
1© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[Distribution Statement A] Approved for public release and unlimited distribution.

AI-Augmented Software Engineering:
Opportunities and Implications

CIBSE 2023
April 26, 2023

Ipek Ozkaya
ozkaya@sei.cmu.edu

2© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie
Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
DM23-0413

3© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

About me

“Developing viable and trusted
AI systems that are deployed to
the field and can be expanded
and evolved for decades requires
significant planning and ongoing
resource commitment.”

Available for Download Today

AI Engineering:
11 Foundational Practices

resources.sei.cmu.edu/

library/asset-view.cfm?

assetid=633647

Authors
Angela Horneman, Analysis Team Lead
Carnegie Mellon University Software Engineering Institute

Andrew Mellinger, Sr. Software Developer
Carnegie Mellon University Software Engineering Institute

Ipek Ozkaya, Principal Researcher
Carnegie Mellon University Software Engineering Institute

For more information, write to info@sei.cmu.edu

Download Today

IEEE Software Magazine
Editor-in-Chief

Istanbul, Turkey Pittsburgh, PA USA

Body of work at the intersection of
architecture design, analysis, and tradeoffs

PhD in Computational Design from CMU
Technical Director, Engineering Intelligent

Software Systems at the SEI

4© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering at the SEI:
Rapidly Deploying Software Innovations with Confidence

AICyber

Software

Engineering Intelligent
Software Systems

Transforming Software
Acquisition Policy and PracticeSEI Strategic Framework

Ex
pl

oi
t e

m
er

gi
ng

 te
ch

no
lo

gi
es

Curate & analyze data for decision m
aking

Enabling Mission
Capability at Scale

Assuring Cyber-Physical
Systems

Continuous Deployment
of Capability

5© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Solve customer problems

guided by software
architecture principles and

practices

Engineering Intelligent Software Systems – 1

Develop and apply range of techniques and
practices applicable at different points in
the software development lifecycle.
• Domains of expertise include IT, C2,

tactical, avionics, edge, and health
informatics

• Technology expertise includes IoT, big
data, digital twin, cloud, and machine
learning

Create
engineering
practices for

software
systems

(including AI-
enabled)

Develop
automation,

including using
AI for improving

software
engineering

efficiency

6© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Principles, practices and tools
developed by the SEI are widely
used for architecting software
systems.

We address challenges of
incorporating emerging and next
generation technical advancements
building on our proven techniques
and ongoing research, prototyping
and data analysis.

Engineering Intelligent Software Systems – 2

The SEI Pearson Addison-Wesley Series on Software Architecture

“Developing viable and trusted
AI systems that are deployed to
the field and can be expanded
and evolved for decades requires
significant planning and ongoing
resource commitment.”

Available for Download Today

AI Engineering:
11 Foundational Practices

resources.sei.cmu.edu/

library/asset-view.cfm?

assetid=633647

Authors
Angela Horneman, Analysis Team Lead
Carnegie Mellon University Software Engineering Institute

Andrew Mellinger, Sr. Software Developer
Carnegie Mellon University Software Engineering Institute

Ipek Ozkaya, Principal Researcher
Carnegie Mellon University Software Engineering Institute

For more information, write to info@sei.cmu.edu

Download TodayA. Horneman, A. Mellinger, I. Ozkaya.
AI Engineering: 11 Foundational Practices.
CMU SEI, 2019.

K. A. Pitstick, M. Novakouski, G. Lewis, I. Ozkaya
Computing at the Edge: Challenges and Priorities for
Software Engineering and AI. CMU SEI, 2021.

https://resources.sei.cmu.edu/asset%20_files/WhitePaper/2019_019_001%20_634648.pdf
https://resources.sei.cmu.edu/asset_files/Brochure/2021_015_001_740767.pdf
https://resources.sei.cmu.edu/asset_files/Brochure/2021_015_001_740767.pdf

7© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

AI-Augmented Software Development – The Landscape

People who talk about it

People who understand it

People who research it

People who implement
solutions for it

People who develop next generation
AI algorithms and hardware solutions to propel it

8© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

BLUF
(Bottom Line Up Front)

Improving developer productivity, consequently
system quality, has been a key concern in
software engineering for decades.

A focus on improved automation, including AI-
augmented tools (your favorite generative AI tool
too), is neither new, nor novel.

The opportunity (and challenge) for software
engineering community is to discover whether
the fast pace improvements in AI-assistants
change how we engage with and orchestrate
software development activities.

9© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

A fool with a tool is still a fool!
Grady Booch

10© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Software Development Lifecycle Evolution
We introduce delays as we
discover issues of each phase

We find out mistakes too late

We get stuck when deploying to operations

11© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Success: Improved
communication and delivery
of relevant functionality
Challenge: Chaos and
unintended rework
Automation efforts:
• Workflow management tools

• Improved code analyzers

• Progress on our
understanding of developer
behavior

Success: Improved delivery
tempo
Challenge: Reduce hand-
overs with automation
Automation efforts:
• Automated code review

• Automated testing

• Infrastructure as code

• Configuration as code

• Program repair

Success: Well-defined
software engineering tasks
Challenge: No feedback
loops, hence delays
Automation efforts:
• Modeling tools to support

design and conformance

• Requirement traceability tools
for consistency checking and
developing the right thing

12© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Yet still….

Software teams cannot get ahead of:
• Defects, vulnerabilities, and technical debt issues
• Privacy and security leaks
• Complexity and rework rooted cost overruns
In mission critical settings in particular, trust and assurance
cannot we guaranteed.
Continuous software engineering and evolution are myths.
Brownfield development and software composition (design
and architecture) are not supported by tools.
Organizations continue to lack skilled software engineers.

13© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Have no fear, AI is here?

14© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Can AI-augmented Software Development Accomplish….

10x reduction in resource needs and error rates.

Support at higher levels of abstraction to assist developers
manage ripple effects in complex systems.

Making resources available to cognitively complex activities.

Reducing the need for extensive testing and analysis.

Guaranteed security, performance, conformance to quality
standards and intended architectures.

TRUST!

15© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Architecting the Future
of Software Engineering

A National Agenda for Software Engineering
Research & Development

Anita Carleton, et. al
November 2021

https://www.sei.cmu.edu/go/national-agenda

https://www.sei.cmu.edu/go/national-agenda

16© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Research Roadmap (10-15 Year Horizon)

17© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Use of AI-based (and other) automated tools to
improve the efficiency of software engineers and
reduce their cognitive load, shifting the attention
of humans to the conceptual tasks that
computers are not good at and eliminating
human error from tasks where computers can
help.
A new, multimodal human-computer “partnership”
model:

• Intern who I don't entirely trust, but who does save me
a lot of time

• Bot that does things for me
• Partner that advises me

Innovations at the intersection of DO BETTER
versus DO DIFFERENTLY

AI-Augmented Software Development
Do better versus Do differently?

18© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Do better – 1

Test automation: design test cases, localise and triage crashes, monitor their fixes
• Example: N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, I. Zorin: Deploying Search

Based Software Engineering with Sapienz at Facebook. SSBSE 2018: 3-45
• AI Approach: Multi-objective search

Defect prediction: Develop more accurate predictors with less data
• Example: NC Shrikanth, T Menzies: The Early Bird Catches the Worm: Better Early Life Cycle Defect

Predictors. https://arxiv.org/abs/2105.11082 2021.
• AI approach: early life cycle within-project transfer learning

Requirement traceability: Integrate information that is currently disconnected
• Example: J. Lin, Y. Liu, Q. Zeng, M. Jiang, J. Cleland-Huang:

Traceability Transformed: Generating more Accurate Links with Pre-Trained BERT Models. ICSE 2021:
• AI approach: NLP, specifically BERT (Bidirectional Encoder Representations from Transformers)

https://arxiv.org/abs/2105.11082

19© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Do better – 2

Code review: automatic, flexible, and adaptive code analysis to recommend reviews
• Example: Anshul Gupta, Neel Sundaresan, Intelligent code reviews using deep learning KDD’18 Deep

Learning Day, August 2018, London, UK
• AI Approach: Deep neural networks, NLP

Program repair: automatically fixing instances of common bugs learning from past fixes
• Example: J. Bader, A. Scott, M. Pradel, S. Chandra. 2019. Getafix: learning to fix bugs automatically.

Proc. ACM Program. Lang. 3, OOPSLA
• AI approach: hierarchical clustering to learn past fix patterns

Auto code completion: Complete code snippets as developers implement code
• Example: C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou, T. Lowdermilk, and I. Gazit.

2023. Taking Flight with Copilot: Early insights and opportunities of AI-powered pair-programming tools.
Queue 20, 6, (November/December)

• AI approach: Generative AI, large language models

20© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Do differently
Generative AI – Existential threat or snake oil

• Will entry to software engineering
activities be easier?

• Will some activities be obsolete
within 5 years (democratize activities)?

• Will correctness and efficiency increase?
• Will some roles disappear?

• Garbage in garbage out
• Limitations on training data and domain applications
• Dependency on expertise to validate correctness
• Uncertainty in recommendations
• Privacy, security, bias concerns
• Creativity, ownership, and innovation concerns

21© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Generative AI – Existential threat or snake oil

Maybe both?

22© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Confusions between an LLM tool versus
an LLM-based SE tool
LLMs can also answer some implementation questions
ChatGPT (by Open AI)
• ChatGPT released v4 is much more effect in many areas
• Copilot uses the same underlying model

LLaMA (by Meta)
• Small to larger versions of the model are available

Alpaca (by Stanford)
• Stanford copies the ChatGPT AI for less than $600 and

approach can be replicated to train the model

AlexaTM (by Amazon)
• Amazon SageMaker enables training LLMs

KOSMOS-1 (by Microsoft)
• A multimodel Large language model (MLLM) that looks

at more than language

Bard (by Google)
• Still “learning to code”
• As of 5 days ago, can now code

LLM-based SE tools

Github Copilot X build on OpenAI GPT-4
• brings chat and voice interfaces, support pull requests,

answer questions on docs
• they position their vision as “generative AI represents

the future of software development”

CodiumAI using LLMs to recommend tests

Tabnine to assist developers with code completion using
LLMs

Synk Code to find and automatically fix vulnerabilities in
code, open source dependencies, containers, and
infrastructure as code using text-to-text

https://chat.openai.com/chat
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://newatlas.com/technology/stanford-alpaca-cheap-gpt/
https://replicate.com/blog/replicate-alpaca
https://aws.amazon.com/sagemaker/
https://arxiv.org/abs/2302.14045
https://bard.google.com/
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://www.codium.ai/
https://www.tabnine.com/
https://www.deepcode.ai/

23© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

What can we Do differently…

Do tasks developers aren’t able to do today (e.g., leverage new data to integrate
new conformance checks or generate new tests).
Scale and optimize beyond what developers already can do (e.g., consider more
alternative design options)
Change the scope of activities (e.g. what are the right levels of abstraction for
design primitives)
Change the frequency of activities (e.g. test less/test more)
Different input modalities (e.g. prompt engineering)
Generate data to define and detect new concepts crisply
Change order of activities
Merge activities

24© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Examples of SEI Research in
AI-Augmented Software Engineering

Understanding technical debt
è Generate data to define and detect new concepts crisply

Large scale refactoring
è Scope problem specific architecture evolution in large code bases

Architecture conformance
è Detect design pattern variations

25© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Detecting Technical Debt
PI: Ipek Ozkaya

Example SEI Research

10977: Crash due to large negative number
"We could just fend off negative numbers near the crash site or

we can dig deeper and find out how this -10000 is happening."

"Time permitting, I'm inclined to want to know the root cause.

My sense is that if we patch it here, it will pop up somewhere

else later."

“There have been 28 reports from 7 clients… 18 reports from 6

clients.”

“Hmm ... reopening. The test case crashes a debug build, but

not the production build. I have confirmed that the original

source code does crash the production build, so there must be

multiple things going on here.”

26© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Developing a Classifier
Boosting algorithms
(LightGBM) to build the
weighted average of many
classification trees –
iteratively improving weak
classifiers and creating a
final strong classifier
Active learning pipeline and
iterating over the data set to
use 1,934 labeled technical
debt examples
Feature engineering to
combine discussion length,
n-grams, key phrases,
concepts, and document
context

Enough
Info? Y

N

Executable?
Y

N

Not
Technical

Debt
0

Not
Technical

Debt
0

Type?
Defect

System
Improvement

Improvement
Type?

Defect
Type?

Incorre
ct

Functionality

Design
Consideration

Accumulation?

Not
Technical

Debt
0

Technical
Debt

1

Not
Technical

Debt
0

Not
Technical

Debt
0

Y

N

NewFeature

Design

Limitatio
n

Well most probably no
to most probably yes
0.3-0.7

Detecting Discussions of Technical Debt
Ipek Ozkaya, Zachary Kurtz, Robert L. Nord, Raghvinder S. Sangwan, Satish M. Srinivasan
https://arxiv.org/abs/2201.12177

27© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Feature engineering

Ticket meta-data: status (duplicate, verified, fixed, wont fix…), authorship (to focus on
developers on project), priority, type
Counts: length of comments
Key phrases: “debt,” “hack,” “workaround,” “cleanup,” “clean-up,” “clean up,” “give up,”
“problematic,” “not up to date,” “inconsisten” [sic], “short term,” “deviate,” “tweak,” “mess,”
“buggy,” “complex,” “doesn’t work,” “out of date,” “insufficient,” “rework,” “remove,”
“redesign,” “refactor,” “depend,” and “structure.”
N-grams for n= 1, 2, 3.
Concept words: “deviate,” “outdated,” “redundant,” “redesign,” “decouple,” “complicated,”
“regret,” “corrupt,” “horrible,” and “delay.”
Word and document vectors using gensim implementation of word2vec and doc2vec

28© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Performance metrics

Using Chromium project with 475,000 issues

29© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Untangling the Knot
PI: James Ivers

Example SEI Research

30© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

An Automated Refactoring Assistant

We have developed an automated refactoring assistant for
developers that improves software structure for several
common forms of change that involve software isolation:

• Solves project-specific problems
• Uses a semi-automated approach
• Allows refactoring to be completed in less than 1/3

of the time required by manual approaches

Refactoring is a technique for
improving the structure of
software, but it is typically a
labor-intensive process in
which developers must

• figure out where changes
are needed

• figure out which
refactoring(s) to use

• implement refactorings by
rewriting code

Project-Specific Goal

Source Code

Refactored
Source Code

Refactoring
Assistant

J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried. Next Generation Automated Software Evolution: Refactoring at Scale. 2020. 28th
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ‘20).

31© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Key Concept – Problematic Couplings

Only certain software dependencies
interfere with any particular goal.

For example, if we want to harvest a
feature:

• The core problem is dependencies (red
lines) from software being harvested to
software that is being left behind

• All other dependencies are irrelevant to
the goal, allowing us to focus our analysis
and search for solutions

This insight enables us to apply search-
based software engineering techniques
and treat this as an optimization problem.

32© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Generating Refactoring Recommendations

Untangling the knot: Enabling architecture evolution with search-based refactoring
J Ivers, C Seifried, I Ozkaya 2022 IEEE 19th International Conference on Software Architecture (ICSA), 101-111

33© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Automated Design Conformance
PI: Robert Nord

Example SEI Research

Unpack Transform AssembleMsg
In

Msg
Out

FACE Data Transformation Pipeline

implemented

intended

“Explicit storage of intermediate
results … is error-prone”

“Non-adjacent processing
steps do not share information”

34© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Automated Design Conformance during CI

An automated design conformance checker
integrated into a continuous integration
workflow will reduce time to detect
violations from months or years to hours.

Automation enables early detection and
allows remediation before the violation gets
“baked in” to the implementation.

Detection of nonconformances allows
program managers to hold developers
(contractor or organic) accountable.

35© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Code-Design Abstraction Gap

Ivers J., Ozkaya, I, Nord, R. . (2019). Can AI Close the Design-Code Abstraction Gap? International Workshop on
Software Engineering Intelligence, IEEE/ACM International Conference on Automated Software Engineering (ASE).

36© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

From Code to Design Fragment
How do you recognize
design abstractions from
code?

• Rules or classifiers?
• Based on what data?
• How generalizable can

you get?

Hotspot (Qt)
github.com/KDAB/hotspot

• 8K code lines
• 2,648 nodes and

11,427 relations
• 7 publishers,

37 subscribers

37© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

How should an AI-augment Software Development Lifecycle be structured?

Key insight: do all tasks in smaller scope of
requirements, iterate and incrementally grow as
opposed to tackling entire scope conducting all
activities consecutively

Key insight: write tests first, implement
against them, run all tests as you develop
as opposed to writing and running tests at
the end of implementation

Key insight: integrate continuously as
opposed to at the end of the development,
run all checks during each small integration
as opposed to during predetermined phases

38© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Data is the loudest
person in the room!

Quote credit: Lena Pons, ML researcher CMU SEI

39© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

What are the right units of abstraction?

Does scope of work, batch size change (line of code,
class, story, pull request, design construct….)?
Where does the ground truth get created (your code,
your architecture, other peoples code, specifications)
What do you look for (correctness versus mistakes)?
What data exist or need to be collected?
How do different roles interact with work and
collaborate with each other?
What is a good unit of design?

40© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

Observations

There is no one size fits all!
• A collection of generative AI, other AI and approaches will need to be
orchestrated together.

Start with the problem not the solution!
• Not all software engineering problems are fit for ML or generative AI

Decompose complex tasks into tedious tasks!
• A tedious task is repetitive, numerous, and have bounded decision
space

• Tedious tasks are great for automation and AI support

A Paradigm Shift in Automating Software Engineering Tasks: Bots
I Ozkaya IEEE Software 39 (5), 4-8

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=FcDxVR8AAAAJ&sortby=pubdate&citation_for_view=FcDxVR8AAAAJ:WZBGuue-350C

41© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

AI-Augmented Software Development
Open Research Challenges
Prompt engineering
Training domain specific LLMs
Human-computer partnership, trust, and workflows
Automatically accumulating and carrying along evidence of
quality; verifying results are correct at different steps in the
process
Obtaining data to model for different software engineering stage
and workflows
IDEs that incorporate AI-assistants, multi-modal interactions

42© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

How should an AI-augment Software Development Lifecycle be structured?

Challenges: Speed and correctness
at scale, respond to change at scale,
trust, design competence
Key insight: ?

43© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

BE BOLD, experiment to unleash the potential
AI-augmented software tools promise

BE CAUTIUOS, do not compromise from
fundamentals of engineering, ethics, and rigor

44© 2023 Carnegie Mellon University
CIBSE 2023 [Distribution Statement A] Approved for public release and unlimited distribution.

THANK YOU!

