context of Time Series Analysis and
Complex Event Processing, including domains such as al-
gorithmic stock trading and monitoring security breaches.

2.2 Requirements and Assumptions

By restricting the generality of the Rete algorithm and tai-
loring it to our application domain, we can make design de-
cisions that simplify the implementation and enable us to
achieve the desired properties.

The main target for the system will be commodity mul-
ticore hardware. Thus, we will assume shared memory be-
tween cores and the presence of a cache hierarchy with mem-
ory coherency guarantees.

An important requirement to achieve bounded execution
time is that rules are constructed without feedback loops.
Based on the practice of tiering, which we outlined in sub-
section 2.1, we will disallow direct feedback loops and as-
sume that the results always represent higher-level events for
a higher tier in the system. Those events may be asserted
back into the same inference engine, but will activate a dis-
joint subgraph of the Rete network.

Since the ordering of events is an application specific is-
sue, it needs to be handled explicitly as part of the rules. A
higher-level event might require the timestamp of the first
low-level event in a sequence, the last one, or the time span
in which all the related lower-level events occurred. The
choice of this timestamp or time span depends on the se-
mantics of the declarative rule, so this choice cannot be au-
tomated. Such information therefore needs to be constructed
and provided to the next tier explicitly, if temporal order be-
tween higher-level events needs to be known.

Related to this assumption is our interpretation of the se-
mantics of events as being permanent. Thus, for the intended
use case, it is not necessary to enable retraction of facts, i.e.,
events will not be removed from the system as part of the
action of a rule. Instead, we assume that a higher level rule
can always subsume events if necessary. This enables us to
avoid the need for conflict resolution: Conflict resolution is
commonly used in rule-based systems to order the execution
of rule activations, and enable retraction of facts and sub-
sumption of rule activations. For the intended use case, how-
ever, it is desirable that all rules will always be triggered and
subsumption is deferred to a higher-level tier. The ordering
hence does not determine the result, and conflict resolution
Serves no purpose.

The semantically indefinite validity of events entails that
the data structures representing events are not removed from
working memory by the rules themselves, hence must be re-
moved automatically by the system to prevent the working
memory from growing unboundedly. For this, a sliding win-
dow of events which are relevant to the current reasoning
process can be used. We will require events to be correlated
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by timestamp, so that the temporal dependencies between
events can be used to compute their maximum useful lifes-
pan: At any point in time, only those events can be part of
a new pattern, for which there exist rules correlating them
with other events that occurred within the lifespan of the first
event.

Classic rule-based engines are employed in business en-
vironments in long-running systems that need to be adapt-
able and allow changes to the rule set at runtime to avoid
downtime. However, this leads to additional complexity and
is not required for the given scenario. Thus, we assume that
in games and user interface applications only static sets of
rules are used and that it is sufficient to determine the set of
rules at startup time.

A final requirement is that all event sources have an upper
bound on the rate with which they emit events. This upper
bound is necessary to enable an estimation of the maximal
load of the system.

Summarized, the important assumptions are:

e Rules are free of feedback cycles and produce results for
a higher-level tier only.

e Activations of different rules do not require ordering.

e Temporal dependencies are solved in an application spe-
cific way by the rules.

¢ Events never need to be retracted from the system. Event
subsumption is done on a higher tier. Preventing memory
leaks is handled by making events expire when they are
no longer useful for the reasoning process.

e The set of rules is known and fixed at startup time.

e All event sources have an upper bound on the rate with
which they emit events.

Based on these assumptions and the previously given
context, the requirements for a parallel gesture recognition
engine are the following:

Soft Real-Time Guarantees The detection of user-interaction

patterns has to complete in a predictable amount of time
to give the user appropriate feedback.

Efficiency Beside providing predictability, the rule process-
ing has to achieve sufficient efficiency to satisfy con-
straints on the response time required for interaction with
humans. Miller [17] identified three threshold levels in
human attention, based on the order of magnitude of sec-
onds that one has to wait. Response times in the order
of tenths of seconds are perceived as instantaneous and
response times of around one second are perceived as a
fluent interaction. For a system detecting user-interaction
patterns, the interaction should at the very least be flu-
ent, and preferably instantaneous, i. e., in the sub-second
range.

Scalability on Multicore Hardware The performance of
the system needs to improve with an increase in the num-

ber of available processing cores, relying on a shared-
memory architecture.

Optimized for Continuous Event Streams The production
system has to be tailored for complex event processing
on event streams with a bounded event rate. The event
streams are assumed to be infinite and processing has to
be online (in contrast to off-line batch processing sys-
tems).

Extensibility and Embeddability The system needs to sup-
port user-defined functions to process and correlate events,
and to produce results on rule activation to be extensible.
Domain specific tests are required to facilitate for in-
stance testing of spatial properties of coordinates. For
embedding into existing systems, it is necessary to pro-
duce the expected result format by invoking callbacks or
sending messages to the consuming tier.

3. PARTE

PARTE is a production system using a variant of the Rete
algorithm to detect user-interaction patterns. To that end, it
transforms a set of if-then rules into a directed acyclic graph,
and uses this graph to match facts. PARTE is designed to
be scalable on parallel systems, as well as to satisfy the
requirements and assumptions described in subsection 2.2.

This section first describes how the solution is embedded
into the context of gesture recognition, and how it interacts
with the main components in such an environment. Then,
the architecture of PARTE is described and a high-level
overview over the solution strategy is given. Finally, we
detail the solution and discuss implementation decisions that
are essential to satisfy the posed requirements.

3.1 Architecture and Embedding into Gesture
Recognition Context

As outlined in subsection 2.1, inference engines such as
PARTE are mediating between the raw input devices and
high-level consumers such as an application. For engineer-
ing reasons, such systems use tiered architectures to gradu-
ally enrich the semantics of the events. PARTE can be ap-
plied at multiple tiers in such an architecture. In such a sce-
nario, PARTE would process incoming lower-level events
from the a set of event sources, based on a given set of rules
which describe relevant patterns that need to be recognized
in these event streams. Thus, PARTE is part of the middle-
ware for building such applications.

Figure 2 depicts the architecture of PARTE with poten-
tial input sources on the left, and potential consumers at the
right hand side. Rules, the templates describing the facts’
structure, and the facts themselves are to be encoded as S-
expressions and get converted to the internal representation
by a set of parsers. A pool of threads is maintained by the
Rete engine, as well as a task queue on which the actors
are scheduled. Finally, reentrant evaluator functions are pro-
vided to evaluate the test-expressions specified by the rules.
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(defrule detectZShape
7hA <- (horizontal-drag)
?hB <- (horizontal-drag)
?diagonal <- (down-left-drag)
(test (endMeetsStart ?hA 7diagonal))
(test (endMeetsStart ?diagonal 7hB))
(test (chronologically
?hA ?diagonal ?hB))
=> (reportZShapeCenteredOn
(avg 7hA.startX 7hA.endX
?hB.startX 7hB.endX)
(avg 7hA.y ?hB.y)))

Figure 2. The architecture of PARTE

The Rete network itself is constructed from the set of
rules inserted into PARTE at startup time. The rule parser
converts the rules to an abstract syntax tree, validating their
semantics while doing so. From the AST, it then builds the
directed acyclic graph as prescribed by the Rete algorithm.
When multiple nodes are required which select for the same
type of event, the parser reuses the first node selecting for
that type it created. More involved node-reuse and opti-
mization strategies are not yet implemented. After comput-
ing the Rete graph, PARTE computes the indices (‘lexical
addresses’) of slots within facts and of facts within partial
matches such that, once the system is running, their lookup
can be replaced with a constant-time indexed memory ac-
cess. Finally, PARTE creates a set of actors and links them
up to each other to constitute the Rete network.

Apart from the nodes in the Rete network themselves, the
Rete algorithm requires another data structure: the agenda.
This agenda reifies the FIFO queue of I/O actions to and
from PARTE that have to be performed. The only form of
input which PARTE accepts at runtime comes in the form
of the assertion of new facts, for which assert agenda items
are used. When the agenda task processes an assert agenda
item, the event specified in that item is propagated to the
inboxes of the Rete network’s entry nodes. Inversely, to
communicate results to the outside world, PARTE supports
user-defined functions, which result in the scheduling of user
function agenda items on the agenda. When such an item is
processed, the corresponding callback function is called.

Since user-defined functions are plain C functions, they

can technically perform whatever I/O or other time-consuming

and/or blocking operation they want, but are presumed not
to do so. If a rule should require something which is not nor-
mally considered a good match to event-processing, such as
reading from a file, the user-defined function should dispatch
the job of reading the file to a worker thread provided by the
application hosting the PARTE engine, in a non-blocking
way. That thread can then read the file and assert an event
into the systems with the contents of the file.

Listing 1. A possible rule for gesture recognition

In addition to the assert and user function agenda items,
PARTE currently supports print and terminate agenda items
which respectively print a string to the console and halt
the engine, and could technically have been implemented
in terms of user function agenda items. PARTE does not
support retract agenda items, since in our event processing
context, facts get removed from the fact base automatically
when they expire.

Items on the agenda are processed sequentially, but in
parallel with the processing of network nodes. Because of
its interaction model, the agenda can be represented by an
actor as well.

The S-expression in Listing 1 gives an example of a
high-level motion gesture rule that can be processed by
PARTE. The expression defines the rule detectZShape,
which describes how two horizontal drags and a down-left
drag can combine into a Z-shape. Line by line, the rule binds
two events of type horizontal-drag to the variables 7hA
and 7hB, binds an event of type down-left-drag to the
variable 7diagonal, and uses the user-defined functions
endMeetsStart and chronologically to verify that the
shapes follow each other both spatially and temporally. As
a consequent to the detection of the Z-shape, the rule spec-
ifies that the callback reportZShapeCenteredOn should
be called, passing the average x and y slots of the shape’s
points. Figure 3 shows a Rete graph and the flow of the facts
along the edges when the facts at the lower-left corner are
asserted into the Rete network. Lists delimited by square
brackets denote tokens, the units of communication between
the nodes in the network.

3.2 Parallel Execution Model

For the description of the execution model, we will use the
metaphor of the actor model [1] to map each node of the Rete
network to its own actor, executing independently. While
such an approach does not enable us to utilize potential data
parallelism for the matching inside a node, it enables a high
degree of parallelism throughout the network. Even in sit-
uations where only parts of an actor network are used fre-
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Beta-Test Node
[Hor1, Hor2, Diag]

process (test *) |

process (reportZShape...)
Terminal Node

Figure 3. Flow of data through the Rete network specified
by the rule in Listing 1

quently, this approach enables pipeline parallelism, enabling
scaling on multicore processors.

Furthermore, the directed acyclic graph (DAG) structure
of a Rete network, and its structural properties in terms
of edges between nodes provide a ideal foundation to ap-
ply non-blocking data structures to gain predictable upper
bounds for execution time. We utilize these characteristics
to provide the desired real-time properties.

Execution Model As indicated above, the individual actor
nodes of the Rete network are the parallel units of compu-
tation. The DAG of the Rete network thereby forms a task-
dependency-graph for the match phase of the fact process-
ing. This means that every actor node needs only wait for
information from their predecessors in the Rete graph, and
only send data to their successors in the Rete graph. This
entails that the same spatial and temporal efficiency that
the Rete algorithm offers for matching facts to rules, also
ensures low contention for shared resources: Every node’s
communication channel is contended for by at most two pre-
decessors and its own thread of control.

The Rete algorithm’s approach of passing tokens between
nodes makes it map very well on message-passing between
actors. Especially, since the step of processing an incoming
token can be seen as an atomic operation by the rest of the
system that does not require the notion of shared memory.
In the implementation of PARTE, the nodes of the Rete net-
work have an inbox, which is realized with a nonblocking
queue, in which predecessors put the incoming tokens. A
node dequeues tokens from its inbox one-by-one for pro-
cessing. Because of the nonblocking nature of the inboxes,
we avoid the potential for deadlocks and livelocks.

To prevent starvation, every actor, i.e., every Rete node
and the agenda, are scheduled on a thread pool using a
round-robin scheduler. Figure 4 shows a possible snapshot
of a running PARTE system which contains only the rule

Agenda
Incoming Event Queue

/

T1

is (horizontal-drag) T3 is (down-left-drag) ad
Type Test Node Type Node
join {?hA, ?hB}
Join Node T2
Thread pool
join {?hA, ?hB, ?diagonal} Ta
Task Queue Join Node
1. is (down-left-drag) +
2. process (test *) process (test *) )
3. process (reportZShape...) Beta-Test Node Qd
Threads
T1]|[T2][T3]|[T4 process (reportZShape...) ;
Terminal Node Qd

Figure 4. A potential runtime snapshot of a PARTE system
detecting the pattern specified in Listing 1

specified in Listing 1. Four threads are allocated in the thread
pool, meaning four of the seven actors can be active at the
same time. The other three actors remain queued on the task-
queue.

Non-Blocking Data Structures The only form of inter-
thread communication on which PARTE depends comes in
the form of messages sent to actors’ inboxes. Since some
nodes and the agenda have multiple predecessors in the Rete
graph, we chose the n-producer/m-consumer FIFO queue
design by Harris [13]. The list offers lock-free inserts at the
front and deletes at the back, and contention is localized to
only the element that is inserted or removed, meaning that in
lists with two elements or more, enqueueing and dequeueing
can happen simultaneously without interfering with each
other. Each node of the list consists of a pointer to the data
and a next-pointer. The queue always contains at least one
such node, with NULL-ed out data: the ‘dummy’ node.

To enqueue an element in the non-blocking queue, a new
list node is created, and its data pointer filled in. The al-
gorithm then enters a loop in which it tries to enqueue the
newly created node. To this effect, it grabs the current tail-
pointer of the queue, looks at its next-pointer, and if it is
not NULL, help the other thread which must have been re-
sponsible for adding a new node past the tail, by attempt-
ing to atomically compare-and-swap the next-pointer to the
queue’s tail slot. If the tail’s next-pointer is NULL, then the
algorithm attempts to compare-and-swap its own newly cre-
ated node to the tail’s next-pointer. If that succeeds, the al-
gorithm breaks out of the loop; otherwise it keeps looping.
After breaking out of the loop, the algorithm still has to
compare-and-swap the newly created node to queue’s tail-
pointer, but if that fails (i. e., when another thread has over-
written the tail-pointer since), no correcting action has to be
performed: The other thread will have set the correct tail-
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pointer. Because of the construction of the Rete network
with its limited number of producers and consumers, as well
as the semantics of how the lists are used, i.e., how items
are inserted, the retry-loop is bounded and local as well as
global progress are guaranteed.

Dequeuing works similarly, however, since all lists have
only a single consumer, a simple compare-and-swap on the
head-pointer to the head-pointer’s next-pointer is sufficient.
The case of the empty list is implicitly handled with the
dummy node.

Memory Management Since PARTE is implemented in
C++, memory management becomes an issue that needs
to be handled carefully. In our implementation, all facts,
i.e., tokens in the Rete network are handled by value and
the consumer is responsible for freeing them when they
expire. Expiration of events can be determined from the
data local to the actor in which the tokens are stored, and
therefore does not require a global synchronization effort
as is the case in systems where events are only removed
after a request for retraction has percolated through the Rete
network. PARTE makes use of the timestamps carried by
tokens to determine not only how long those tokens still
have to be preserved, but also to implement a logical clock
with which nodes can know what the oldest point in time is
from which their predecessors still may have unpropagated
events. By maintaining the invariant that tokens are always
propagated in-order, the node actors can know whether new
tokens that still can correlate with stored tokens can be
expected, and discard tokens for which this is not the case.

More complex is the situation of managing the list ele-
ments for the lock-free list implementation. Since they are
inherently subject to race conditions, we use a solution simi-
lar to reference counting proposed by Michael [16]. All oper-
ations on list elements must maintain a set of hazard point-
ers. The hazard pointers are kept in a contiguous piece of
memory, and their number depends on the number of threads
as well as the use of the data structure. Each thread is as-
sociated with a subset of these pointers for its own use.
Whenever an operation on a list takes place, a thread ex-
plicitly stores pointers to the elements which are in use in its
thread’s section of the hazard pointer array. When an element
is deleted from a list, a memory reclamation operation is trig-
gered, which iterates over the hazard pointers and conserva-
tively does not delete any list element which is referenced by
a hazard pointer. Since the hazard pointers are visited in as-
cending order of index in the hazard pointer array, any inter-
leaving of threads using the non-blocking linked-list and the
thread reclaiming the linked-list’s elements will encounter
at least all elements that are in use at that moment. To this
effect, the list’s operations may only shift hazard pointers in
increasing order of the index.

Because the number of hazard pointers per thread is a
small constant, and the number of threads is constant, the
amount of memory that is no longer in use, yet not yet

reclaimed, is bounded by a small constant per thread, and
a reasonably small constant in total.

4. Evaluation

In subsection 2.2, we outlined the requirements for a paral-
lel inference engine used in the context of parallel gesture
recognition. This section will discuss how PARTE satisfies
these requirements. First, we will discuss the general re-
quirements of how PARTE is optimized for complex event
processing (CEP) and how it is embeddable into existing
systems. The second part of the evaluation will evaluate the
soft real-time properties of PARTE by arguing that the gen-
eral algorithmic properties and the boundedness of the eval-
uation process provide the desired guarantees. Finally, we
will discuss the performance aspects by comparing the sin-
gle threaded performance of PARTE and CLIPS, as well as
demonstrating scalability of commodity multicore hardware.

4.1 Extensibility and Embeddability

PARTE is designed to be a middleware mediating between
the low level of event sources and the application level. To
that effect it is a self-contained system, managing its own
memory and interacting with other systems via a simple
API and callback methods. Applications using PARTE need
provide a ruleset and register user functions and callbacks.
Event sources need only inform PARTE of new events. The
inference engine is continuously running and processes the
incoming events as soon as they arrive, maximizing through-
put. Through this low coupling between PARTE and the
remainder of the system, PARTE is a reusable, easily em-
beddable software component. The notion of custom user-
defined test functions and actions enables PARTE to process
arbitrary events and produce output in whatever format the
application requires.

4.2 Continuous Event Streams

Since the input devices are assumed to continuously produce
events, PARTE was designed to handle expiration of facts
automatically to avoid unboundedly growing fact bases. The
sliding window mechanism explained in section 3.2 causes
the expiration of events which are no longer relevant. This
removes not only the burden of manual memory manage-
ment from the application-level; it also reduces synchroniza-
tion overhead as retract messages need not be sent and pro-
cessed separately.

4.3 Soft Real-Time

For the assessment of the real-time properties of PARTE,
we will rely on the algorithmic properties only. Thus, we
will disregard architectural issues such as microprocessor
architectures [6] and operating system aspects [15]. Instead,
we will give an informal argument to demonstrate that the
pattern matching is done in a bounded number of steps,
which all complete in a bounded amount of time.
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We will therefore demonstrate the soft real-time proper-
ties of our system by showing that a predictable bound exists
on a) the time every furn of an actor requires; on b) the time
required for scheduling actors; on ¢) the time required for
passing messages between actors; on d) the amount of ac-
tors; and on e) the amount of turns per actor that are required
to detect a pattern .

For this first requirement, more information about the in-
ner workings of the actors is required. We introduced five
types of actors in Figure 3: the agenda, type test nodes, join
nodes, test nodes, and terminal nodes. In the case of the
agenda, type test nodes and terminal nodes, this requirement
is trivially met. They all perform a constant amount of work,
respectively executing one agenda item, performing a single
equality test, and scheduling a number of actions which can-
not change at run-time. For test nodes, the situation is barely
different: The arithmetic expressions and (in-)equality tests
they evaluate are fixed at compile-time, so an upper bound
on their runtime can be computed. For the join nodes, the
argumentation is a little more involved. The only variable
factors in a join node’s runtime, however, are the number of
variables to unify and the number of fields that have to be
bound to those variables. Both are explicitly specified in the
ruleset, and therefore known at the time the Rete graph is be-
ing compiled. Thus, an upper bound on join nodes’ runtimes
can be computed.

The next two requirements are closely related. Both the
task-queue and the actors’ inboxes are implemented as non-
blocking data structures. Since the structure of the Rete
algorithm limits contention on the actors’ inboxes, and Rete
nodes cannot generate an arbitrary amount of tokens before
having to wait for new incoming tokens, an upper bound on
the time required to enqueue and dequeue exists.

The requirement for an upper bound on the number of
actors is trivially met, as all actors are statically allocated at
startup time.

The last requirement is fulfilled thanks to tiering. By def-
inition, the Rete DAG is acyclic, and by enforcing tiering,
we prevent the possibility to make cyclic structures via the
feedback loop constituted by the agenda. As such, not only
the width but also the depth of the loop-unrolled graph is
bounded and known for a given ruleset. Since we require
a known upper bound on the rate at which events can be
asserted into the system, and communication happens via
FIFO queues, the maximum number of turns required be-
fore all events currently in the system are processed can be
computed.

By showing that an upper bound can be computed on the
amount of time PARTE requires to detect gestures, we have
demonstrated that PARTE offers soft real-time guarantees.

4.4 Performance Evaluation

To evaluate the performance of PARTE, we follow the
methodology proposed by Georges et al. [8]. The bench-
marks were executed on a Mac OS X 10.6.8 workstation with

two Xeon E5520 processors at 2.26 GHz. Neither Turbo-
Boost nor hyperthreading could be disabled. Thus, Turbo-
Boost can lead to up to 12% higher sequential than paral-
lel performance. However, the measurements of sequential
performance remain directly comparable. Both CLIPS and
PARTE were compiled with maximum optimizations (-O3)
using the GCC4.2.1 compiler shipped with OS X.

Every benchmarked configuration is run at least 30 times,
and is automatically run additionally until a confidence level
of 95% is reached. The benchmark results are visualized
with beanplots to show the distribution of measurements
instead of simple overgeneralizing averages.

We used 13 different benchmarks for the evaluation.
Each benchmark consists of a set of rules and a set of pre-
generated events to be fed into the system. The benchmarks
include microbenchmarks to measure the performance of
variable binding, different fact sizes, unification, and S-tests.
Furthermore, we used a number of kernel benchmarks de-
signed after common gesture rules to assess the performance
of rules with complex tests, and tests that use computational
intensive user functions. For motion detection such tests are
typically trying to find the spacial relations of a group of
points and movements.

We will first look into the efficiency of our system by
comparing the runtime performance of PARTE running on
a single thread with the runtime performance of CLIPS.
CLIPS is an open-source and highly tuned sequential imple-
mentation of the Rete algorithm and forms the basis of mul-
tiple other production systems, such as PRAIS [9] and Lana
[3]. After our evaluation of the efficiency, we will look into
PARTE’s scalability by investigating the effect of increasing
the number of threads allocated for the system.

Efficiency To assess the sequential efficiency of our im-
plementation, we compare PARTE to CLIPS. Our goal is to
demonstrate that PARTE, in its current unoptimized state has
acceptable sequential performance characteristics in direct
comparison. Thus, the performance in kernel benchmarks
based on the gesture recognition use case as well as com-
putational intensive workload should be in the same order of
magnitude.

Figure 5 depicts the results in form of asymmetric bean-
plots. For each benchmark, the results have been normal-
ized to the average of the CLIPS results. The distribution of
the CLIPS results are depicted in gray, while the results for
PARTE are shown in black.

The first graph shows the results for the microbench-
marks. They demonstrate the overhead of message-passing
and the performance cost compared to CLIPS. This over-
head comes partially from the by-value semantics used for
the messages and partially from the lock-free queues. Both
still have optimization potential, but such pathologic mi-
crobenchmarks will always point out the higher overhead
compared to a direct sequential implementation as employed
by CLIPS.
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Figure 5. Beanplot comparing CLIPS to PARTE in sin-
gle threaded execution. Microbenchmarks show architec-
tural overhead. Kernel benchmarks representing typical ges-
ture rules show competitive performance. Computational in-
tensive rules, typical for motion detection rules, show less
than 5% overhead.

The second graph shows the results for kernel bench-
marks with characteristics found in the gesture recognition
rules used by Hoste et al. [14]. Here we see that PARTE de-
livers comparable single threaded performance on the same
order of magnitude as CLIPS, without its a highly tuned im-
plementation.

The third graph shows results of computational intensive
rules, as they are found in complex motion recognition rules
that need to correlate spatial coordinates of many events.
These kind of rules are the most relevant for advanced uses
cases based on input devices such as Microsoft’s Kinect.
Here, the evaluation of the test expressions is the most in-
tensive part, and PARTE has comparable performance to
CLIPS.

Scalability A beanplot of the combined results of all
benchmarks is depicted in Figure 6. This graph gives an
impression of the distribution of all benchmark results for a
varying number of worker threads. The little accumulation
points along the runtime axis indicate the increased number
of measurements at that point, which coincide with specific
benchmarks. The horizontal bar indicates the average.
Figure 7 depicts results as a speedup graph to emphasize
the scalability of the system. The dotted line indicates the
ideal speedup—a speedup which increases linearly with the
amount of processors. The graphs show that PARTE scales
well in the average case. The system’s design offers the
significant advantage of spreading the load over multiple
threads. When that load gets heavy, PARTE can effectively
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Figure 6. Beanplot showing distribution of benchmark re-
sults for 1 to 8 worker threads.
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Figure 7. Speedup graph, showing PARTE’s scalability
with number of worker threads compare to ideal speedup
(dotted line).

benefit from the processing power of different processing
units. This form of pipeline parallelism is ideal for rules that
rely on complex tests such as used in motion detection. For
the intended use case, the parallel decomposition created by
PARTE enables the system to benefit from a close to ideal
scaling up to 8 worker threads.

4.5 Discussion

Our choice of actors as the unit of parallelization stems from
the strong similarity between the passing of tokens between
nodes in the Rete algorithm on the one hand, and message
passing between actors on the other hand. The actor model
provides a nice metaphor for the construction of a graph of
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interlinked nodes which share data only by explicitly passing
it to their successors in the DAG.

Some limitations exist in the current version of PARTE.
Since test-expressions are separated from the nodes that
join two branches, negation-as-failure is not supported in
PARTE. Because of the parallel execution model, the im-
plementation of negation requires additional communication
and does not fit into the current model. However, gesture
recognition systems can work without a notion of negation,
but the addition of it would be worthwhile addition for other
use cases.

Furthermore, the coarseness of parallelization can further
be tuned, as in some situations the actor-based approach
does not expose all options for parallelism. Computational
intensive test functions such as required for motion pattern
detection could benefit from parallelizing the match on facts
inside a node/actor. Inversely, in other situations the actor-
based implementation using message-passing and lock-free
queues imposes a high overhead which could be reduced by
merging nodes appropriately.

Another area that could be improved is PARTE’s sched-
uler for the actors, which focusses on correctness and real-
time properties. Currently, actors are scheduled although
their inbox is empty. Improved scheduling which preserves
soft real-time guarantees is planned for future work.

5. Related Work

The Rete algorithm is widely used, and has had many adap-
tations to both fit real-time requirements and to fit parallel
processing.

5.1 Parallel Rete

Gupta et al. [11] measure that the matching is the most
computationally expensive task and takes up to 90% of the
execution time in production systems. Consequently, most
effort has been dedicated to parallelizing the match-phase.
One of the best known Rete derivates focussing on paral-
lelism is the TREAT algorithm by Miranker [18]. In TREAT,
for every condition element, the matching facts are stored.
This makes TREAT a state-saving algorithm, but less so
than Rete, which in addition to those alpha memories stores
the matching sets of facts for combinations of condition el-
ements that appear in the rules, in beta memories. At the
other end of the spectrum is the production system pro-
posed by Oflazer [19], which stores the matching sets of
facts for every combination of condition elements, regard-
less of whether they appear in the rules. Both TREAT and
Oflazer’s machine diverged from the traditional Rete algo-
rithm to reduce the need for synchronization, thereby open-
ing options for parallelism. Both approaches had the foresee-
able drawbacks: TREAT spends a lot of time recomputing
matches for entire patterns, and the combinatorial explosion
made Oflazer’s machine consume a lot of working memory,
in addition to spending a large amount of time computing

combinations of facts which may never get used. PARTE,
which sticks to the traditional Rete algorithm has none of
these drawbacks. It does not decouple the different threads
of execution by performing too little or too much work to
be able to skip synchronizing, but instead focusses on reduc-
ing the overhead of the synchronization. In addition, it uses
automatic expiration of facts, which halves the number of
inter-node communication that has to take place compared
to Miranker’s and Oflazer’s system with manual retraction.

A different approach is taken by Aref and Tayyib [3],
whose distributed Rete algorithm Lana is an optimistic algo-
rithm, allowing the different processing elements to run with
minimal synchronization, informing a single central Master
Fact List of changes to the working memory, and backtrack-
ing when the updates of the multiple replicated Rete engines
conflict. Unlike in PARTE, the different entities running in
parallel in Lana are fixed, allowing less flexibility to redis-
tribute workload among the available processing units, and
by splitting up the Rete graph, common subgraphs cannot be
shared by multiple rules, requiring Lana to duplicate work
where PARTE could reuse computations. Moreover, the op-
timistic approach generates a degree of nondeterminism with
respect to run time which a real-time system like PARTE
cannot risk to incur.

Yet other systems use hierarchical blackboard systems on
which multiple agents concurrently work, and where every
‘row’ of nodes in the Rete network is reified as a differ-
ent blackboard in the knowledge base’s hierarchy. Exam-
ples of such systems are the Parallel Real-time Artificial
Intelligence System (PRAIS) of Goldstein [9] and the Hi-
erarchically Organized Parallel Expert System (HOPES) by
Dai et al. [5]. Semantically similar, but not using the black-
board metaphor are for instance Gupta’s parallel Rete: They
also acknowledged that having more than one token flowing
through the graph at any one time could be opportune for
the execution speed. Gupta et al. [10] proposed to give every
node one or more internal threads of control. Their approach
was conceptually very close to ours, was not constrained
to event-processing, and supported conflict-resolution strate-
gies like sequential Rete implementations. Because of this,
they had to omit all conceptual optimizations which depend
on temporal reasoning and many options for parallelism in
the evaluation of the rules’ consequents. Furthermore, their
approach depended on hardware task schedulers to enqueue
and dequeue node activations in a timely manner.

In general, previous approaches did not use the abstrac-
tion of actors like PARTE does. Their scheduling algorithms
could not transparently handle nodes and the agenda, and
they did not consider the nodes as self-contained elements,
solving data-locality in an ad-hoc manner, in Gupta’s case
expecting the presence of processor-local private memory in
addition to the caches and main memory.
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5.2 Real-Time Rete

Real-time execution characteristics can be achieved in two
ways: By guaranteeing for every task that it completes in a
known timeframe, and scheduling them such that they all
complete before their deadline, or by assigning priorities
to tasks, and enabling the system to preempt lower-priority
tasks to make sure high-priority tasks complete in time.

PARTE takes this first approach, and ensures that every
action taken by the inference engine completes in time —
unless unexpected load is put on the system by entities other
than PARTE. The Parallel Real-time Artificial Intelligence
System (PRAIS) of Goldstein [9] instead takes the second
approach, dropping the matching of lower-priority rules to
allow more important rules to be matched in time. Despite
being considered a real-time system, PRAIS can only offer
best-effort guarantees, as it is a distributed system depending
on TCP/IP for communication.

Sequential implementations such as the self-stabilizing
OPS5 production system by Cheng and Fujii [4] do offer
actual hard real-time guarantees, but their approach is not
viable for our problem domain: It requires lots of effort in the
generation of the ruleset to provide fault-tolerance on top of
the real-time guarantees. Their system is aimed at situations
where failure is catastrophic and must hence be avoided at
all costs. PARTE does not pose such severe restrictions on
the ruleset, only requiring tiering.

6. Conclusions and Future Work

The presented PARTE inference engine implements a vari-
ation of the Rete algorithm using actor semantics for Rete
nodes to achieve parallel execution. The system is designed
for continuous gesture recognition which requires soft real-
time execution guarantees and scalability on parallel sys-
tems. While PARTE utilizes the constraints of the domain to
achieve these properties, it remains applicable to the broader
domain of Complex Event Processing. This includes applica-
tions such as algorithmic stock trading and monitoring net-
work security.

PARTE achieves the desired scalability and soft real-time
guarantees by using a tiered architecture, lock-free queues,
and an actor execution model to provide upper bound guar-
antees on the event matching in a Rete network.

PARTE is compatible with existing single threaded in-
ference engines such as CLIPS from NASA. It has been
used as a replacement for CLIPS in the core infrastructure
of the multimodal Mudra framework [20]. PARTE provides
the benefits of transparent parallelization of declarative rules
as well as automatic event expiration.

Our preliminary performance evaluation used a number
of microbenchmarks, kernel, and computational intensive
benchmarks. The benchmark characteristics are representa-
tive for the gesture recognition and multimodal event pro-
cessing context. In the current unoptimized state of PARTE,
we achieve comparable performance to CLIPS. Further-

more, PARTE was demonstrated to scale on multicore sys-
tems with up to 8 cores, outperforming the inherently se-
quential implementation of CLIPS.

In future work, we will approach more efficient schedul-
ing of the Rete nodes as well as exposing more parallelism
opportunities by optimizing the Rete network. Support for an
efficient implementation of a negation operator is planned as
well.
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Abstract

We present a logic for proving functional properties of concur-
rent component-based systems. A component is either a single
actor or a group of dynamically created actors. The component
hierarchy is based on the actor creation tree. The actors work
concurrently and communicate asynchronously. Each actor is an
instance of an actor class. An actor class determines the behav-
ior of its instances. We assume that specifications of the behav-
ior of the actor classes are available. The presented logic allows
deriving properties of larger components from specifications of
smaller components in a hierarchical manner.

The behavior of components is expressed in terms of traces
where a trace is a sequence of events. A component specification
relates traces of input events to traces of output events. General-
izing Hoare-like logics from states to traces and from statements
to components, we write {p} C {q} to mean that if an input
trace satisfies p, component C produces output traces satisfying
g; that is, p and q are assertions over traces. Such specifications
are partial in that they only specify the reaction of C to input
traces satisfying p.

This paper develops the trace semantics and specification
technique for actor-based component systems, presents impor-
tant proof rules, proves soundness of the rules, and illustrates
the interplay between the trace semantics, the specification tech-
nique and the proof rules by an example derived from an indus-
trial Erlang case study.

Categories and Subject Descriptors FE3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs — generalized Hoare logics

General Terms Design, Theory, Verification

Keywords actors, specification techniques, relational reason-
ing

1. Introduction

In this paper, we develop a specification and reasoning tech-
nique for component-based open distributed systems. Dis-
tributed systems are realized by dynamically growing collections
of actors ([[1]]) that communicate with other actors via asyn-
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Figure 1. Two-tier verification

chronous messages. In particular, we want to enable reasoning
about functional properties of open systems, that is, about sys-
tems working in an environment for which we do not have an
implementation or a precise specification.

The basis of our approach is a two-tier verification as shown
in Fig.|1| The two-tier verification avoids the complex task of di-
rectly reasoning about system properties on the implementation
level. Following the approach of Creol [[19] and ABS [20]], we as-
sume that actors are implemented using the object-oriented con-
cept of classes. A class determines how all instances of the class
behave. To reflect the concept of classes at the specification level,
we use specifications of actor classes, called actor class specifica-
tions, which allow specifying properties about the behavior of
all instances of a class implementation. In the first tier of our
verification approach, the actor implementation is then verified
against a specification of the actor. This task is not considered
in this paper, but addressed by the work of Din et al. [I5] and
Ahrendt and Dylla [3]].

The aim of this paper lies in the second tier, i.e., to use actor
class specifications to verify properties of small components and
to use these component specifications to verify larger compo-
nents and open systems. A component is formed hierarchically
by following the actor creation tree. Starting from the initial ac-
tor, a component consists of all actors transitively created by the
initial actor. The exact formation of a component is influenced
by how the unknown environment interacts with the compo-
nent. Hence, an open system can be considered as a component.

To achieve the aforementioned goal, we characterize open
actor systems in terms of a trace semantics, introduce a specifi-
cation technique based on the traces that does not refer to any
implementation, and derive a logic that utilizes this specification
technique. An execution of an actor system can be represented
by a trace of observable events [[9} [18]. The advantage of dealing
only with traces is that it abstracts from the actual state repre-
sentation of the system. The semantics of actors and components
can be expressed in terms of trace sets. When the actor or the
component represented by the trace set is known, each trace of
the set can be split into an input and output trace representing
the events it receives and produces, respectively.



Based on this semantics, we develop a specification tech-
nique relating input traces to output traces. Formally, a speci-
fication consists of a finite set of Hoare-like triples [[17]. A triple
{p} D {q} denotes that if an input trace satisfies p, component
D produces output traces satisfying q. The component D either
denotes the behavior of a single actors of class C, or denotes the
(external) behavior of groups of actors with an initial actor of
class C. It is important to notice that a triple specifies the be-
havior of a component only for inputs satisfying p. These input
conditions express assumptions about the usage of the compo-
nent and help to focus the reasoning.

We show the usage of the specification technique by means
of a proof system for a simple form of composition that we call
daisy chain composition. It allows a component to dynamically
create a new component, but forbids the new component to call
back to its creator. We show through an example taken from an
Erlang case study [|6] how to verify properties of larger compo-
nents by only using the specifications of smaller components.

Paper Structure. The following section describes the language
background and our running example. Section [3] gives the defi-
nitions of actor classes and components and how their trace sets
are characterized and composed. Sections [4| and [5| present the
specification technique and the proof system, along with their
application to the running example. Section [6] discusses the re-
lated work. Section[7] concludes and describes future work.

2. Language Background and Example

To have a sufficiently clear background for the following discus-
sion on specification and verification, we informally introduce a
core actor language AJ together with an example for illustrating
our approach. Following the design of the modeling languages
Creol [[T9]] and ABS [20]], AJ uses classes to describe actors (we
use the keyword actor class). Actors can be dynamically cre-
ated, implement interfaces, have an actor-local state expressed
in terms of instance variables, and are addressed via a typed
reference.

As a running example, we use a variant of the client-server
setting treated in an industrial Erlang case study by Arts and
Dam [J6]. The server receives requests from the client, where
each of these requests contains a task. The goal of the server
system is to respond to the requests with the appropriate task
computation results. To serve each request, the server creates a
worker and pass on the task to be computed. As a computation
task can be divided into multiple chunks, more concurrency
can be introduced in the following way. Before each worker
processes the first chunk of the task, it creates another worker to
which the rest of the task is passed on. When the computation of
the first task chunk is finished, the worker merges the previous
result with this computation result and passes on the merged
result to the next worker. Eventually all chunks of the task are
processed, and the last worker sends back the final result to
the client. The structure of the request processing forms a daisy
chain as illustrated in Fig. In the actor setting (where all
clients, servers and workers are actors), the client name needs
to be passed around as well so that the last worker can return
the task computation result to the client. This example illustrates
unbounded actor creation and non-trivial concurrency.

Figures [3| and [4] illustrate how the server scenario can be
implemented in AJ, which uses a Java-like syntax. The cen-
tral actor of our example is AServer implementing the interface
Server: receiving message serve(c, t), it deals with the com-
putation task t and makes sure that a response is sent to the

1 Icons in the figure are taken from http://www.iconarchive.com
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Figure 2. Daisy chain structure of the server system

interface Client { response(Value); }
interface Server { serve(Client, CompTask); }
interface Worker {

do(CompTask) ;

propagateResult(Value, Client);
}

actor class AServer implements Server {
serve(Client c, CompTask t) { // taskSize(t) > 1
Worker w = new AWorker();
w.do(t);
w.propagateResult (null, c);

Figure 3. Interfaces and the actor class AServer

client (cf. the interface Client). To enable concurrent execution
of tasks, the server delegates the task to a dynamically created
worker (interface Worker). If the task has more than one chunk
(taskSize(t) > 1), the worker delegates the rest of the task to a
newly created worker and works on the first chunk. By a series
of propagateResult messages, initiated by the server, the results
of the different chunks are collected, merged, and the final result
is sent back to the client.

Reacting to messages. In AJ, a message consists of a method
name and typed parameters. A message is produced when a
statement of the form r.m(p) is executed. This statement, known
also as a method call, sends the message m(p) to the receiver ac-
tor r where m is the method name with a list of parameters p. The
parameters can be data values or actor references. Such a send-
operation is non-blocking; execution directly continues with the
next statement. Thus, in general, a message send leads to con-
current behavior. For each of its messages, an actor has a body
that describes how it reacts to a message. For example, an ac-
tor of class AServer (see Fig.[3) reacts to a message serve(c, t)
as follows: It creates a worker actor, sends first a do- and then
a propagateResult message to the worker. We assume that the
execution of message bodies must terminate.

Receiving and selecting messages. It remains to explain what
happens on a message receive. We assume that actors have
an unbounded input queue and are input enabled (cf. [21}
p. 257]); i.e., actors can always accept new input. Messages
are selected from the queue essentially in a FIFO manner, but
if they have a guard that evaluates to false, their selection
is postponed. Thus, an actor has control over the execution
of incoming messages. Message selection is (weakly) fair for
messages with true guards, meaning that a message whose
guard is infinitely often evaluated to true will eventually be
picked for processing. In Fig. [4, the actor class AwWorker uses
a guard to select a propagateResult message only if a result is
available.

Further constructs. In addition to the actor-related aspects,
AJ supports recursive data types and function definitions for
handling data (as in functional programming languages). In
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actor class AWorker implements Worker {
Value myResult = null;
Worker nextWorker = null;

do(CompTask t) {
if (taskSize(t) > 1) {
nextWorker = new AWorker();
nextWorker.do(restTask(t));
} else {
nextWorker = null;
}
myResult = compute(firstTask(t));
}

propagateResult(Value v, Client c)
guard myResult != null {
if (nextWorker == null) {
c.response(merge(myResult, v));
} else {
nextWorker.propagateResult(merge(myResult, v), c);
}
}
}

Figure 4. Actor class AWorker

the running example, we assume appropriate definitions for the
data types CompTask and Value and the total functions:

compute CompTask — Value
taskSize CompTask — Int
firstTask : CompTask — CompTask
restTask CompTask — CompTask
merge : Value x Value — Value

where compute(t) computes the result of t; taskSize(t) yields a
number of chunks in which t could be partitioned; firstTask(t)
returns the first chunk of t; restTask(t) returns the rest of t;
and merge merges results. We assume the following properties:

taskSize(

t) 21
taskSize(t) > 1

— compute(t) = merge(compute(firstTask(t)),

compute(restTask(t)))
taskSize(t) = 1 — compute(t) = compute(firstTask(t))
merge(null, v) = v

A task consists of at least one chunk; computing a non-primitive
task is the same as merging the result of computing the first task
with the computation of the rest of the task; computing a single
task chunk is the same as computing the first task of the chunk;
and merging with null with some value v returns v.

Actor systems are started by creating actors and start their ac-
tivities or connect them to activities in the environment, for ex-
ample to user interfaces. In this perspective, we deal with open
systems because of the interaction with their environments.

3. Semantics of Actors and Components

An execution of an actor system can be represented by a trace of
observable events [[9] [18]]. The functional behavior of an actor
system is represented by a trace set. Taking the work of Agha
et al. [2]] and Vasconcelos and Tokoro [30] as a guide, we con-
sider the trace sets of actors and components in an open system
setting. More precisely, we characterize the trace sets with re-
spect to the most general environment, i.e., the environment that
provides all admissible behaviors. For the sake of simplicity, we
assume that each actor has a fair chance to do its computation

Table 1. Helper predicates and functions

Predicate/

Function Description

Pref(s) The set of all prefixes of sequence s.

class(a) Returns the class of actor a.

isMtd(m) Checks if message m is a method call.

callee(e) Returns the callee of event e.

caller(e) Returns the caller of event e.

msg(e) Returns the message of event e.

acq(t) Returns the accumulated actor names ex-
posed in each method call event in t.

cr(t) Returns the set of actors created in t.

tla Projects t to non-external events of a set of

actors A. The operator can also take callee or
caller as an extra parameter.
CXPOSCdTO( t rA) acq( t lA,callee) U Cr( t lA,caller)

[ca The set of traces Traces({a}) where
class(a) =C.
[rcin The set of traces Traces([L]) where the ini-

tial actor of L is of class C.

ext(T) Extracts the largest visible subset of local
actors from a boxed trace set T.
split(t,L) Splits t into input and output traces (ti, to)

based on local actors L.

and there is a type system handling the correctness of types of
events and their content.

This section is divided into two subsections. The first sub-
section deals with the foundation of traces, namely what the
trace events are, the basic operations one can perform on traces,
what valid traces are, and what the trace set of the individual
actors are. The second subsection defines what a component is,
based on a composition of the traces of the actors contained
in the component. To focus on the interaction with its environ-
ment, we define a boxing operator on a component to hide all
internal interaction. However, this boxing operator is, for the
proof system, too strong. In particular, we want to know how
the subcomponents interact with each other. For this purpose,
we provide a glass box view [[9, p. 5], given the structure of
the component. An informal summary of numerous helper pred-
icates and functions is given in Table[I|as a quick reference.

3.1 Trace Foundation

Traces are represented using the finite sequence data structure
Seq(T), with T denoting the type of the sequence elements.
An empty sequence is denoted by [] and - represents sequence
concatenation. The function Pref(s) yields the set of all prefixes
of a sequence s.

The foundation of the trace semantics is the set of actor
names a,b € A and the set of messages m € M that can be
communicated between actors. We assign each actor with a
specific behavior represented by a class C € CL. The function
class(a) gives the class of an actor a. A message m can either be
an actor creation new C or a method call mtd(p). mtd denotes
some method name and p is a list of parameters. A parameter
may be a data value d € D or an actor name. The predicate
isMtd(m) checks whether the message m is a method call.

From this foundation, we build the set of events E. An event
e € E represents the occurrence of a message m = msg(e)
being sent by the caller actor a = caller(e) to the callee actor
b = callee(e). If m is a creation message, b will be the name of
the newly created actor while a is its creator. Textually an event
e is represented asa — b := new C or a — b.mtd(p) when
the message is an actor creation or a method call, respectively.



The inclusion of the caller information allows us to distinguish
between input and output events with respect to an actor or
a group of actors. Eliminating the caller information from an
event produces an event content. Taking L C A to be the set
of (local) actors we are considering and, by the open system
setting, F = A—L as the set of all (foreign) actors L is interacting
with, events that happen in the trace can be categorized as
follows. An event e is

e aninput eventifa € F and be L;
e an output eventifa € L and b € F;
e an internal event if a,b € L;

e an external eventif a,b € F.

Only non-external events are of interest here as the environ-
ment’s internal behavior is unknown. Method calls expose
names to callee actors. As the exposure of actor names is im-
portant to decide when an actor can send a message to another
actor or pass on names to other actors in the semantics, we de-
fine a function acq(a — b.mtd(p)), short for acquaintance, to
extract the finite set of actor names occurring in the parameter
list of a method call event. The caller information is transparent
to the callee, so it is not part of the acquaintance.

Example 3.1. Consider a server actor s, a client actor c,
a worker actor w, some task t and L = {s,w}. The event
¢ — s.serve(c,t) is an input event for s and an output event
for c. The event s — w := new Server is an internal event of L.

Atrace t = e;-ey-... € Seq(EU {/}) is a finite sequence
of events that represents a single execution of the entity L it
represents. The 4/ symbol indicates that t is a maximal trace,
that is when the environment of L represented by the trace stops
sending more input to L, then L stops its activity.

The basic operator on a trace is the projection operator. t
can be projected to a given a set of actor names A C A, written
t|,, where all events, except 4/, whose neither caller nor callee
is not in A are dropped. The function is refined by a caller (or
callee) parameter t |4 squer (tlacane.) When the retained messages
are those whose callers (callees) are in A. With respect to some
local actor set L, a trace is called an input (output) trace when
all its events are input (output) events.

Given a set T of traces, the projection T, yields the set of
traces T’ where each trace t in T is projected to A. The set
of acquaintance is lifted to the traces. It is straightforward to
show that acq grows monotonically with respect to the length of
the trace. The function cr(t) produces the set of actors that are
created in a trace t. Similar to acq, cr also grows monotonically.
Because these functions are used in conjunction to know which
actor has been exposed to a group of actors A in a trace t, we
abbreviate acq(t |, qpee) U cr(t s cane) as exposedTo(t,A).

The behavior of an actor system can be represented in terms
of a set of valid traces. This notion of valid trace set ideally
should be derived from the operational semantics of the actor
systems, which lies outside of the scope of this paper. Intuitively,
a valid trace is a trace that contains no external events, starts
with the creation of some actor and allows the environment
to make method calls to local actors when they are exposed.
Taking into account the open environment setting, we require a
valid trace set of a set of local actors to be a set of valid traces
that is prefix-closed and allows foreign actors to make a method
call to exposed local actors at any time. The prefix-closedness
allows us to observe the behavior of a (group of) actor(s) at
any point in time. In addition to this valid trace restriction, we
assume a creation message always produces a fresh actor name
(technically, this can be realized by using a hierarchical naming

scheme). Thus, the creation of actors forms a tree indicating
which actor is created (directly or indirectly) by which other
actor.

Definition 3.1 (Valid trace set). Let L C A be the set of local
actors, F = A — L and C € CL. Let also e be an event such that
caller(e) = a, callee(e) = b, msg(e) = m. A set of traces Traces(L)
is valid if
1. Vt-e €Traces(L)  t € Traces(L) (prefix closed);
2. Vt-e € Traces(L)ea # F V b # F (non-external events);
3. Ve-t € Traces(L)em = new CAa € FAb € L (initial creation);
4. Vt-e€Traces(L)eaeF =
{b | isMtd(m)} U acq(e) < exposedTo(t,F)UF
(proper local actor exposure to foreign actors);
5. Vt € Traces(L),e € Eea € F Ab € L AisMtd(m) A
{b}Uacq(e) < exposedTo(t,F)UF = t-e € Traces(L)
(open environment admissibility).

A trace that satisfies requirements 2, 3 and 4 is a valid trace.

Example 3.2. Let s be a server actor, c a client actor, t a task,
and w a worker actor. The following trace t is a valid trace of a
server actor s.
t =c—s:=new Server-c — s.serve(c,t) -

s —w:=newWorker-s — w.do(t) -

s — w.propagateResult(null,c):+/
Of particular interest is that s is exposed to c before s can pass
¢ to w. In addition, 4/ indicates that the server receives no more
input from the environment (which is the client) and it finishes
processing both the server actor creation and the client’s request.

The primitive building blocks of our systems are actors whose
behavior is represented by some class. We assume that a self call
does not appear in the trace of an actor. Changes that occur with
a self call can be simulated allowing non-deterministic choices
of trace continuation, because it does not affect the information
the actor receives from its environment.

Definition 3.2 (Actor trace set). Given a class name C € CL
and an actor a where class(a) = C, the trace set of the actor of
class C is a valid trace set (Def.[3.1)) Traces({a}) such that

e Vet € Traces({a}) o callee(e) = a A msg(e) = new C
(starts with a creation of a), and
o Vt-e € Traces({a}) e caller(e) =a =
{Callee(e) | Lthd(msg(e))} U aCQ(e) < acq(tlF,callee) U {a}
(proper foreign actor exposure to a).

A valid trace which either callee or caller of its events is the actor
a and satisfies the two properties above is an actor trace.

The definition above closes the exposure requirement from
the environment side left open in the valid trace set definition.
An actor trace of class C that ends with ,/ indicates that no
other input events are sent to the actor and the actor finishes
processing all input events. We denote [C] = Traces({a}) to
represent the semantics of actors a of class C.

3.2 Actor-Based Components

The next step is to compose these primitive blocks to make a
component. First, we define how we compose a group of actors.
The basic operation is the plain composition, which takes a set
of arbitrary actors. The interaction between these actors is taken
as traces whose projection to each actor matches some trace of
that actor. Because we deal with a group of actors, the scope
of the environment shrinks. To be more precise, when an actor
exposes some name to some other actor, it does not mean that
the environment can directly use the exposed name, as the other



actor may also be part of the group. For the validity to hold, the
exposure clause in Def. needs to be explicitly enforced.

Definition 3.3 (Plain trace set). Let L C A be a set of actors
and F = A—L. The plain trace set Traces(L) is the largest possible
set such that

* Vt € Traces(L),a € L @ t|,; € Traces({a}), and
e Ve-t-e €Traces(L)ecaller(e’) e F =
{callee(e’) | isMtd(msg(e))}Uacq(e’) C exposedTo(e-t,F).

It is straightforward to show that an actor trace set is also
plain. Thus this composition does not violate the single actor
behavior.

Lemma 3.1. Let L = {a}. Then Traces(L) is plain.

Using plain composition, we can characterize a component
as a set of actors that does not need to create actors outside of
the set. This dynamic notion of a component is motivated by the
hierarchical nature of actor creation, which makes the compo-
nent independent of actors in the environment with respect to
its internal behavior. Note that this does not prevent the compo-
nent to interact with the environment. We restrict ourselves to
components where only one actor is created by the component’s
environment. This actor is called the initial actor of the compo-
nent. This restriction allows us to refer to a component by the
class of the initial actor C. The notion of a component with an
initial actor of class C is formalized as follows.

Definition 3.4 (Component). L is a component with an initial
actor of class C if

e Vet € Traces(L) e msg(e) = new C
(starts by creating some actor of class C), and
o Ve-t-e €Traces(L)eVC' €CLe
msg(e’) = new C' = callee(e’) € L
(all created actors afterwards are local).

By this definition, an actor that never creates another actor
is a component. As with a single actor, when / is present in a
trace of a component, it indicates that the component receives
no more input from the environment and finishes processing all
input events.

Example 3.3. A server actor s is not a component because it
may create worker actors, just as with a single worker actor. The
set of worker actors w;,w,, ... created for computing a task forms
a component, because, by definition, all creations remain in this
set. Combining s with the set of worker actors also produces a
component.

Composing the traces of individual actors that form a com-
ponent retains the validity property of the resulting trace set
as shown in the following lemma. The main reason the validity
holds is that we define the plain trace set to be the largest set of
possible traces.

Lemma 3.2 (Component plain trace set validity). Let Traces(L)
be a plain trace set of a component L. Then, Traces(L) is valid.

Proof (sketch). 1. Prefix-closedness holds because we consider
the largest possible trace set. Thus, we also take the largest
possible subset of the actor traces that build up the compo-
nent. If we take the last event in some trace t € Traces(L)
away, the projected trace to the affected actor(s) is also con-
tained in the set of actor traces, because they are also prefix-
closed.

2. Holds by the non-external property of each actor trace set.
3. Holds by the definition of component.
4. Holds from the same property of each actor trace set.

5. Holds by the definition of Traces(L).
O

Plain composition is not the ideal semantical representation
for components because it reveals all internal events. To abstract
away from all these internal events, we box the components.
This means that all internal events become hidden. This char-
acterization allows using the component without having to care
about the internal details and simply focus on what happens on
its boundary. In other words, only the interface of the compo-
nent is of importance. The hiding is done by projecting away
events that do not involve foreign actors.

Definition 3.5 (Boxed component). Let L be a component and
F = A — L. The boxed component of L, denoted by [L], is the
trace set Traces([L]) where

Traces([L]) = {tlp | t € Traces(L)} .

We refer to a trace in Traces([L]) as a boxed component
trace. Given that the component L has an initial actor of class C,
then [[C]] denotes trace set Traces([L]). Boxing a component
does not affect its validity as shown by the following lemma.

Lemma 3.3 (Boxed component trace set validity). Let L be a
component. The trace set Traces([L]) is valid.

Proof (sketch). 1. Projection does not affect prefix-closedness
property.

2. Projection does not add new events into the trace set.

3. The initial creation property remains after projection be-
cause the caller is a foreign actor.

4. Internal events does not provide exposure to the environ-
ment, thus projecting them away does not affect local actor
exposure to foreign actors.

5. Projection does not remove any input events from the trace.

|

Boxing a single actor component does not change the trace
set because all events appearing in the trace set are not internal.

Lemma 3.4. Let L = {a} be a component. Then Traces(L) =
Traces([L]).

Proof (sketch). Because self call events are ruled out, all events
in some trace t € Traces(L) are either input or output. Therefore,
it will not disappear after projection. O

If we know that a trace set T is a trace set of a boxed
component L, then we can derive L’ C L based on the name
transfer that happens within the traces. This derivation, denoted
by ext(T), short for name extraction, is made by collecting
the names that are exposed through actor creation, method
call parameters and callee of a method call event. The name
extraction becomes useful when we want to split the trace of a
boxed component into input and output traces.

Definition 3.6 (Name extraction). Let T be a (valid) trace set
of some boxed component. L’ = ext(T) is the subset of actors in
the component, where ext(T) = | Jext(t), ext([]) = 6, and
teT
ext(t) U {callee(e)} , if msg(e) = new C
ext(t - e) = { ext(t) U {caller(e)} Uacq(e) — (acq(t) — ext(t)),
if isMtd(msg(e)) A callee(e) ¢ ext(t)

The local actor name extraction of T is done by examining
each trace t in T and combining the result of each examination.
If t ends with a creation event e, then the callee is part of
the local name. By definition of the boxed component, there



is exactly one creation event visible in any trace of T which
is the creation of the initial actor of the component. If ¢t ends
with a method call and it is directed to some foreign actor, then
the caller of this event and all non-foreign actor names in the
method call arguments are included.

Hiding all internal events of a component trace is at times
too strict, especially when we want to know the interaction
between the component’s subcomponents. If we know how the
component is structured, we may allow internal events between
these entities to appear in the trace set of the component. This
way of composing subcomponents and actors into a component
is called glass box composition [[9} p. 5].

Definition 3.7 (Glass box composition).

Let L =L,U...UL,U{ay,...,a,} be a component such that
Lq,...,L, are components and a, ..., d,, are actor names where
Li,...,L,,{a;},...,{a,,} are pairwise disjoint. Let F = A — L,
a € {ay,...,a,} and C = class(a). The glass box composition
of L, denoted (L,]|...|L,la;]...|a,,), is the largest trace set T =
Traces({L4|...|L,la;]...|a,,)) where

e VteTe(VL;et], €Traces([L;])AVa;et|y,, € Traces({a;}))
(all traces can be projected to all elements of L),
e Vet e Tecallee(e) =aAcaller(e) € F Amsg(e) =new C
(a is the initial actor),
eVe-t-e'€Temsgle’)=newC =
caller(e’) € L Acallee(e’) € L
(all other creation messages create local actors), and
o Ve-t-e' €T ecaller(e’) € F AisMtd(msg(e’)) =
{callee(e”)} Uacq(e’) € acq(t | peape) Ucr(e)
(the environment uses only exposed local actors).

Restrictions in terms of creation are applied to the actors and
components that are composed, because the resulting composi-
tion should be a component. Each actor or component must be
created by some local actor except for the initial actor a,,. As
with the plain trace set definition, traces where name exposure
property is not preserved must be excluded in order to main-
tain validity. Composing components and actors in a glass box
manner produces a valid trace set.

Lemma 3.5 (Glass box trace set validity).
Let Ly,...,Ly,ay,...,a, fulfill Def 3.7}

Then, Traces({L,|...|L,la;]...|a,,)) is valid.
Proof. Similar to the proof for Lemmas[3.2] and O

Deriving the black box semantics of a glass box composition
is done by projecting the trace set to the foreign actors.

Lemma 3.6 (Boxing glass box component). Let component
L=1LU...uL,U{ay,...,a,} and F = A— L fulfill Def 3.7]
Then, Traces({L,|...|L,la;|...la,))|r = Traces([L]).

Proof. Follows directly from Def. O

4. Specification Technique

Hoare advocates that to specify the functional behavior of a pro-
gram is to specify the connection between the input and output
of the program [J17]]. This approach is extended by Broy [8] to
deal with components by letting the input and output be streams
of events. Here we adopt their approaches to specify the func-
tional behavior of actor components by letting the specification
be a set of triples (similar to Hoare triple) where the pre- and
postconditions are described using assertions on traces. As in
Hoare logic, triples have the form

{r} D {q}

where p and q are input and output trace assertions, respec-
tively, and D is either C or [C]. We call {p} C {q} an actor triple,
where as {p} [C] {q} is called a component triple.

The trace assertions are first-order logic formulas that can
use a special constant $ called the trace constant. A trace asser-
tion is checked against some variable assignment and input/out-
put trace, and every occurrence of $ is replaced by the traceE]
The input and output traces are obtained from a valid actor trace
by filtering the input and output events. Different to Hoare logic,
where the second part of the triple is usually the program or the
implementation of some sort, here we only have the name of
the entity we represent. Nevertheless, knowing whether the en-
tity is a boxed component or an actor class allows us to link the
specification with the correct kind of trace semantics.

Before going into more details about the syntax and seman-
tics, we motivate the specification technique by specifying our
server example. To distinguish the logical variables appearing
in the specification from the program variables, the logical vari-
ables will be underlined.

4.1 Specifying the Running Example

In this subsection, we illustrate how the server and worker ac-
tor and components described in Sect. [2| behave when a single
request comes from a client. To save space, the following abbre-
viations are employed. The Server class is abbreviated as Srv,
Worker as Wrk, serve as sv, propagateResult as pR, response
as resp, taskSize as sz, firstTask as fst, restTask as rst,
compute as cmp and merge as mrg.

The following specification of the server class states that
when a server is created and a request comes, the server creates
a new worker and passes the worker the task and tells it to start
propagating the result.

{ $ = (this := new Srv - this.sv(c, 1) - V) }
Srv
{Iwe$ = (w:=newWrk-w.do(t) - w.pR(null,c) )}

For the server case above, the input trace assertion restricts
the behavior to cases in which the environment creates the
server and sends a single sv message. The server actor processes
the input by creating a new worker, passing the task to the newly
created worker and starting result propagation before stopping.
When the input trace assertion is not satisfied by the input trace,
the behavior of the server is unspecified. For example, we do not
know what the server does when it receives more than one sv
request. As can be seen in the specification, the trace constant
is used by comparing it to the sequence of the content of the
events, that is, the pairs of callee and message. We are not
concerned with the caller part of the event because the trace
is an actor trace. By using this comparison technique, we specify
exactly what the server does when it receives the exact input
that is stated in the input trace assertion. As standard in Hoare
logic, any logical variable that appears only in the output trace
assertion needs to be existentially quantified.

When we consider the server component as a whole, we
would like to see that a request from the client is replied by
a response to the client with the computed result. This require-
ment is represented using the specification below.

{ $ = (this := new Srv - this.sv(c,t) - V)}

[Srv]

{$=(cresp(cmp(t)) - )}

The name [Srv] indicates that the triple deals with a boxed

2To be exact, $ is replaced by the event content sequence of the trace,
where an event content is an event without the caller information. This
is done because each actor/component should be oblivious to who the
caller of an event is.



server component. That is, the assertions are checked against
a boxed component trace with an initial actor of class Srv.

Specifying the worker class motivates why we may have
more than one triple that represents the functional behavior
of a worker. More precisely, the worker class is described using
two specification triples, each handling the base and inductive
cases, respectively. The first specification triple handles the case
when the task has exactly one subtask. In this particular case,
the worker sends back to the client the result of merging the
propagated result value with the computation of the subtask.

{ $ = (this := new Wrk- this.do(t) - this.pR(v, ) - V) Asz(t) = 1 }
Wrk
{$=(c.resp(mrg(y, cmp(t))) - v) }

In the second case, the task consists of multiple subtasks. In
this case, the worker creates another worker to pass on the rest
of the task while processing the current subtask. When the com-
putation of the current subtask is finished, the worker merges
the computation result with the previous result it receives and
propagates the merged result to the worker it created.

{ $ = (this := new Wrk - this.do(t) - this.pR(v, ©) - v/) A
sz(t)=nAn>1}
Wrk
{Iwe$ = (w:=newWrk-w.do(rst(t)) -
w.pR(mrg(y, cmp(fst())), ) - v}
This concludes the worker class specification for our example.

If we box the worker class, then we obtain a component
whose members are exactly the set of workers needed to process
a task. Its specification is exactly as that of the worker class,
but instead of splitting the tasks into subtasks, the worker group
evaluates the whole task in a chunk and returns the computation
result merged with the previous result to the client.

{ $ = (this := new Wrk - this.do(t) - this.pR(v, ¢) - v)}

[Wrk]

{$=(c.resp(nro(v, cmp(t))) - v)}

4.2 Syntax and Semantics

Triples use trace assertions to formulate input and output con-
ditions. A trace assertion is a first-order logic formula in which
the special trace constant $ can be used. In the input (output)
condition, $ represents the event content sequence of the input
(output) trace. We assume that there are functions and predi-
cates over traces that can be used in trace assertions. For the
purposes of this paper, we only need an equality comparison
operation, written $ = ec, that compares the result with a se-
quence of event contents ec, as seen in the previous subsection.
Event contents are used instead of events because from an ac-
tor’s point of view, the origin of the events is not known unless it
is the actor who is initiating them. Thus, the caller of the event
does not play a role when we want to specify the behavior of
a component. The main idea of the equality comparison is that
given an (input or output) trace, there is a mapping of the vari-
ables in ec to data and actor names such that stripping this trace
of the caller information yields a match to the mapped ec. We
require that any event content comparison must end with / to
ensure only maximal traces are compared. When a non-maximal
trace is compared, the information whether the actor or compo-
nent has finished with the tasks is lacking. It is possible that the
actor or component responses with less or more events.

Definition 4.1 (Trace assertions). Let $ be a trace constant
representing a trace. Trace assertions p,q are defined inductively
by the following first-order logic clauses:

¢ Boolean expressions, where $ may be present, are assertions.
e If p, q are assertions and x is a variable, then =p,p Ag,3x: p
are also assertions.

The other logical operators, such as vV, = and V, are
derived in the usual way. Given a trace assertion p, the function
free(p) extracts the set of all free variables appearing in p.

To define the semantics of a trace assertion, the variables
must be assigned to some values. Let V be the set of all variables.
A variable assignment o : V. — AUD is a function that maps
(some) variables to values.

The semantics of a trace assertion p with respect to a variable
assignment o and a trace t is a mapping

[pl:(V—AUD) x Seq(E U {/}) — {true, false}.

We write p(o,t) if [p](o,t) = true. This mapping of a trace
t is similar to the standard first-order logic interpretation based
on states (see, e.g., Apt, de Boer and Olderog [4]]). Occurrences
of $ are replaced directly by the event content sequence of t. The
equality comparison operator $ = ec can be formulated in first-
order logic by using o to replace all the variables in ec before
comparing it with the stripped t. Because of the assumption
that creation events in the trace always yields a fresh name, this
freshness aspect does not need to be handled explicitly by the
semantics of the trace assertion.

Substitution of all free occurrences of a variable x by some
expression or assertions r in a trace assertion p is denoted by
p[x/r]. We assume that all variables and all substitutions are
correctly typed.

As seen in the example, a specification triple {p} D {q} con-
sists of the trace assertions p and q and some entity name D,
which is either some actor class name C or a boxed component
with an initial actor of class C We call p and q input and out-
put trace assertions, respectively. All variables that only appear
in q (possibly due to an explicit creation of another actor or an
implicit exposure of locally created actors) must be existentially
quantified. As convention, the initial actor created is referred to
by the variable this. The specification triple {p} D {q} partially
characterizes the trace semantics of the entity represented by
D. Partial means that for each trace t € [D] whose input part
satisfies p, its output part satisfies also g. This specification tech-
nique does not give information about the rest of the traces that
do not satisfy p. Despite the underspecification, the specification
triple eliminates traces which satisfy p and do not satisfy q.

An actor triple of class C enforces that an actor of class
C is created and the environment can only call methods of
this actor. The restriction given in the definition above is not
enough to ensure that indeed only a single actor is considered
local. Consider a trace assertion ¢ = true. A group of actors
whose initial actor is the only exposed actor of the group can
produce traces that matches the specification. By comparing
the specification with a real trace semantics of the actor whose
characteristics are described in Def. we avoid this problem.
To define the semantics of the actor triple, a trace t needs to
be split into input and output traces. The function split(t,L) =
(tlF,callerlL,callee’ tlL,callerlF,callee) does exactly SO, where F =A— L.

Definition 4.2 (Actor triple semantics). Let [C] be a trace set
satisfying Def. and representing the trace semantics of some
actor a of class C. [C] satisfies {p} C {q}, written F {p} C {q},
if for all trace t € [C] with split(t, {a}) = (ti, to), the following
holds:

Yo ep(o,ti) = q(o,to) .

3 In the classical Hoare logic [[17]], p and q are said to be the precondition
and postcondition of the triple, respectively. However, the specification in
this paper deals with input and output traces, which may include passing
of a (new) actor name in an output event that later appears as the callee
of an input event. In this sense, p and q are not pre- and postconditions.



A component triple {p} [C] {q} states how the component
with an initial actor of class C replies to a given sequence of
input events. The semantics of a component triple is compared
to the appropriate boxed component trace set and has the same
form as for the actor triple. Thus the traces need to be split into
input and output traces. This splitting can be done using the help
of the function ext(t) from Def. The following definition
covers the semantics of boxed component triples.

Definition 4.3 (Component triple semantics). Let [[C]] be
a trace set satisfying Def. [3.5] that represents the trace semantics
of component with an initial actor of class C. [[C]] satisfies
{p} [C] {q}, written F {p} [C] {q}, if for all trace t € [[C]]
with split(t, ext(t)) = (ti, to), the following holds:

Yo ep(o,ti) = q(o,to) .

Given triples as defined above, we can state the specification
of an actor class or a boxed component as a set of such triples.
A proper trace set representing the actual behavior of the class
or the component must satisfy each of the specification triples.

Definition 4.4 (Specification). Let D be an actor class C or a
boxed class representing a boxed component [C]. A specifica-
tion for D is a set of specification triples

S={{p} D {q:},....{ps} D {q.}} .
[D] satisfies S, written = S, if V({p;} D {q;}) € Se = {p;} D {q;}.

5. Proof System

The specification technique described in the previous section
allows us to focus on interesting functional properties of actor-
based components and systems. Unlike the standard Hoare
logic, where a primitive program statement (i.e., the second
element of the triple) holds the basis how the assertions can
evolve, we only have the information of an actor class name
and its boxed status. In the proof system, we use the actor class
specifications as axioms assuming that they are satisfied by the
implementation. This assumption allows us to focus on proving
the component specifications. To be able to prove the compo-
nent specifications from the actor class specifications, we need
to come up with proof rules based on the trace semantics given
in Sect. [3| In this paper, we provide a proof system called Re-
lational Proof System for Actors (RPSA) that can handle daisy
chain composition. By daisy chain composition, we mean that
an actor that creates another actor, sends messages to this newly
created actor, never exposes its own name to the newly created
actor nor the name of the newly created actor to other actors
forming a chain of one way interaction.

RPSA presented in Fig. 5| (with the helper predicates stated in
Fig.[6) contains an axiom and a number of rules. A rule consists
of a number of premises and a specification triple as conclusion.
The premises are trace assertions or specification triples. A rule
allows to prove the conclusion from the premises. A rule with no
premise is called an axiom (that is, the conclusion is assumed to
be true). To ensure that we obtain the correct conclusions, each
rule must be proven to be sound. Sound means that when the
premises are assumed, then using the semantics of the assertions
and the specifications we can argue for the conclusion.

In context of a proof system, a proof of a component triple
is a sequence of proof rule applications. This sequence of ap-
plications are represented using a proof tree, where each node
contains the specification triples and assertions that hold and
the edge is labeled with the proof rules that is used.

RPSA also includes standard auxiliary rules similar to what
is done by Apt, de Boer, and Olderog [[4] and Poetzsch-Heffter
[24]]. The auxiliary rules we need for our example are given in

CONSEQUENCE

P =D

{p1} D {q:} BOXING
/{\C;OST{R”?EAXIOM g = q {p} C {g AnonCr($)}
P P} D {q) () [C] (@}

BoXEDCOMPOSITION
{p A1=38} C {q AnoSelfExp(i, $)}
{q'} D {r AnonCr($)}  match(q,q’,D)
{p} [C] {r}
where i & free(p) U free(q)

INDUCTION
fpAm=0}[C] {g}  match(p’,p,C)
{pAm=zAm>0Ai=$}C {p’ Am < zAnoSelfExp(i, $)}

{p} [C] {q}
where i € free(p) Ufree(q)

Figure 5. Proof rules for RPSA

noSelfExp(i, $) EVc-ece Pref(i) e callee(c) ¢ acq($)

nonCr($) £ Vec' - e € Pref($), C’ € CL e msg(e) # new C’

def

match(q,q’, D) =q =
Jda € A o firstCreated(a, $) A classOf (a,D) A q’

Figure 6. Helper predicates for RPSA

INVARIANCE SUBSTITUTION
{p} D {q} {p} D {q}
{pAT}D{qAr} {p[x/r1} D {q[x/r]}

where consFree(r) where x € free(p) Ufree(q)

and consFree(r)

Figure 7. Auxiliary rules for RPSA

Fig. allows to add conjuncts that do not refer to

the trace constant. The predicate consFree(p) checks that there
are no occurrences of $ in p. allows substitutions
of free variables x to some assertion or expression r that does
not contain the trace constant. Except for the standard
rule and [AcTorRTRIPLEAXIOM| (Which should be checked
against the implementation), all rules in RPSA are explained in
more details along side their application in the running example.

5.1 Verifying Example Component Specifications

In Sect. [4] specifications for server and worker actor classes are
given and we assume that they are correct. The specifications
for server and worker components are also stated, but they
are left as proof obligations. The server component is built
by composing the worker component with the server actor.
Thus [BoxeEDCoMPOSITION|is used to verify the server component
specification. The worker component is built by composing as
many worker actors as needed to complete the task that is given
to the worker component. To achieve the verification of this
component, is utilized.

To focus more on the proof rules and their usage, the event
content equality assertions are abbreviated as follows.

o InSrvE $ = (this := new Srv - this.sv(c, 1) - /)



e OutSrvE g = (w :=new Wrk - w.do(t) - w.pR(null,¢c) - /)
* InWrk £ $ = (this := new Wrk - this.do(t) - this.pR(v, ) - v)

def

* OutWrkP = $ = (c.resp(mrg(v, cmp(t))) - v/)

o OutWrkl £ ¢ = (w :=new Wrk - w.do(rst(t)) -
w.pR(mrg(v, cmp(fst(t))),c) - v)

e InSWCEg= (this := new Srv - this.sv(c,t) - v/)
e QutSrC ¥ g = (c.resp(cmp(t)) - +/)

The name are picked such that InSrv, for example, represents
the input event content equality of the server actor triple, where
as OutWrkl represents the output event content euality of the
worker actor triple in the inductive case. The C suffix indicates
the assertion is used in a component triple. Note that the event
content equality assertions in both worker actor triples and the
worker component triple are the same, i.e., INnWrk. In addi-
tion, the event content equality assertions for the worker ac-
tor triple of the primitive case and the worker component triple
is the same, i.e., OutWrkP. Let cse, short for content sequence
extractor, be a function that extracts the event content sequences
from these abbreviations.

Server Component. We start with proving the server compo-
nent triple. The intention is to compose the server actor with
the worker component. The rule that accomodates this compo-
sition is [BOXEDCOMPOSITIONI

The [BoxEDComposITION| rule defines how an actor of class C
can be combined with another actor or boxed component D to
create boxed component [C]. For this rule to be applicable, three
premises must hold. First, the actor triple C must guarantee that
the actor’s name will not be exposed.

def

noSelfExp(i, $) = Vc - ec € Pref(i) o callee(c) ¢ acq($)

The predicate noSelfExp, short for no self exposure, takes variable
i and the trace constant $ representing the input and output
traces, respectively. It guarantees a one way interaction, or in
other words, ensures daisy chaining because the current actor
is not exposed. To ensure no exposure of an actor is made, the
acquaintance of the output trace must not contain that actor. Se-
cond, the triple of D must ensure that no foreign actor is created
by the instance of D. The predicate nonCr does exactly that.

nonCr($) & Vec - e € Pref($),C’ € CLemsg(e) # new C’

Third, the output produced by the actor of class C must match
the input of the instance of D. In other words, the actor of class
C exclusively feeds the instance of D in this particular case. This
matching is handled by predicate match.
def
match(q,q’,D)=q =
Jda € A o firstCreated(a, $) A classOf (a,D) A q’

The predicate firstCreated checks if the first event is an actor cre-
ation and a represents the created actor. The predicate classOf
checks if the created actor is of class D. The match predicate
relies on the valid trace restriction (see Def. where a trace
starts with an actor creation. This restriction applies because the
evaluation of ¢’ is done against an input trace, which always
starts with an actor creation. For match to hold, the free vari-
ables of ¢ and ¢’ should coincide. Note that because match is
only used to link output trace assertion q to input trace asser-
tion ¢’, there is no need to explicitly check that g represents an
output trace assertion.

Neither the server actor triple nor the worker component
triple is in the form needed to apply|BoxepComposiTion} There-

ICNsl

ICMP|

fore, we need to transform these triples using the [CONSEQUENCE]
[INvARIANCEl and [SusTITUTION] rules.

IAXIOM|

{InSrv} Srv {Iw e OutSrv}

{InSrv Ai=cse(InSrv)} Srv {Iw e OutSrv A i =cse(InSrv)}
InNSrv Ai =% = InSrv Ai=cse(InSrv)
Iw e OutSrv Ai=cse(InSrv) = Jw e OutSrv A noSelfExp(i, $)

{InSrv Ai=$} Srv {Iw e OutSrv A noSelfExp(i, $)}
By [INVARIANCE)} a logical variable j is introduced to store the

input trace. Because i cannot directly refer to $, we first extract
the event content sequence from the event content comparison
InSrv. By the input trace assertion is strength-
ened by having i to indeed be the input trace. At the same time,
the output trace assertion is enriched with noSelfExp.

{InWrk} [Wrk] {OutWrkP}

{InWrk[v/null]} [Wrk] {OutWrkP[v/null]}
OutWrkP[v/null] = OutSrvC A nonCr($)

{InWrk[v/null]} [Wrk] {OutSrvC A nonCr($)}

The worker component triple needs to be adjusted so it is
ready to receive the input from the server actor. By substituting
the variable v with null ensures that we can match the output of
the server actor to the input of the worker component. From the
assumption in Sect. we know that mrg(null, cmp(t)) = cmp(t).
Therefore, we can infer OutSrvC from OutWrkP[v/null]. The
output trace assertion is enhanced by nonCr to state that the
output of the worker component creates no other actors, which
holds from the definition of components (Def. [3:4). Now we
are ready to apply |[BoxEDCOMPOSITION| to obtain that the server
component specification holds.

{InSrv Ai=$} Srv {Iw e OutSrv A noSelfExp(i, $)}
{InWrk[v/null]} [Wrk] {OutWrkP[v/null] A nonCr($)}
match(3w @ OutSrv, InWrk[v/null],Wrk)

{InSrvC} [Srv] {OutSrvC}

When a server actor receives a single request, we can match
the output of the server actor to the input of the worker com-
ponent. Thus the last premise of [BoxepComposiTion|is handled
and we can derive the server component specification.

Worker Component. To prove the worker component triple,

we can apply the rule. Similar to the server compo-
nent case, the worker actor triples need to be massaged before

the rule can be applied.

rule deals if a component that creates as many
instances of itself as needed to solve the task it has to do. This
rule relies on having a measure expression m depending on
the event content sequence. The base and inductive cases are
represented by the measure comparison m = 0 and m > 0,
respectively, as mentioned.

If the measure yields zero, the actor on its own must rep-
resent the behavior of a component. That is, it does not create
any other actor. For the inductive case, we see how the initial
actor behaves. If from the actor specification it creates another
actor of the same class and passes on a similar input to this new
actor with the measure being reduced, this means we could ap-
ply the same specification again and again until we end in the
base case. The reduction in the measure is captured by z, a vari-
able that does not appear in other parts of the corresponding
triple. The match predicate enforces this behavior. As in

CoMPOSITION|, noSelfExp ensures that no self exposure is done.
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When these premises are fulfilled, then the component triple
holds.

For the worker component, let the function gt get the task
parameter from an event content sequence (including $); in
other words, gt refers to the task parameter of the do method.
Thus, we can define the measure m as sz(gt($)) — 1.We apply
directly arithmetic manipulation to any boolean expressions to
improve the presentation.

We begin with the worker actor that receives only a primitive
task t (i.e., sz(t) = 1). In this particular case the goal is to box
the worker actor for creating no other actors. [BOXING| captures
exactly this intention.

{InWrk A sz(gt($)) = 1} Wrk {OutWrkP}
OutWrkP = OutWrkP A nonCr($)

{InWrk A sz(gt($)) = 1} Wrk {OutWrkP A nonCr($)}
{InWrk A sz(gt($)) = 1} [Wrk] {OutWrkP}

When the worker deals with a non-primitive task, the worker
follows the inductive case of the worker actor triple. To achieve
the second premise of the output trace assertion
must include the information that the measure is reduced. In
our case, we know that sz(rst(t)) < sz(t), but we cannot ex-
tract the right task t information from the trace constant of the
output trace assertion. To get around this problem, we utilize
the same approach to capture the event content sequence con-
tained in the input trace assertion into a variable. By introducing
sz(gt(cse(InWrk))) = z to the output trace assertion using
we can weaken the output trace assertion to include
the needed information. To include the no self exposure infor-
mation in the output trace assertion, we follow the same ap-
proach to transform the worker component triple. In the proof
tree below, we abbreviate sz(gt($)) =z A sz(gt($)) > 1 as ind.

[Axiom]

{InWrk A ind} Wrk {3w e OutWrkl}

{InWrk Aind A i = cse(InWrk)} Wrk
{3w e OutWrkl A i = cse(InWrk)}
InWrk Asz(gt(i)) =zAindANi=$ =
InWrk Aind A i = cse(InWrk)
Iw @ OutWrkl A i=cse(InWrk) =
Jw @ OutWrkl A i = cse(InWrk) A noSelfExp(i, $)

{InWrk A sz(gt(i)) =zAind Ai=$} Wrk
{Iw @ OutWrkl A i = cse(InWrk) A noSelfExp(i, $)}

{InWrk A sz(gt(i)) =zAind Ai=$} Wrk
{3w @ OutWrkl A i = cse(InWrk) A noSelfExp(i, $) A sz(gt(i)) = z}
INWrk Aind Ai=$ = InWrk Asz(gt(i)) =zAindAi=$
Iw e OutWrkl A i = cse(InWrk) A noSelfExp(i, $) A sz(gt(i)) =z
= Jw e OutWrkl A sz(gt($)) < z A noSelfExp(i, $)

{InWrk Aind Ai=$} Wrk
{3w e OutWrkl A sz(gt($)) < z A noSelfExp(i, $)}

Now that the base and inductive cases are covered, we can
apply the rule. Thus, the worker component triple
holds.

{InWrk A sz(gt($)) = 1} [Wrk] {OutWrkP}
{InWrk A sz(gt($)) =z Asz(gt($)) > 1Ai=8$}wrk
{Iw e OutWrkl A sz(gt($)) < z A noSelfExp(i, $)}
match(Iw e OutWrkl, InWrk, Wrk)

{InWrk} [Wrk] {OutWrkP}

As the worker component specification is proved, the server
component specification holds. The proof above depends on the
RPSA being sound, which is addressed in the next subsection.
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5.2 Soundness of RPSA

The soundness of RPSA is proven by induction on the depth of
the proof trees. This means that each rule applied within the
proof trees must be sound and the axiom is applied only when
the actor triple is proved in the underlying system. The following
lemmas show for all rules that the derived component’s specifi-
cations are valid if the premises are valid.

Lemma 5.1 (Soundness of [CONSEQUENCE). Let D be either an
actor class C or a component with initial actor of class C. Suppose
Fi{pi} D g}, p = prand q; = q. Then F {p} D {q}.

Proof. Follows from the first-order logic semantics. O

The soundness of follows from a straightfor-

ward manipulation of first-order logic.

Lemma 5.2 (Soundness of [BoxING). Let C be an actor class, p
and q be trace assertions. Suppose F {p} C {q A nonCr($)} holds.
Then, & {p} [C] {g}.

Proof. The created actor is acting as a component (i.e., it follows

Def.[3.4). O

The soundness of the [BoxiNg| rule comes from the actor ful-
filling the component definition (Def. for input traces that
fulfills the input trace assertion p. This rule immediately be-
comes unsound when we remove the no actor creation restric-
tion because it falsifies the component definition.

Lemma 5.3 (Soundness of BoxeDCOMPOSITION)). Let the fol-
lowing assumptions hold.

Al. E{p Ai=$} C {q A noSelfExp(i, $)}
A2. E{q’'} D {r AnonCr($)}
A3. match(q,q’,D)

Then, E {p} [C] {r}.

Proof. By cases. Here we consider D to be an actor class C’. The
proof for D = [C’] follows a similar outline.

Suppose a is an actor of class C and b an actor of class
C’, t is a glass box trace that involves actors a and b. Let
split(t, {a}) = (ti,, to,), split(t,{b}) = (tiy,to,), F = A— {a, b}
and o be a variable assignment such that p(o,ti,). The goal is
that if all assumptions hold, t|; € Traces([{a, b}]), where in this
case Traces([{a, b}]) represents [[C]].

o If (g A noSelfExp(i, $))(o, to,), then tl,y ¢ Traces({a}) by
A1 and Def. By Def.[3.7} tl; ¢ Traces([{a, b}]).
o If (g A noSelfExp(i, $))(o, to,), then t |, € Traces({a}) by Al
and Def. Because of A3, we have ¢'(o, ti,).
= If =(r AnonCr($))(o, to, ), then either t |y, ¢ Traces({b})
by A2 and Def. or —nonCr($). For the former case,
by Def. t ¢ Traces([{a, b}]). For the latter, A2 is not
fulfilled.
= If (r A nonCr($))(o,to,), then tly,;, € Traces({b}) by
A2 and Def. This means t € Traces({a|b)) and by
Lemma|3.6|t| € Traces([{a, b}]).

By Def. {3} k- {p} [C] {r}. D

The essense of the proof above is that whenever the initial
actor is given some input trace that satisfies the input trace
assertion, the actor will produce an output trace to the other
subcomponent of [C] such that this subcomponent produces
the output trace that is required by the output trace assertion.
The matching, no self exposure and non-creational predicates



restrict the case such that no other output event is leaked out
except for the expected ones.

Lemma 5.4 (Soundness of [[INDUCTION). Suppose the following
assumptions hold.

Bl. F{p Am =0} [C] {q}
B2. E{pAm=zAm>0Ai=3$}C {p’ Am < zAnoSelfExp(i, $)}
B3. match(p’,p,C)

Then, = {p} [C] {q}.

Proof. By induction. Suppose we clone the class C into un-
bounded number of classes named C,,Cy,.... Without loss of
generality, we reformulate assumptions B2 and B3 as follows:

B2. VkeNekE{p Am=zAm>0Ai=$}C,
{p Am < zAnoSelfExp(i, $)}
B3'. Yk € N e match(py, ,, Py, Ci)

where p, and p, are the same as p and p’, respectively, except
for the created actor in the input and output traces of C; being
of class C; and C,._, respectively. N represents the set of natural
numbers. Moreover, k is always picked exactly to handle the
measure m.

Suppose L = {ay,a;,...} are actors of classes Cy,Cy,... re-
spectively (i.e., ay,a;, ... are all of class C) and F = A— L. We
proceed with the proof by induction on the number of actors that
are created. Let t be a valid trace such that there are k+1 actors
ay, .. .,a; created with a; to be the initial actor. The goal is to
prove for each case that if the input trace assertion p is fulfilled,
then if output trace assertion q is fulfilled, t|; € [[C]].

Base case: k = 0. Because q, is the only actor created in t, t
is already an actor trace of a,. By Lemma t is also a boxed
trace. Let split(t, {a,}) = (ti, to). Let o be a variable assignment
such that p(o,ti) holds. Because k is always picked exactly to
handle the measure m, B1 is applicable. This means that when
q(o,to), tlz € [[C]], otherwise t| ¢ [[CI].

Inductive step: k = n+ 1. Let L’ = {qa,...,a,_;} and t’ be a
boxed trace of L’ with the initial actor a,_; and split(¢t',L’) =
(ti’,t0’). The induction hypothesis is that L’ is a component and
if t’ satisfies p,_,(o,ti’) for some variable assignment o, then
q(o,to").

Let split(t |y, y,{a,}) = (ti,, to,) and split(t |/, L') = (ti;, toy/).

Let o be a variable assignment such that p, (o, ti,,).

If -p/(o,to,), then B2’ is violated. Thus, p/(o,to,) must
hold. Furthermore, a, does not expose itself to actors it creates.
From B3’ we obtain that p,_,(o,ti;/). By the induction hypoth-
esis, (o, to;,) must hold. Because a, is not exposed, to,, is also
the output trace of L (that is, the output trace of L’ does not con-
tain output events that are directed to a,). Note that a, is the
only actor that can be created by the environment, because L’ is
boxed and the initial actor a,_; is created by a,. By Def. L
is a component. Moreover, as p,, is essentially the same as p, the
input trace of L is the same as ti,. Therefore, t|; € [[C]].

By induction principle and Def. E{p} [C] {r}. O

The soundness of is proven by induction on the
number of actors of class C that are created. Because all actors

carry the same characteristics, never expose one actor to the
next one, and produce output that is passed as a whole to the
next actor (except for the last actor that produces output exclu-
sively to the environment), we can hierarchically box the actors
from the innermost to the outermost layer by layer. By employ-
ing the boxed second outermost layer as induction hypothesis,
the proof of the inductive case is carried out in a similar way to
the proof for the soundness of the [BoxenComposiTion|rule.
Based on the lemmas above, we conclude that RPSA is sound.

Theorem 5.5. The proof system RPSA is sound.

6. Related Work

We consider related work in the areas of semantics, component
specification, and logic.

There are plenty of semantics proposed for actor-based sys-
tems (e.g., 2 [7, 10} 28 [30]). The trace semantics used in this
paper is inspired by Vasconcelos and Tokoro’s trace semantics
[30]] and Talcott’s interaction path [J28]]. Rather than having the
behavior of actors evolve depending on what input the actors
receive, classes are used to provide more structure to the behav-
ior of the actors. Instead of employing an independence relation
or a partial-order relation between events to mimic the buffered
message passing communication [2]], we use method interaction
and the caller information is introduced into the events to allow
projection-based composition. This approach avoids the need to
come up with and maintain these relations. The traces can be
extracted from actor-based programming languages using the
guess and merge approach [3]].

n-calculus [22] can be used to specify actor systems, but it
needs some restrictions on the syntax and introduction of actor
identities. Verifying a component specification from the actor
class specifications involves bisimulation.

Specification Diagram [26] provides a very detailed way to
specify how an actor system behaves. To check whether a com-
ponent specification produces the same behavior as the compo-
sition of the specification of its subcomponents one has to per-
form a non-trivial interaction simulation on the level of the state-
based operational semantics. By extending m-calculus, a may
testing ([[14]]) characterization of Specification Diagram can be
obtained [29].

Our specification technique is strongly related to Focus [[9].
The main difference is that Focus provides no support for mes-
sages, name transfer and dynamic creation — necessary features
for actor systems.

Several logics have been developed to reason about the func-
tional behavior of actor-based implementations. For the verifica-
tion process, most of them are based on a state-based semantics
and rely on having the actual implementations. For example,
Darlington and Guo [[12]] provides a linear logic characteriza-
tion of the state-based semantics of an actor system. Arts and
Dam [6]], the source of our running example, used extended
first-order u-calculus [11]] to verify Erlang programs ([[5]) by
evaluating the state of the program. The use of temporal logic
have been considered by Duarte [16] and Schacht [25]].

De Boer [[13] presented a Hoare logic for concurrent pro-
cesses that communicate by message passing through FIFO
channels (similar to actors). He described a similar bilayered
architecture, where the assertions are based on local and global
rules. The local rules deal the local state of a process, whereas
the global rules deal with the message passing and creation of
new processes. However, they only work for closed systems.

An example of a logic that is based on trace semantics is the
work by Soundarajan [27]. Soundarajan proposed a specifica-
tion technique more general than ours and a proof system than
can handle a fixed finite number of processes. A specification of
an object of a single class may be represented using Soundara-
jan’s specification technique as follows.

p[$/tinput] = q[$/toutput]

Nevertheless, our Hoare-like triple is convenient as the inter-
leaving of input and output need not be specified.

Ahrendt and Dylla [3]] and Din et al. [15] have extended
Soundarajan’s work to deal with actor systems. They consider



only finite prefix-closed traces, justifying their consideration of
having only finite number of actors to consider in the verification
process. Din et al. [[15]], in particular, verified whether an imple-
mentation of an actor class satisfies its actor triples by trans-
forming the implementation in a simpler sequential language,
applying the transformational method proposed by Olderog and
Apt [23]]. The main difference between this work and the afore-
mentioned work on trace semantics is on the notion of compo-
nent that hides a group of actors into a single entity. This avoids
starting from the class specifications of each actor belonging to
a component when verifying a property of the component.

7. Conclusion

In this paper, we have presented a logic that supports com-
positional specification and verification of open concurrent
component-based systems in terms of an actor model. The se-
mantics of actors is represented using traces of events, from
which we derived the notion of dynamic, hierarchical compo-
nents. As each event reveals either an action of sending a mes-
sage from an actor to another or creation of a new actor, our
trace semantics provides all information about the observable
behavior of the actors and components. The Hoare-like speci-
fication triples are designed to state the precise, albeit partial,
response of an actor or a component to the input it receives. We
then proposed a sound and compositional axiomatic proof sys-
tem that handles components that form a daisy chain with only
one-way interaction between their subcomponents. By assuming
the actor specifications, the proof system can focus on proving
component and system-wide functional properties. An illustra-
tion on how the specification technique and the proof system
can be applied is given by means of a client-server example.

Future work. Several directions we are taking include deriving
the trace validity definition from a simple operational seman-
tics of actor systems, incorporating a more general specification
technique by adapting the Soundarajan’s approach and allowing
abstract state information, and an extension of the proof system
to cover more flexible composition schemes. In addition, to have
a closer connection to actor programming/modeling languages,
such as ABS, we would like to support more complex communi-
cation constructs such as futures.
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Abstract

“Timed-Rebeca” is an actor-based modeling language for modeling
real-time reactive systems. Its high-level constructs make it more
suitable for using it by software practitioners compared to timed-
automata based alternatives. Currently, the verification of Timed-
Rebeca models is done by converting into timed-automata and us-
ing UPPAAL toolset to analyze the model. However, state space
explosion and time consumption are the major limitations of using
the back-end timed automata model for verification. In this paper,
we propose a new approach for direct schedulability checking and
deadlock freedom verification of Timed-Rebeca models. The new
approach exploits the key feature of Timed-Rebeca, which is en-
capsulation of concurrent elements. In the proposed method, each
state stores the local time of each actor separately, avoiding the
need for a global time in the state. This significantly decreases the
size of the state space. We prove the bisimilarity of the generated
transition system (called floating-time transition system) and the
state space generated based on Timed-Rebeca semantics. Also, we
provide experimental results showing that the new approach miti-
gates the state space explosion problem of the former method and
allows model-checking of larger problems.

Keywords Actor model, Timed-Rebeca, Verification, Realtime
systems, Schedulability, Deadlock

1. Introduction

In recent years, the modeling and verification of schedulability
and deadlock freedom of component-based and distributed real-
time systems has become very important [16]. Distributed and
component-based systems consist of multiple cooperating compo-
nents where the components are typically encapsulated subsystems
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or objects spread over a network, interacting using asynchronous
communication. Providing quality of service guarantees—despite
the ever-increasing complexity of distributed systems—has been
and remains a grand challenge. Using formal methods, in general,
and model-checking [8], in particular, has been advocated as a re-
sponse to this challenge. Model checking tools exhaustively ex-
plore the state space of a system to make sure that a given property
holds in all possible executions of the system. The properties pre-
serve both functional and timing correctness of realtime distributed
systems.

A well-established paradigm for modeling distributed and asyn-
chronous component-based systems is the Actor model. This model
was originally introduced by Hewitt [10] as an agent-based lan-
guage and a mathematical model of concurrent computation. It
treats actors as the universal primitives of concurrent computation
[4, 12]. The asynchronous and nonblocking message-based com-
munication and encapsulation of state and behavior make the ac-
tor model suitable for modeling of component-based software [11].
Each actor provides a certain number of services which can be re-
quested by other actors by sending messages to the provider. Mes-
sages are put in the message buffer of the actor, then the actor takes
the message and executes the requested service, possibly respond-
ing to some other components. There are some extension on the
actor model for realtime systems like RT-synchronizer [20], real-
time Creol [9], and Timed-Rebeca[3].

Reactive Objects Language, Rebeca [23], is an opera-
tional interpretation of the actor model with formal semantics, sup-
ported by model-checking tools. Rebeca is designed to bridge the
gap between formal methods and software engineering. The for-
mal semantics of Rebeca is a solid basis for its formal verifica-
tion. Compositional and modular verification, abstraction, symme-
try and partial-order reduction have been investigated for verifying
Rebeca models. The theory underlying these verification methods
is already established and is embodied in verification tools [15, 21—
23]. With its simple, message-driven and object-based computa-
tional model, Java-like syntax, and a set of verification tools, Re-
beca is an interesting and easy-to-learn model for practitioners.

Timed-Rebeca [3] has been proposed as an extension of Re-
beca for modeling actor-based distributed and realtime systems.
One of the first approaches in verifying Timed-Rebeca models, is
suggested in [13]. In this method, the Timed-Rebeca model is trans-
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lated into a set of timed automata, that was claimed to be collec-
tively bisimilar to the original Timed-Rebeca model. The generated
timed automata model, can then be verified using timed automata
tools such as UPPAAL [7]. The drawback is that the resulting timed
automata model generates a huge state space, which tends to grow
exponentially as the model becomes larger. This is a result of the
difference in the nature of the two models: while Timed-Rebeca
uses asynchronous message passing , UPPAAL uses transition syn-
chronisation as the only form of communication between the au-
tomata. Therefore, the mapping needs to use extra automata loca-
tions and transitions to simulate asynchrony. In addition, the trans-
lation algorithm uses a set of clocks to convert the absolute time
model of Timed-Rebeca into a relative time model. The number
of clocks used, which is dependent on the number of concurrent
messages, highly affects the size of the state space and the model-
checking time consumption.

There is the same drawback using Realtime Maude [19] and
Timed 1/0 Automata [18] as back-end model checkers of Timed-
Rebeca models. Realtime Maude is a timed logic language which
has the ability to define a tick rule for time progress. The tick
rule specifies the amount of the global time lapse for each step
in model progress. So the synchronous tick progression causes
unnecessary interleaving of independent behavior of components.
Timed I/O automata is a basic mathematical framework to support
description and analysis of timed computing systems [17]. The
timed I/O automata formalism supports decomposing timed system
descriptions to a number of automata. In particular, the framework
includes a notion of external behavior for a timed I/O automaton,
which captures its discrete interactions with its environment. A
composition operation for timed I/O automata assigns an execution
fragment to each action implying that a timed I/O automata does
not block the passage of time. Such a fine-grained time progress
causes unnecessary interleaving of concurrent independent actions
which increases the size of the state space.

In this work, we introduce the notion of floating-time transition
system for tackling the state space explosion problem for Timed-
Rebeca. Contrary to timed automata and timed I/O automata where
the modeler resets the clocks explicitly to avoid unbounded time
progress, the progress of time in Timed-Rebeca models will auto-
matically become bounded by using floating-time transition sys-
tem. Our technique is detecting the recurrent patterns of behaviors
while building the transition system of the model, and allowing dif-
ferent local times for each actor in the same state. This is achieved
by having relative time specifiers in Timed-Rebeca models.

In all other described methods, each state has a consistent time
interval specifier. Therefore, at each state the global time specifica-
tion of the state is defined. In contrast, the new approach is devel-
oped based on the key ingredient of Timed-Rebeca models, which
is encapsulation of concurrent elements. Each state stores the lo-
cal times of its concurrent elements. Therefore, there is no need
for global time in the state for deadlock freedom and schedulabil-
ity analysis. The local times of different actors in a state can be
different because each element has its own local message and time
management. This property significantly decreases the size of the
state space as will be shown in the experimental results. In this pa-
per, we define the formal definition of the floating-timed transition
system and a bisimulation relation between this transition system
and the transition system derived form SOS (Structural Operational
Semantics) of Timed-Rebeca[3]. Based on this bisimilarity, it can
be concluded that deadlock freedom and schedulability analysis of
SOS and floating-time transition systems have similar results.

Motivation and Contribution. The contributions of this paper
can be summarized as follows:

short description of paper

— Introducing the notion of floating-time transition system as
an abstract way for state space generation of Timed-Rebeca
models

— Proving the bisimilarity of the floating-time transition system
and the SOS transition system of Timed-Rebeca models by
introducing a behavioral equivalency of timed systems states
as time-shift equivalency relation

— Implementing a tool for schedulability and deadlock-freedom
analysis based on the proposed techniques

— Providing experimental results and measuring the efficiency of
our technique by means of a number of case studies

Roadmap. The rest of this paper is structured as follows. The
next section gives some background about the Timed-Rebeca mod-
eling language, its operational semantics, and its translator to the
timed automata. Section 3 defines the concept of floating-time tran-
sition system. Section 4 defines the schedulability and deadlock
analysis of the floating-time transition system, proving the exis-
tence of bisimulation relation between SOS rules and the floating-
time transition system. In Sections 5 and 6, we present the imple-
mentation issues of state space generation algorithm and report the
experimental results respectively. The concluding remarks are pre-
sented in Section 7.

2. Preliminaries
2.1 Timed-Rebeca

Timed-Rebeca [3] has been proposed as an extension of Rebeca
[23, 24] for modeling actor-based distributed and realtime sys-
tems. A Timed-Rebeca model consists of the definition of reactive
classes and the instantiation part which is called main. The main
part defines instances of reactive classes, called rebecs. The reac-
tive class comprises three parts: known rebecs, state variables, and
message server definitions.

The known rebecs of a reactive class are the destination rebecs
of the messages which may be sent by the instances of the reactive
class. The internal state of a reactive class is represented by the val-
uation of its state variables. Because of the encapsulation of actors,
the state variables of an actor cannot be directly accessed by other
actors. The behavior of the instances of a reactive class is deter-
mined by the definitions of its message servers. In Rebeca, com-
munication takes place by asynchronous message passing, which is
non-blocking for both sender and receiver. The sender rebec sends
a message to the receiver rebec and continues its work. The mes-
sage is immediately put in the message bag of the receiver until its
release time. It is then taken from the bag and the execution of the
corresponding message server is started. Execution of a message
server body takes place non-preemptively. Each message server
has a name, a (possibly empty) list of parameters, and the message
server body which includes a number of statements. The statements
may be assignments, sending of messages, selections, and delays.
We do not consider dynamic rebec creation or reference passing
(dynamic topology). Note that there is no explicit receive state-
ment in Rebeca. Time progress is modeled by delays and the time
quantifiers of messages (Message release time and deadline). We
illustrate this with an example. Figure 1 shows the Timed-Rebeca
model of a ticket service system. The model consists of three reac-
tive classes: TicketService, Agent, and Customer. Customer sends
the “ticket issue” message to Agent and Agent forwards the issue
to TicketService. TicketService rebec replies to Agent by sending a
“ticket issued” message and Agent responds to Customer by send-
ing the issued ticket identifier. As shown in line 12 of the model,
issuing the ticket takes three time units (based on the configuration
parameters, the issueDelay initial value equals to three). In addi-
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tion, line 24 shows that Agent waits for five time units for 7icket-
Service to take the requested message and starts serving it.

reactiveclass TicketService {
knownrebecs {
Agent a;
}
statevars {
int issueDelay;
}
msgsrv initial(int myDelay) {
issueDelay = myDelay;
}
msgsrv requestTicket() {
delay(issueDelay) ;
a.ticketIssued(1);
}
}

reactiveclass Agent {
knownrebecs {
TicketService ts;
Customer c;
}
msgsrv requestTicket() {
ts.requestTicket ()
deadline(5);
}
msgsrv ticketIssued(byte id) {
c.ticketIssued(id);
}
}

reactiveclass Customer {
knownrebecs {
Agent a;
}
msgsrv initial() {
self.try();
}
msgsrv try() {
a.requestTicket();
}
msgsrv ticketIssued(byte id) {
self.try() after(30);
}
}

main {
Agent a(ts, c):0);
TicketService ts(a):(3);
Customer c(a):();

}

Figure 1. The Timed-Rebeca model of ticket service system.

The behavior of a Rebeca model is defined as the parallel exe-
cution of the released messages of the rebecs. At the initialization
state, a number of rebecs are created statically, and an “initial” mes-
sage is implicitly put in their bags. The release times of the initial
messages are zero. The execution of the model continues as rebecs
change the values of their state variables and send messages to each
other.

2.1.1 Timed-Rebeca Structural Operational Semantics

In this section we provide an overview of the SOS semantics of
Timed-Rebeca which has been proposed in [3].

short description of paper

Timed-Rebeca states are pairs (Env, B), where Env is a finite
set of environments and B is a bag of messages. For each rebec
r of the model there exists o, € Env which stores information
about the actor, including the values of its state variables and
local time, as well as structural characteristics like the body of
the message servers. The bag B contains an unordered collection
of all the messages of all rebecs. Each message is a tuple of the
form (r;, m(v),r;, TT, DL). Intuitively, such a tuple says that at
time 71" (time tag), the sender r; sent the message to the rebec 7;
requesting it to execute its message server m with actual parameters
v. Moreover this message expires at time DL [3]. Note that DL
specifies the time that the message has to be released, i.e., the
messages server has to start its execution..

The system transition relation — is defined by the rule sched-
uler of Figure 2 where the condition C' is defined as follows: o,
is not contained in Env, and (r;, m(v),r;, TT,DL) ¢ B, and
or;(rtime) < DL, and TT < min(B). The scheduler rule al-
lows the system to progress by picking up messages from the bag
and executing the corresponding methods. The third side condition
of the rule, namely o, (rtime) < DL, checks whether the se-
lected message carries an expired deadline, in which case the con-
dition is not satisfied and the message cannot be picked. The last
side condition is the predicate 71" < min(B), which shows that
the time tag 77T of the selected message is the smallest time tag of
all the messages (for all the rebecs 7;) in the bag B [3].

The 7 transition shows the execution of the message server of
the rebec r; and its effects formally defined in [3]. Intuitively, exe-
cution of a message server means carrying out its body statements
atomically. The execution may change the environment of the re-
bec r; by assigning new values to its state variables, modifying the
now value of r;, or changing the bag by sending messages to other
rebecs. The new message is put in the bag with its time tag and
deadline. Time tag is its relative receive time which is computed by
the value of after statement. The o, (now) (current time of rebec)
may be modified if the body of message contains the timing state-
ment delay. The current time of the rebec increases by the value of
the delay statement.

2.2 Model Checking Timed-Rebeca using UPPAAL

Mapping the Timed-Rebeca model to timed automata [5] and
model-checking the resulting timed automata is an approach which
has been suggested in [13]. In this approach, the author generates
three timed automata for each rebec. These three automata model
the behavior of the message servers, the timed-bag, and the “af-
ter” usage in the Timed-Rebeca model. Such a mapping does not
seem very straightforward mainly because in Timed-Rebeca mes-
sage passing is asynchronous, while timed automata models have
a synchronous messaging mechanism. There were also some other
obstacles, which will be explained in the following lines, together
with the suggested solutions.

The author considers a single timed automaton per rebec, called
rebec timed automaton. This timed automaton has (as its inter-
nal variable) an array that models the message bag. To implement
sending messages, the underlying timed automata synchronization
mechanism over channels is used. This requires the receiving timed
automaton to always be ready to accept messages (as specified in
the semantics of Timed-Rebeca: messages are instantaneously re-
ceived in the message bag of the receiver). For this, it is needed
to have transitions on every location in the rebec timed automata,
which accepts the message synchronously and puts it in the mes-
sage bag of the receiving rebec.

Another solution would be to consider another timed automa-
ton per rebec to model its message bag. This timed automaton,
called the rebec’s Inbox timed automaton, would then always ac-
cept messages asynchronously, regardless of the state of the corre-
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(o, (m), v, [rtime = maz(TT, o, (now)), [arg = v], sender = r;], Env, B) = (o7.., Env’, B)

c

({or; } U Env, {(rs,m(©),r;, TT,DL)} UB) — ({0}, } U Env’, B’)

Figure 2. Timed-Rebeca system transition relation scheduler sos rule

sponding rebec timed automaton, and then deliver it, upon the rebec
timed automaton’s request. The Inbox rebec is responsible to han-
dle message activation time and deadlines. Because of its simplic-
ity and better readability the author has chosen the latter approach.
Early comparisons between these approaches did not show signif-
icant performance difference. Figure 3 shows the timed automaton
of rebec’s Inbox. As depicted in Figure 3, rebec’s Inbox automa-
ton inserts the incoming messages of the owner rebec, discards the
messages with passed deadlines, and extracts the messages from
Inbox and delivers them.

messageQ[0] |= NULL &8& !busy[owner] tail < N send?

receive! deliver() insertMessage()

shift()

receiver == owner

messageQ)i] '= NULL and
deadlineQ][i] != INFINITY ang
clocks[clockIDQYi]] > deadlifieQ[i]

discard(i)

Figure 3. Rebec’s Inbox automaton

The rebec timed automaton, will then need to only model the
behavior of the rebec itself, as specified by its message servers
and state variables’ valuations. State variables are converted to
rebec timed automaton variables. For the message servers, first
consider a timed automaton which simulates the exact behavior
of the message server. For simple statements like conditionals,
loops, assignments, etc, the mapping is straightforward. Delays are
also trivially converted, by the use of one clock, and addition of
a location and transition guards to the timed automaton. Figure 4
shows implementations of these statements in timed automata. The
mapping for message sending statements will be described shortly.

After deriving the timed automaton equivalent to each of the
message servers, all these timed automata are integrated into a
single timed automaton and the constructs needed for receiving
the next message from the Inbox timed automaton are added. Then
the timed automaton will find out which message it has received,
and direct the execution to the corresponding message server. Upon
completion of the execution of the message server, the rebec timed
automaton will requests for the next message, and responds to that
message. This completes the reactive behavior of the rebec.

To implement sending of messages, first the exact time con-
structs of the timed automaton should be specified. In Timed-
Rebeca, each rebec has an internal clock, which shows the time
elapsed since the creation of the rebec. This specifies an absolute
model of time, which cannot be implemented in timed automata,
because it makes clock values to grow unboundedly. Therefore, this
absolute time model should be converted to relative time. The only
time-related constructs in Timed-Rebeca are delay statements and
message sending statements. The case for delays is studied before.
For message sending, instead of giving timestamps to messages,
the author attached one clock to the message. The clock is extracted

short description of paper

ClocKs U, clockiD

(b) Send message statement “admin.report() deadline (5)”

@ clocks[curr

o

ockiD] = 0 g clocks[currentClocklD] == d O
clocks[currentClocklD] <= d

(c) Delay statement

Figure 4. Implementation of three different Timed-Rebeca state-
ments in timed automata

from a pool of clocks. This clock is used when checking activation
times and deadlines and is returned to the pool, when the message
is delivered to the rebec timed automaton for execution.

In addition to the formal specification of the mapping algorithm,
the author has proved the existance of an equivalence between the
resulting timed automata and the structural operational semantics
of Timed-Rebeca and has developed a tool for automatic map-
ping of the Timed-Rebeca models to timed automata. The parallel
composition of the resulting timed automata and the schedulability
analysis of the model is done using the UPPAAL toolset[7].

A major limiting factor in using UPPAAL and applying the pro-
posed method to practical systems is the generation of huge state
space. Generating the state space of large-scale practical timed sys-
tems undoubtedly results in state spaces that cannot fit in the mem-
ory of a computer. In addition to memory limitation, the model-
checking time consumption increases rapidly and makes the model-
checking impossible. We will come back to these limitations in
Section 6.

3. Floating-Time Transition System of
Timed-Rebeca

In this section, we describe the floating-time transition system
of Timed-Rebeca models which is used for schedulability and
deadlock-freedom analysis.

DEFINITION 1 (Rebecs of a Timed-Rebeca Model). For a Timed-
Rebeca model Reb, the function O(Reb) returns all rebec in-
stances in the model.

The state of a rebec in model Reb consists of the values of its state
variables, its local time, and its message bag. For a Timed-Rebeca
model Reb the collection of the states of all the rebecs of O(Reb)
is called a Timed-Rebeca state.

DEFINITION 2 (Timed-Rebeca State). A state of a Timed-Rebeca
model is a tuple s = [, co(rey State(ri), where state(r:)
is the current state of rebec r;. The functions statevars(s,r;),
bag(s,r:), and now(s,r;) return the state variables valuation
function, the message bag content, and the current time of rebec
r; In state s, respectively.
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So
State vars:
a | Message Bag: [(initial, 0, )]
Now: 0
State vars: issueDelay="?
ts | Message Bag: [(initial, 0, )]
Now: 0
State vars:
¢ | Message Bag: [(initial, 0, )]
Now: 0

I The initial state

S1s
State vars:
a | Message Bag:[ |
Now: 6
State vars: issueDelay=3
ts | Message Bag: [ |
Now: 6
State vars:
¢ | Message Bag: [(ts. ticketissued, 6, )]
Now: 0

II An intermediate state

Figure 5. The initial state and one of other states of the model
of ticket service system which has been depicted in Figure 1. The
receiver of each message is shown in the left-most column (as a, ts,
¢). Each message is shown as: (sender.message-server-name (list of
actual parameters), arrival-time, deadline)

Two different states of the Timed-Rebeca model of Figure 1 are
depicted in Figure 5. The state in Figure 51 is an initial state with
its rebecs’ “now” time set to zero and the “initial” message put in
their message bags. The sender of the initial messages are omitted
in Figure 51 because the initial messages have no specific sender.
Figure 511 depicts one of the intermediate states of the model. In
Figure 5II rebec c has a message from rebec ts for time 6 which
has no argument. As shown in Figure 5II, there is no guarantee on
the equality of the local times of rebecs of a state, so we call it
“Floating Time State (FTS)”. To ease the reading of the paper, we
use “state” instead of FTS in the following.

As shown in definition 2 the state contains the rebecs’ message
bags. The message bag of rebec is an unordered collection of
messages which is structured as defined in the following definition.

DEFINITION 3 (Rebec Message Bag). A message tuple tmsg =
(msgsig, arrival, deadline) is a message where msgsig is the mes-
sage content, arrival is the arrival time of the message (which is
computed based on the value of “after” of send message state-
ment in a Timed-Rebeca model), and deadline is the deadline of
the message based on the rebec local time. The message msgsig
consists of message name, the sender, the receiver, and its actual
parameters. For tmsg € bag(s, ;) the functions msgsig(tmsg),
arrival(tmsg), and deadline(tmsg) return the msgsig, arrival,
and deadline of the message tmsg.

The release time of a message is the earliest time in which it can
start its execution. It depends on the arrival time of the message
and the current time of the rebec. The release time of a received
message can be later than its arrival time, because upon arrival the
receiving rebec may still be busy executing another message server.
This happens because message servers execute non-preemptively.
Therefore, the execution of a message may delay the execution of
another enabled message of a rebec.

short description of paper

DEFINITION 4 (Message Release Time). The message release time
of tmsg € bag(s, r;) is defined as max{now (s, r;), arrival(tmsg)
}, denoted by releasetime(tmsg).

The next enabled messages of each rebec is defined based on
the Earliest-Release-Time-First policy of Timed-Rebeca using the
messages’ release times. The set of enabled messages are called
enabled messages which is a set of messages which should be
executed before other messages of ;.

DEFINITION 5 (Rebec Enabled Messages).
enabledmessages(s,7;) = {tmsg € bag(s,r;)[Vtmsg €
bag(s,r;) - releasetime(tmsg) < releasetime(tmsg’)}.

DEFINITION 6 (Rebec Next Message Release Time). The release
time of the currently enabled messages of rebecs r; in state s is de-
fined as NMRT (s, r;) = releasetime(enabledmessages(s, 7;)).

Based on definitions 1 to 6, a new equivalence relation between
states is defined. The suggested equivalence relation helps to have
a bounded state space and avoid infinite state space which occurs
because of the time progress of the model. For an informal and sim-
plified description, note that the time expressions used in Timed-
Rebeca delay and message-sending statements are relative times.
Therefore, for two states s and s’ which only differ in the local
time of rebecs, shifting the local time and messages time qualifiers
of all the rebecs of state s’ backwards to make it equal to s, does not
affect its behavior. It only affects the arrival and deadline times of
the sent messages, so the behavior of the model after state s’ is the
same as s and there is no need for state generation after reaching
s’. We illustrate this with an example. Consider Figure 6 present-
ing three different states of the Timed-Rebeca model of the ticket
service system of Figure 1.

Assume that the model is in the state shown in Figure 61. Based
on the bag of the rebecs s, ¢, and a, enabledmessages(S20,a) =
{}, enabledmessages(S20,ts) = {},and enabledmessages
(S20,c¢) = {ticketIssued, 36, co]}. Therefore, only rebec ¢ has
an enabled message whose execution results in S21, shown in Fig-
ure 6II.

Here, shifting the time of S2; by 33 units, makes it equal to Sie,
so So1 and Si6 are shift equivalent by shifting 33 units, denoted by
Sa21 =33 S16.

DEFINITION 7 (Rebec State Shift Equivalence). Two states s and
s’ are shift equivalent with respect to rebec r;, if statevars(s, r;) =
statevars(s’,r;) and one of the following conditions hold:

* now(s’,7;) = now(s, r;) and bag(s’,r;) = bag(s,r;). In this
case s' and s are zero-time shift equivalent with respect to r;,
denoted by s’ =, ¢ s.

There exists an integer number t such that now(s',r;) =
now(s,r;) + t and there is a bijective relation <+ between
bag(s’, r;) and bag(s,r;) where for tmsg’ € bag(s’,r;) and
tmsg € bag(s,r;) tmsg’ < tmsg iff msgsig(tmsg’) =
msgsig(tmsg) A arrival(tmsg’) = arrival(tmsg) + t A
deadline(tmsg’) = deadline(tmsg) + t. In this case, the
two states are “by t unit(s)” shift equivalent with respect to r;,
denoted by s’ =, s. Note that the time specifiers of Timed-
Rebeca are integer numbers, hence t is a member of natural
numbers.

For two states s and s’ shift equivalence is defined as 3t € N-Vr; €
O(Reb) - 8" =, 4 s, denoted by s' =2, s. Note that the time shift
preserves the relative difference of the rebec now and its bag’s
message specifiers.

Now the Timed-Rebeca floating-time transition system can be
defined based on the notion of shift equivalence. The floating-
time transition system is a transition system similar to Figure 7
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S20
State vars:
a | Message Bag:| |
Now: 36
Statevars:  issueDelay=3
ts | Message Bag:| |
Now: 36
State vars:
¢ | Message Bag:[(c.ticketlssued, 36, )]
Now: 36

I State number 20

Sa1

State vars:
a | Message Bag:[ |

Now: 36

State vars:  issueDelay=3
ts | Message Bag:[ |

Now: 36

State vars:
¢ | Message Bag:[(c.try, 66,)]

Now: 36

II State number 21

S16

State vars:
a | Message Bag:[ |

Now: 3

State vars:  issueDelay=3
ts | Message Bag:| |

Now: 3

State vars:
¢ | Message Bag:[(c.try, 33, )]

Now: 3

IIT State number 16

Figure 6. Three different states of the Timed-Rebeca model of
ticket service system

which depicts a floating-time transition system of the ticket-service
model. To make the transition system easy to understand, transition
labels from state So to state S5 are omitted. As shown in Figure
7, a transition label is a pair consisting of the executed message
and the time shift. The time shifts of all the transitions of Figure
7 are zero except the transition from Sz to Sie, because of the
equivalence relation defined in Definition 7.

DEFINITION 8 (Timed-Rebeca Floating-Time Transition System).
A Timed-Rebeca Floating-Time Transition System (FTTS) is a la-
beled transition system FTTS(Reb) = (S, so, Act,—, AP, L),
where:

* S is a set of states.

* sg € S is an initial state.

* Act is a set of actions. Each action is a pair of message and time
shift.

« +C S x Act x S is a set of transition relations. Vs, s’ €
S, (s, (tmsg, t),s") €= iff there exists r; € O(Reb),tmsg €
enabledmessages(s, ;) such that the execution of tmsg re-
sults in a state s where s =, s’ and Vr; € O(Reb) -
NMRT(s,7;) < NMRT(s,r;). The execution of a message
conforms to the Timed-Rebeca semantic SOS rule which mod-
ifies the rebec’s state variables, sends some messages to other
rebecs, and change the local time of rebec as described in Sec-
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tion 2.1.1. There is a non-deterministic choice in those states
with more than one enabled message.
* AP={Deadlock, DeadlineMissed} is a set of atomic proposi-
tions.
o L : S — 227 s a labeling function defined over the set of
states as follows:
* Deadlock € L(s) iff #s’, act - (s, act,s") €=.
* DeadlineMissed € L(s) iff there exists a state s and a rebec
r; € O(Reb) such that NMRT (s, r;) > now(s, ;).

4. Transition System Schedulability and
Deadlock-Freedom Analysis

A Timed-Rebeca model is schedulable if the deadline of no mes-
sage is missed while executing the model. In other words, there
is no reachable state such that the value of “now” of a rebec is
greater than the deadline of any message in its bag. Because of
the progress of time in Timed-Rebeca semantics, applying the SOS
rules on a model results in an unbounded state space which makes
the schedulability analysis impossible. However, the bisimilarity of
SOS-based transition system and the floating-time state space of
a model should be proved. Since the elements of SOS-based tran-
sition system and floating-time transition system are syntactically
different, in the first step, the following functions should be defined
to extract the elements of a state of the SOS-based transition sys-
tem.

DEFINITION 9 (Functions on SOS Rules Based Transition System).
Consider an unbounded transition system derived from apply-
ing the Timed-Rebeca SOS rules [3] on Reb such as SOSTS =
(S, s0, Act,—, AP, L), a state s = (Env, B) € S, r; € O(Reb),
and 0., € Env.

* the function bag(s,r;) returns {(r¢,m(v),rs, TT,DL) €
Blrs = ri} ,i.e., the bag of messages of rebec r; in state s.

* the function now(s,r;) returns o, (now), i.e., the “now” of
rebec r; in state s.

* the function statevars(s,r;) returns the valuation function of
the state variables of rebec r; in state s which is extracted from
Or;-

i

Here, AP = {Deadlock, DeadlineMissed} and L for a state
s = (Env, B) € S is defined as follows:

* Deadlock € L(s) iff B = (.

* DeadlineMissed € L(s) iff for some (r;, m(v),r;,TT, DL)
€ B condition maxz{o,, (now), TT} > DL holds.

Before presenting the bisimilarity theorem, it should be re-
marked that shifting the time of a state preserves its enabled
messages. Consider two states s1,s2 € S’ where s1 2 s
for some ¢ € IN and a rebec ; € O(Reb). Based on Defini-
tion 7, Vtmsg: € bag(si,r;) there exists tmsgs € bag(sz2, ;)
such that releasetime(tmsgi) + ¢t = releasetime(tmsgs) A
deadline(tmsgi) + t = deadline(tmsgz) A msgsig(tmsgi) =
msgsig(tmsgz). So in case of tmsg: € enabledmessages(s1,7;)
and tmsgz ¢ enabledmessages(sa,r;) there exists tmsgh €
enabledmessages(sz2, ;) such that the releasetime(tmsgs) <
releasetime(tmsgz). Here, based on shift equivalence relation,
there exists tmsg) € bag(s1, ;) such that releasetime(tmsg} ) +
t = releasetime(tmsgs) A deadline(tmsg}) + t = deadline
(tmsgh) A msgsig(tmsg]) = msgsig(tmsgs). So there ex-
ists uniquality releasetime(tmsg} ) < releasetime(tmsg;) which
contradicts the assumption of tmsg; € enabledmessages(s1, 7).

THEOREM 1. For a Timed-Rebeca model Reb, an SOSTS =
(S, so,act,—, AP, L) which is an unbounded transition system
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[(a.requestTickey, 33,),0]

et[ssued, 36,x),33]

[(a.ticketIssued,36,x),0]

[(ts.requestTicket,33,38),0]

Figure 7. Floating-Time transition system of the Timed-Rebeca model of Figure 1.

derived from applying the Timed-Rebeca SOS rules [3] on Reb,
is bisimilar to the Timed-Rebeca floating-time transition system
FTTS = (5,80, act’,—, AP’ L") of model Reb.

PROOF 1. Based on the renaming function and the Timed-Rebeca
semantics, a bisimulation binary relation R C S x S’ is defined
such that for two states s € S and s' € S', (s,s') € Riff Is" €
S',3t € NU{0} - s 2% s and Vr; € O(Reb) - bag(s,r;) =
bag(s”, r;) Astatevars(s, r;) = statevars(s”,r;) Anow(s,r;) =
now(s” r;).

Now it must be shown that for two states s € S and s’ € ',
and (s, s') € R, the following bisimulation transfer conditions are
satisfied [6].

I If ¢ € Post(s) then there exists ¢ € Post(s’) with (¢,q') € R
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II. If ¢ € Post(s") then there exists q € Post(s) with (¢,q') € R
Il L(s) = L'(s)

In the above conditions Post(s) denotes all successor states of
a state s according to the transition relation (for both transition
systems). As mentioned in Definition 8, the execution of a message
conforms to the Timed-Rebeca SOS rules, so the execution of a
message has the same effect on both SOS-based transition system
and floating-time transition system. Therefore, conditions I and 1l
hold because as (s,s') € R they have the same enabled messages
and the execution of enabled messages in both transition systems
have the same effect on the values of state variables and the bags
of rebecs.

The third condition holds for s and s’ because AP = AP’ =
{Deadlock, DeadlineMissed } and two following conditions hold:
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* if Deadlock € L(s) then B = (. As (s,s') € R, Vr; €
O(reb) - bag(s’,r;) = 0. Therefore, Deadlock € L'(s"), and
vice versa.
if DeadlineMissed € L(s) then (r;,m(v),r;, TT,DL) € B
exists such that max{o,,(now), TT} > DL. As the bag of the
rebecs in s and s' are same (because (s,s') € R), the corre-
sponding message tmsg in the bag of r; in s’ should exist such
that by t € N U {0} units time shift, its time quantifiers are
the same as TT and DL and now(s,;) = now(s’,r;) +
t. Therefore, releasetime(tmsg) > deadline(tmsg), so
DeadlineMissed € L’(s"), and vice versa.

COROLLARY 1 (Timed-Rebeca Model Analysis). For the Timed-
Rebeca model Reb both schedulability and deadlock-freedom can
be examined using its floating-time state space. SOSTS(Reb) has
a deadline missed message iff there is a state s in FT'TS labeled
DeadlineMissed and SOSTS(Reb) has a deadlock state iff there
is a state s in F'T'TS labeled Deadlock.

5. Implementation

Rebeca comes equipped with an on-the-fly explicit-state LTL
model-checking engine called Modere [14]. Modere uses both
the nested DFS and BFS search algorithms to explore the state
space. To generate state space based on semantics of floating-time
transition system and its required analyzer, Modere’s BFS search
algorithm has been extended to support Timed-Rebeca models,
incorporating our novel shift equivalent states detection.

5.1 Rebeca BFS State Space Generation Algorithm

The BFS exploration algorithm, creates and explores the transition
system in a level-by-level fashion. In the first step of the BFS al-
gorithm, the initial state of the Rebeca state space is stored and
marked as visited. Then, for each level, the successors of the states
are generated by applying the successor function to the states; when
there are no unexplored states in the next level, the algorithm ter-
minates. For specification of the successor function and its formal
semantics refer to [23].

The BFS state space generation algorithm can be implemented
using two queues to manage states of each level. The first queue
stores the current level states (CLQ) and the second one stores the
successors of the CLQ states. The latter queue is called the next
level queue (NLQ). In each iteration, the unexplored states of the
CLQ are dequeued and their unvisited successors are generated.
When all states of the CLQ are dequeued, the content of the NLQ is
moved to the CLQ and the algorithm continues until NLQ is empty,
i.e., all successors of the states in the CLQ are visited before. Figure
8 shows a pseudo code of the algorithm.

5.2 Timed-Rebeca BFS State Space Generation Algorithm

From the implementation view, the major differences between Re-
beca and Timed-Rebeca transition system generation algorithms
are in the state structure. A list of time bundles is attached to each
state to store the time specification of states — for each rebec its now,
and for all the messages in the queues of each rebec the deadline
and after specifiers. Therefore, state S with for example two time
bundles in its time bundles list represents two different states which
their rebecs state variables valuations and message queue content
are the same, however the time specifiers are different. Therefore,
the approach is to split state information into time-invariant (the
valuation of variables and message queues) and time-dependent
parts. Multiple time-dependent parts, which we call time bundles,
associate with one time-invariant part. In this way, checking for
time-shift equivalence of states can be done efficiently. Based on
this structure, states shift equivalence checking has been reduced
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1 BFS-STATE-SPACE-GENERATOR ()

2 CLO + 0

3 NLQ + 0

4 Visited < 0

5 ENQUEUE (CLQ, initState)

6 while CLQ # 0 do

7 for each state S € CLQ do

8 NewStates <— SUCCESSOR(S)

9 for each State N € NewStates do
10 if N ¢ Visited

11 then PUT(Visited, N)

12 PUT(LocalHashTable, N)
13 ENQUEUE(NLQ, N)

14 fi

15 od

16 od

17 swap(CLQ, NLQ)

18 NLQ « 0

19 od

Figure 8. Modere BFS state space generation pseudo code.

1 BFS-STATE-SPACE-GENERATOR ()

2 CLO«+ 0

3 NLQ + 0

4 Visited +— ()

5 ENQUEUE (CLQ, initState)

6 while CLQ # 0 do

7 for each state S € CLQ do

8 NewsStates <~ SUCCESSOR(S)

9 for each State N € NewStates do

10 if N ¢ Visited

11 then PUT(Visited, N)

12 PUT(LocalHashTable, N)

13 ENQUEUE(NLQ, N)

14 CHECK-FOR-DEADLINE-MISSED(N)
15 CHECK-FOR-DEADLOCK(N)

16 else

17 SL < GET(LocalHashTable, N)

18 for each bundle € TIME-BUNDLES(SL) do
19 tb = TIME-BUNDLE(N)

20 if tb = bundle

21 then

22 /I N 22 SL, so discard visited state
23 elseif tb - t = bundle

24 /I N =2, SL, so discard visited state
25 else

26 ADD-BUNDLE(N, tb)

27 ENQUEUE(NLQ, N)

28 fi

29 od

30 fi

31 od

32 od

33 swap(CLQ, NLQ)

34 NLQ + 0

35 od

Figure 9. Timed-Rebeca BFS state space generation pseudo code.

to the O(|time bundles|) (the size of time bundles) search algo-
rithm which has been shown in Figure 9 lines 17 to 29.

6. Experimental Results

Model-checking execution time and state space size of Timed-
Rebeca models based on timed automata transition system and
floating-time transition system are compared using three different
examples. The examples are Distributed Sensor Network, simpli-
fied version of Slotted ALOHA Protocol, and Ticket Service. The
test platform is a HP DL-386 G7 server with 4 CPUs of 2.80GHz
Intel Xeon and 16GB of RAM storage running Ubuntu 12.04 oper-
ating system.
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Problem Size Using FTTS Using Timed Automata
#states time #states time

1 customer 8 <l(sec) 801 <l1(sec)
Ticket Service 2 customers 56 <l(sec) 19263811 | ~ 5(hours)

3 customers | 20617 3(secs) - -

1 sensor 52 <1(sec) - -

2 sensors 592 <I(sec) - -
Sensor Net. 3 sensors 8154 1 - -

4 sensors 122900 18 - -

1 interface 159 <1(sec) - -

2 interfaces 2030 1(sec) - -
IS)ic(;tttoech{%LOHA 3 interfaces 17253 5(secs) - -

4 interfaces | 132200 | 52(secs) - -

5 interfaces | 966147 | 490(secs) - -

Table 1. The model-checking time and state space size, using two different approaches

Sensor Network The distributed sensor network model is a

model of a set of sensors which measure the toxic gas level of the
environment. Upon sensing a dangerous level of gas, the sensors
alarm the scientist who is working there to escape, or alternatively
send a rescue team to save him.
There are four different reactive classes Sensor, Admin, Scientist,
and Rescue in the model. Sensor rebecs send the measured gas level
value to Admin rebec over the network. If Admin receives a report
of dangerous gas levels, it notifies Scientist immediately and waits
for Scientist acknowledge. If Scientist does not respond, Admin
requests Rescue to reach and save Scientist. The main property to
be checked is saving Scientist before the rescue deadline missed.
We have varied the number of the sensors to produce state spaces
of different sizes.

Slotted ALOHA Protocol The Slotted ALOHA protocol [2]
is a network random access protocol which controls the data link
medium access. Slotted ALOHA divide the time in to a number
of slots and each network interface sends its data at the beginning
of a time slot. We have modeled the Slotted ALOHA using four
different reactive classes User, Interface, Medium, and Controller.
Controller rebec is a police of medium (Medium rebec). Interfaces
of the model are waiting for Contoller signal and send the data via
Medium afterwards. To make the model more realistic, we assigned
a User to each Interface which provides Interface with requested
data. We generated different size of models by varying the number
of Users and Interfaces.

Ticket Service. The detailed description of the Ticket-Service
has been explained at Section 2.1. Hitting the deadline of issuing
the ticket is the desired property of this model. Varying the number
of customers helped us to generate models of different sizes.

The Rebeca code of each case study can be found at the Rebeca
homepage [1]. Table 1 shows the results of model checking these
examples using the two different approaches. The model-checking
time is limited to one day for each model. There is “-” as the results
of model-checking for the models which take more than a day to
model-check.

7. Conclusion

In this paper we introduced the floating-time transition system for
schedulability and deadlock freedom analysis of Timed-Rebeca
models. Floating-Time transition system exploits the key fea-
tures of Timed-Rebeca. In summary, having no shared variables,
no blocking send or receive, single-threaded actors, and non-
preemptive execution of each message server give us an isolated
message server execution, meaning that execution of a message
server of a rebec will not interfere with execution of a message
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server of another rebec. Moreover, for checking schedulability and
deadlock freedom we can focus only on events. In FTTS each
transition shows releasing an event , or in other words execution
of a message server of a rebec. Hence, in each state in FTTS re-
becs may have different local times, but the transitions still gives
us a correct order of release times of events of a specific rebec.
We have proved a bisimulation relation between the SOS-based
transition system and the floating-time transition system of Timed-
Rebeca models. Our proposed approach is implemented as a part of
Afra toolset [1]. Experimental evidence supports that direct model-
checking of Timed-Rebeca models using floating-time transition
system decreases both model-checking state space size and time
consumption in comparison with translating to secondary models
such as timed automata. Therefore, we can efficiently model-check
more complex models.

In addition, our technique is based on the actor model of compu-
tation where the interaction is solely based on asynchronous mes-
sage passing between the components. So, the proposed transition
system and analysis techniques are general enough to be applied to
similar computation models where they have message-driven com-
munication and autonomous objects as units of concurrency such
as agent-based systems.
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Abstract

Actor systems are driven by asynchronous message reception
events. Taking full advantage of the Actor Model requires rec-
ognizing relevant patterns of actor interaction. We describe several
idioms here, in hopes of beginning to build a catalog of useful in-
teractions. Some idioms simply implement already-familiar mech-
anisms, in terms of actors. Others illustrate novel strategies that can
only be realized with asynchronous actor messaging. All provide
new perspective on the process of computation.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures)

General Terms Design, Algorithms

Keywords Actors, Actor Model, Interaction Patterns, Idioms,
Asynchronous Messaging

1. Introduction

Programming in the Actor Model focuses on patterns of asyn-
chronous message-passing [3]. Concurrent activity is the default.
Sequencing must be specifically arranged. The model itself is very
general, going beyond even the Lambda Calculus [4]. As with any
model of computation, experience with Actor programming yields
a variety of idiomatic expressions. We explore some of these idioms
here.

All Actor computation is driven by message reception events.
In response to receiving a message, an actor may:

e Send messages to other actors
e Create new actors
e Designate how the next message will be processed

From these three primitives, we can construct an endless variety
of activities and interactions. Some of these interactions occur
repeatedly and in several contexts. They seem to form the basis
for a catalog of useful interaction idioms.

We will briefly describe nearly twenty idioms in this paper. The
goal is to survey a collection of useful idioms. Figure 1 summarizes
the idioms and the important relationships among them. The collec-
tion is by no means complete, and only the essential characteristics
of each idiom will be described.

We have chosen to present example code for selected idioms
using the Erlang programming language [1]. Erlang seems to be

[Copyright notice will appear here once ’preprint’ option is removed.]

Beginning to catalog patterns of Actor interaction

the most widely understood language in which Actor concepts can
be directly expressed. Note, however, that our example code is not
idiomatic Erlang, and Erlang is not a pure Actor language.

2. Basic Plumbing

The idioms in the section provide the basic plumbing used to
establish relationships among actors.

2.1 Service

The most common actor interaction idiom is the Service. It is so
common that it is often built-in and practically invisible in many
programming environments. In fact, conventional object-oriented
systems are restricted to just this idiom.

A Service is an actor whose protocol involves providing a Cus-
tomer with every message (Request). A service interaction involves
two asynchronous messages, a Request (which includes a Cus-
tomer) and a Reply (sent to the Customer). This protocol is the
basic sequencing mechanism in actor interactions.

2.2 Customer

When we say that a Service receives a request-message and pro-
duces a reply-message in return, the computational context to
which the reply-message is sent is the Customer. We can think
of the Customer as the Return-Address or Continuation. Making
the Customer explicit provides significant flexibility in designing
interaction and synchronization protocols.

A Subroutine can be described as sending a request to a ser-
vice where the Customer is “the rest of the computation” in the
caller. Tail-Call Optimization is evident when we simply pass our
Customer on to a subroutine rather than create a new Customer. A
Pipeline can be described as a chain of actors where each actor is
the Customer for its predecessor. Many idioms involve managing
the Customer in various ways.

2.3 Sink

A Sink actor simply throws away all messages that it receives. If
we make a Request, but don’t care about the Reply, we use a Sink
as the Customer.

sink_beh() ->
receive
_ —> sink_beh()
end.
sink() ->
spawn (fun sink_beh/0) .

2.4 Forward

The Forward idiom is also quite simple. We can think of a forward-
ing actor as an Alias or Proxy. Messages sent to a forwarding actor
are passed on to another actor (the Subject).
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Figure 1. Idiom Relationships

forward_beh(Subject) ->
receive
Msg ->
Subject ! Msg,
forward_beh(Subject)
end.

2.5 Label

A Label is a Forward actor that adds some fixed information to
each message. It acts like a Decorator for messages [2]. Sometimes
it plays the role of an Adaptor between actors, structuring messages
to meet the expectations of the subject.

label_beh(Cust, Label) ->
receive
Msg ->
Cust ! [Label | Msgl,
label_beh(Cust, Label)
end.

2.6 Tag

A Tag is a special kind of Label. It labels each message with a
reference to itself. A Tag actor is often used as a Customer for a
Request when we want to identify a specific Reply.

tag_beh(Cust) ->
receive
Msg —>
Cust ! [self() | Msgl,
tag_beh(Cust)
end.

2.7 Sync-Signal

A Sync-Signal is used to indicate the completion of an activity. It
is a message sent to a customer where the content is not important,
only the fact that an event occurred. If a Service offers a Sync-
Signal, and the caller doesn’t need it, a Sink actor can be passed as
the Customer.

Beginning to catalog patterns of Actor interaction

3. State

The idioms in this section represent various ways to manage state
in an actor configuration.

3.1 State-Machine

Every actor can be viewed as a State-Machine. When an actor
becomes a new behavior, we can think of that as a state-transition.
The event that triggers the state-transition is the message received
by the actor. In Erlang, become is represented by a tail-call to a new
behavior function.

3.2 One-Shot

A One-Shot actor is a Forward actor that will only forward a
single message. Once it has forwarded a message, it changes state,
becoming a Sink. Subsequent messages will be quietly ignored.

one_shot_beh(Cust) ->

receive
Msg ->
Cust ! Msg,
sink_beh()
end.
3.3 Race

Sometimes we have more than one method available for generating
a desired result. If we cannot determine which method will be
fastest in a particular case, we would like to try all methods in
parallel and use the result generated first.

A Race actor replicates a request, and sends it to multiple
Services. The Customer for each service-call is a One-Shot shared
by all the calls. The One-Shot is configured to forward the first
result on to the original Customer.

race_beh(List) ->
receive
[Cust | Reql ->
One_Shot = spawn(fun() ->
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one_shot_beh(Cust) end),
send_to_all([One_Shot | Reql, List),
race_beh(List)
end.

send_to_all(Msg, [1) -> Msg;
send_to_all(Msg, [First | Rest]) ->
First ! Msg,
send_to_all(Msg, Rest).

3.4 Work-Order

It often takes several steps to fulfill a particular service request. A
Work-Order is an actor that represents the state-transitions involved
in processing a service request. An actor representing the Service
interface receives the initial request and creates a Work-Order to
handle subsequent interactions. When a final result is produced,
the Work-Order sends it directly to the original customer, without
involving the Service.

4. Coordination

The idioms in this section are used to coordinate activity among
actors.

4.1 Capability

You can only send messages to an actor if you know the actor’s
address (an unforgeable secret). Conversely, if you know an actor’s
address you can send it any message you like. This means that each
actor represents a Capability, and the reference graph represents
authority [5].

When we want to restrict authority, we can interpose a capa-
bility attenuator actor. This is basically a Forwarding actor that se-
lectively forwards only messages that conform to whatever policy
we wish to enforce. Restricted access is therefore securely granted
without exposing the original actor’s address.

In addition, a Capability can support additional features. It may
allow modification, or even revocation, of the capability. The capa-
bility to perform these actions may be granted through a separate
Capability.

4.2 Authorization-Token

An actor’s identity can be the Shared-Secret used to validate the
authority to make a request. The request is tagged with an actor
address representing an Authorization-Token. This is commonly
used to validate modification or revocation actions on a Capability.
A Tag actor uses the actor’s identity as an Authorization-Token.
This works because the actor that created the Tag is the one granting
authority.

4.3 Future

A Future represents the result of a computation that executes con-
currently with Customers that will eventually use the computed
value. A Future has three states. Initially, the future has no value
and no Customers waiting for the value. If Customers arrive to read
the value, they are queued until the value is available. When the
value is available, any waiting Customers are notified, and any sub-
sequent Customers are given the value immediately. Once set, the
value never changes.

future (Computation) ->
V = spawn(fun future_beh/0),
spawn(fun() ->
Value = Computation(),
V ! [sink(), write, Value] end),

Beginning to catalog patterns of Actor interaction

future_beh() ->
receive
[Cust, write, Value] ->
Cust ! self(), 7’ sync-signal
value_beh(Value) ;
[Cust, read] ->
wait_beh([Cust]);
->
future_beh()

end.

value_beh(Value) ->
receive
[Cust, read] ->
Cust ! Value,
value_beh(Value);
->
value_beh(Value)

end.

wait_beh(Waiting) ->
receive
[Cust, write, Value] ->
send_to_all(Value, Waiting),
Cust ! self(), % sync-signal
value_beh(Value);
[Cust, read] ->
wait_beh([Cust | Waiting]);
->
wait_beh(Waiting)

end.

4.4 Lazy-Result

A Lazy-Result is the opposite of a Future, from a timing perspec-
tive, although their protocols are the same. Whereas a Future ea-
gerly computes a result, and may determine the value before any
Customer asks for it. A Lazy-Result does not begin computation
until at least one Customer asks for the value. This strategy can
avoid unnecessary computation, and even non-termination in some
cases.

lazy(Computation) ->
spawn (fun() ->
lazy_beh(Computation) end).

lazy_beh(Computation) ->
receive
[Cust, read] ->
V = self(),
spawn (fun() ->
Value = Computation(),
V ! [sink(), write, Value] end),
wait_beh([Cust]);
->
lazy_beh(Computation)

end.

4.5 Fork-Join

The Fork-Join idiom describes a group of parallel computations
that synchronize on completion of all the computations. If the com-
putations produce values, their values are collected into a single
combined result. If computations do not produce values, they must
at least provide a Sync-Signal to indicate their completion.

The basic Fork-Join idiom coordinates two independent compu-
tations. Multiple Forks can be composed, extending the idiom to an
arbitrary number of parallel computations. The results are ordered
in the same way the computations were composed.
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fork_beh(Cust, H, T) ->
receive
[H_Req | T_Req] ->
S = self(),
H_Tag = spawn(fun() ->
tag_beh(S) end),
T_Tag = spawn(fun() ->
tag_beh(S) end),
H ! [H_Tag | H_Req],
T ! [T_Tag | T_Req],
join_beh(Cust, H_Tag, T_Tag)
end.

join_beh(Cust, H_Tag, T_Tag) ->

receive
[H_Tag | Head] ->
receive
[T_Tag | Tail] ->
Cust ! [Head | Taill
end;
[T_Tag | Taill ->
receive
[H_Tag | Head] ->
Cust ! [Head | Taill]
end
end.

4.6 Serializer

The Serializer is the fundamental mechanism for mutual-exclusion
among potentially interfering computations. A Serializer ensures
that a Service completes computation of a result for one request
before accepting any subsequent requests. The coordination per-
formed by a serializer is built on the Request-Reply protocol be-
tween a Service and a Customer.

serializer_beh(Service) ->
receive
[Cust | Reql —>
S = self(),
Tag = spawn(fun() ->
tag_beh(S) end),
Service ! [Tag | Reql,
Q = queue:new(),
busy_beh(Service, Cust, Tag, Q)
end.

busy_beh(Service, Cust, Tag, Waiting) ->
receive
[Tag | Replyl ->
Cust ! Reply,
case queue:is_empty(Waiting) of
true -> serializer_beh(Service);
false >

[C | R] = queue:head(Waiting),

Q = queue:tail(Waiting),

S self(),

T = spawn(fun() ->
tag_beh(S) end),

Service ! [T | R],

busy_beh(Service, C, T, Q)

end;
[C | R] —>
Q = queue:in([C | R], Waiting),
busy_beh(Service, Cust, Tag, Q)
end.

Beginning to catalog patterns of Actor interaction

5. Configuration

The idioms in this section describe mechanisms for dynamically
altering the run-time configuration of an actor system.

5.1 Stem-Cell

The most flexible (and consequently most dangerous) mechanism
is the Stem-Cell. A Stem-Cell simply takes on the behavior it
receives in a message. In this way, it can literally become anything.
The behavior of a Stem-Cell is limited only by the information
available to the sender of the message.

stem_cell_beh() ->
receive
Behavior -> Behavior()
end.

5.2 Upgrade

A more limited kind of configuration control is offered by the
Upgrade. Instead of replacing the entire behavior of an actor (like
the Stem-Cell), an Upgrade replaces, or parameterizes, a controlled
portion of an actor behavior.

There is considerable flexibility in specifying relevant kinds of
Upgrades. Authority to perform these Upgrades is often granted by
Capabilities.

6. Conclusion

We have only scratched the surface of the rich variety of idioms that
occur in Actor programming. It is my hope that this catalog will be
greatly extended. The idioms we have explored can be described in
much more detail. We should examine the contexts in which they
operate, the forces involved, the trade-offs among alternatives, and
the idioms’ relationships to each other.

We should keep in mind that effective use of the Actor model re-
quires careful consideration of message protocols and interactions.
‘We should be more concerned about behavior, and less concerned
about data.
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