
Vote Item: Is “coding error” a too-difficult concept for research?
Lutz Prechelt

prechelt@inf.fu-berlin.de
Freie Universität Berlin, Institut für Informatik

Berlin, Germany

ABSTRACT
Background: In programming, human error can lead to program
defects, which can lead to program failure. Human error is an ex-
tremely important phenomenon in software development.
Information, Idea, Arguments: We have attempted research on pro-
gramming error based on IDE-based programming process proto-
cols, but gave up when we recognized we felt unable to pin down
errors of ommission.
Vote: Is “coding error” a too-difficult concept for research?

KEYWORDS
human error, software development process

ACM Reference Format:
Lutz Prechelt. 2022. Vote Item: Is “coding error” a too-difficult concept for
research?. In pseudoCHASE 2022: Pseudo-submission to 15th International
Conference on Cooperative and Human Aspects of Software Engineering, May
21-22, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/xxx.yyy

1 BACKGROUND
Human error is of interest wherever people perform work and
several high-risk professions such as surgery and flying have suc-
cessfully studied it and managed to greatly improve their security
record. In programming, the type of human error that is of probably
the most interest is error which leads to a faulty program logic (a
defect), because such defects can lead to program failure, which
can have many negative effects.

In software engineering, there has long been some research on
defects, but relatively little on error. Yet from the point of view
of root cause analysis, understanding error is valuable in order to
learn to avoid the causes of defects rather than only removing the
defects themselves by means of debugging, review, or automated
program analysis.

2 INFORMATION, IDEA, ARGUMENTS
My group started research on error in 2004, gave it up again in 2007,
and has not made a second attempt since.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
pseudoCHASE 2022, May 21-22, 2022, Pittsburg, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/xxx.yyy

2.1 Our research approach
Our research approach (whichwe tend to use inmost of our research
on human action in software development) was sensemaking: We
wanted to collect enough observations of error episodes and their
context that we would be able to conceptualize (using Grounded
Theory Methodology) the relevant phenomena that led to error
and the nature of those errors themselves. The goal (and again this
holds for all our research) was to offer useful practical advice to
practitioners.

We built an infrastructure for collecting a detailed protocol of
programmer activities in the Eclipse IDE. We refined this infrastruc-
ture towards reporting the activity at a useful level of abstraction
(“move to second nested ’if’ in method ’determine_case’“) even when
the raw protocol was at a too-low level of abstraction (“PageUp, Up,
Up, Up, Up”).

We envisioned we might eventually be able to build a recording
and analysis tool that would help a developer to understand their
personal typical-error patterns.1 By pointing out to it the precise
location of a defect, the tool would search for those stretches of
the activity record that pertained to creating this defective piece of
code. Such stretches and their vincinity would then be treated as
candidate error episodes.

To realize such a tool, two ingredients appeared needed:
(1) Find all typical-error meta-patterns: Understand what con-

cepts (types of elements) might occur in an abstract typical-
error pattern and what the grammar was for composing a
concrete pattern from them.

(2) Building heuristic search logic that would be able to point out
those parts in a candidate error episode that were common
across many episodes and could therefore be considered to
be instances of a typical-error pattern for this particular
developer.

2.2 Theoretical basis
For number 1, we did not need to start from zero, because previ-
ous research had suggested, among other things, two fundamental
discriminations for the type of an error at hand:

• Mistake: Working according to an unsuitable plan [2].
• Slip: Working according to a suitable plan, but executing
that plan incorrectly [2]. And in doing so:
– Error of commission: Doing something that is unsuit-
able [1].

– Error of ommission: Failing to to something that is re-
quired [1].

The mistake/slip distinction is at the genotype level (“where do
errors come from?”), whereas the commission/ommission distinction
1This would be a strictly local, private data collection, so we expected the obvious
privacy concerns would, at least for many people, not get in the way.

https://orcid.org/0000-0001-5592-3521
https://doi.org/10.1145/xxx.yyy
https://doi.org/10.1145/xxx.yyy
https://doi.org/10.1145/xxx.yyy

pseudoCHASE 2022, May 21-22, 2022, Pittsburg, PA, USA Lutz Prechelt

is at the phenotype level (“what do errors look like?”). The latter
should be easier to work with, because the observation data itself
is also at a descriptive level. That seemed nice, because we had
expected our work would only address slips (not mistakes), since in
a mistake situation the developer would act confidently: the activity
record would contain no clues that anything was not in order.2

2.3 The problem
During the research, we recognized three tall obstacles:

• In programming, the mistake/slip distinction is vague,
because in the near-omnipresent absence of tactical-level
specifications that is typical of most modern development
work, it is often unclear what can and should be considered
“the plan”. This made it hard to determine the boundaries of
our work.

• The semantic gap is huge from the strictly linear sequence
of strictly syntactical events in the observed data to a mean-
ingful pattern of behavior that a developer could easily learn
from. We became more and more skeptical whether we
would be able to produce anything that a real developer
might want to use.

• At the heart of the analysis would be a set of rules for deter-
mining the moment (or possibly few moments) at which an
error had happened. For errors of omission, this appeared
extremely difficult. Most programmers do not work in a fash-
ion that has a particular, canonically ordered sequence of
steps. But if the steps to a succesful result can occur in many
different orders, the missing step could have occured at many
different points in time, so at which of those will we call its
absence an error?

3 VOTE
Is the notion of “coding error” a concept that is so difficult to oper-
ationalize that effective research on it is not practical?

• Yes, because one cannot grasp errors of omission.
• Yes, because the semantic gap is too large.
• No, because there will be only few patterns when an omitted
step would normally have happened. These can be found.

• No, because big data and crowdsourcing approaches will
allow to overcome the semantic gap.

• No, for some other reason that I will explain in person.

Note on the nature of Vote Items
This is only an example Vote Item that serves to explain the article
structure. In a real Vote Item . . .

• . . . the topic can be anything: a judgment of research diffi-
culty like here or one of many other things such as a judg-
ment of relevance of a question, of likeliness-to-succeed of
some research approach, of best-way-to-proceed with some
incomplete research, of interpretation of some finding, or
what-have-you.

• . . . you need not use a yes/no question with different justi-
fications as response options like here. Rather, you can use

2Today, one might consider a Big Data approach that might be able to provide the
analysis apparatus with enough knowledge that it can spot some kinds of mistakes as
well.

any type of closed question and any kind of response op-
tion structure instead, such as a five-point agree/disagree
scale, a diverse list of candidate explanations, or whatever
the audience can readily understand.

• . . . you should probably include important literature, starting
with the most helpful in particular in the background section,
until the two pages are full.

• . . . you should obey the instructions regarding double-blind
reviewing.

REFERENCES
[1] Erik Hollnagel. 1991. The phenotype of erroneous actions: Implications for HCI

design. Human-computer interaction and complex systems (1991), 73–121.
[2] James Reason. 1990. Human error. Cambridge University Press.

	Abstract
	1 Background
	2 Information, Idea, Arguments
	2.1 Our research approach
	2.2 Theoretical basis
	2.3 The problem

	3 Vote
	References

