Effective Malicious Code Identification

I. BACKGROUND

As attacks against source code have grown exponentially,
malicious code injection has become a major threat to Internet
security. Some code may engage in some suspicious and
dangerous behaviors in the process of serving users, such as
reserving special passwords or keys, connecting to the network
without authorization, monitoring screens and keyboards, and
hiding processes. These behaviors may damage the availability
of computer systems and bring a series of losses and risks to
users. The enterprise production, communication and informa-
tion security are severely challenged

A. Malicious Code Poisoning Cases

o 2020.03, malware designed to enumerate and backdoor
NetBeans projects. Uses the build process and its re-
sulting artifacts to spread itself: https://bit.ly/3U2msZn
(GitHub Security Lab)

With 20 million + weekly downloads, the NPM li-
brary colors has been updated with version 1.4.1.
The version was launched with malicious code that
crashed upon installation, displaying an American flag:
https://bit.ly/3SNGUf1 (GitHub colors.js)

2017.08 Xshell Build version 1322 was found and con-
firmed that there is a backdoor code in nssock2.dll

Developer and
Advertise Distinct
Malicious Package

from Scratch

Combosquatting
Altering Word Order
Manipulating Word Separators
Typosquatting

Built-in Package

component. Malicious code will collect host information
and send it to DGA domain name, and there are other
more malicious function codes

II. TECHNICAL CHALLENGES

Efficient and accurate identification of malicious source
code based on static behavior analysis: The existing virus
scanning engine based on binary cannot detect malicious
behavior in source code well. Although more and more related
studies are concerned, the detection techniques and effects
are different due to language differences. The static behavior
analysis of single-file source code and full source code may be
missing or inefficient, which cannot meet the security scanning
requirements of a large number of software

III. TECHNICAL REQUIREMENTS

Technical versatility/flexibility: Gain insight into the
malicious behavior of source code of each language,
provide multi-language common detection technologies,
and support detection of multiple malicious behavior pat-
terns, including but not limited to backdoor, information
leakage, bounce shell, and encryption of malicious code.
Detection performance: Supports automatic filtering and
analysis of files related to malicious behavior. Supports

j

Exploit Unicode Bidirectional
Algorithm

Use Homoglyphs

)
)
)
J

Prevent Display of File Differences

Make Immature Vulnerability Hide in Generated, Compiled or

Exploitable Minified Code
Exploit Rendering Weakness Reuse of Compromised

Credentials

Brandjacking

Create Name

Confusion with
Legitimate

Conduct Open-
Source Supply
Chain Attack

| — Similarity Attack

Contribute as Maintainer

Introduce Malicious Code through

crite Merge Requests Bribe or Blackmail Legitimate User Bruteforce

Take-over Legitimate Account Reuse of Leaked APl Tokens

Package

Tamper vath Vers\on Control

Social Engineering to Obtain

Become a Maintainer Credentials

Tnjectinto Sources of L
Package

Reuse of Existing Session
Compromise Maintainer System

Run Malicious Build Compromise Version Control

System

Tamper Build Job as Maintainer

Compromise User

\

(Project Maintainer/Administrator]

Subvert

Tamper with Exposed Build

System

Inject During the Build of

Legitimate Legitimate Package

Package

Resurrect Expired Domain
Associated with Legitimate Account
Exploit Weak Configuration
Exploit Vulnerabilities
Infect through Malicious
Component

Bribe or Blackmail Legitimate User ]

S G | S

Dangling Reference ]

Mask Legitimate Package

Take-over Legitimate Account ]

MITM Attack

Prevent Update to Non- Vu\nerable

Version DNS Cache Poisoning

Distribute Malicious Version of
Legitimate Package

Distribute as Package Maintainer

Tamper Legitimate URL

/
:

Injectinto Hosting System

Abuse Dependency Resolution
Mechanism

\

=) R

Fig. 1.

Taxonomy of Attacks on OSS Supply Changes [1]



[1]

cross-file malicious behavior detection and improves code
analysis efficiency

IV. RELATED WORK

Rule scanning: Malicious rule patterns are manually
defined, which has good detection performance. However,
the detection accuracy is not ideal.

Malicious behavior analysis: A recent article [2] in-
troduces a method for malicious behavior detection in
software packages and successfully identifies over 300
malware packages. In addition, the malicious behavior of
single files in different interpreted languages is studied
and analyzed, which can improve the detection accuracy
of rule scanning.

REFERENCES

P. Ladisa, H. Plate, M. Martinez and O. Barais, ”SoK: Taxon-
omy of Attacks on Open-Source Software Supply Chains,” in 2023
IEEE Symposium on Security and Privacy (SP) pp. 167-184. doi:
10.1109/SP46215.2023.00010.

Towards Measuring Supply Chain Attacks on Package Managers for
Interpreted Languages, NDSS2021.



