
ON IMPACT IN SOFTWARE ENGINEERING 
RESEARCH
ANDREAS ZELLER, CISPA / SAARLAND UNIVERSITY

ICSE NEW FACULTY SYMPOSIUM 
GÖTEBORG, MAY 29, 2018

@AndreasZeller



@AndreasZeller

ANDREAS ZELLER: KEY FACTS

• PhD in 1997 on Configuration Management with Feature Logic 

• Since 2001 professor at Saarland Informatics Campus  
(Saarland University / CISPA) 

• Four 10-year impact awards 2009–2017 
(for papers 1999–2007) 

• ACM Fellow in 2010 

• ERC Advanced Grant in 2011 

• SIGSOFT Outstanding Research Award on Friday



@AndreasZeller

WHAT IS IMPACT?



@AndreasZeller

WHAT IS IMPACT?

• How do your actions change the world? 

• Often measured in citations, publications, funding, 
people, … 

• All these are indicators of impact, but not goals in 
themselves 

• We want to make the world a better place 

• Gives meaning and purpose to our (professional) life
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WHAT MAKES IMPACTFUL 
RESEARCH?

• Intellectual challenge – was it hard, or could anyone 
have done this? 

• Elegance – is your research specific to a context, or 
can it be reused again and again? 

• Usefulness – can someone make money with it? 

• Innovation is the delta in any of these metrics
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VARYING PERSPECTIVES

• Programming Languages folks miss the intellectual 
challenge 

• Formal Methods folks miss elegance and 
challenge 

• Industry folks miss usefulness and applicability
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WHAT MAKES IMPACTFUL 
RESEARCH?

• How did your work make the world a better place?



@AndreasZeller
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MY PATH TO IMPACT

• Life can only be understood backwards;  
but it must be lived forwards 
(Søren Kierkegaard)
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CONFIGURATION MANAGEMENT  
WITH FEATURE LOGIC (1991–1997)

• Topic defined by my PhD 
advisor Gregor Snelting 

• Idea: Formally describe 
variants and revisions with 
feature logic 

• “A unified model for 
configuration management”

3.3 Combining Delta Features and other Features 19

..........

bug fixed f functionbug fixed f function

bug fixed f function procedurebug fixed f function procedure

bug fixed f function bug fixed f procedure

Figure 8: Delta features and other features

. This is only natural, since the change relies on the presence of the
change. Adding a new revision under implies that the revision is now tagged with

, so that the generalization property is not violated. Indeed,
.

3.3 Combining Delta Features and other Features

Besides all the delta features, other features are still allowed (and encouraged). Until now, we left
them out for clarity. However, there is no difference between the handling of delta features and other
features, as is shown in the following example.

Example 3.3 Consider figure 8. Here, we have figure 6 revisited, but enhanced with more features.
We assume that the change named fixes a bug and introduces a new symbol f , which is a function.
This is the situation in the upper lattice. Now let us assume a change leaving the bug fixed,
but changing f to a procedure. The result is the same lattice as in figure 6, enhanced with the new
features; the reader may verify that the lattice properties are not broken.

We may now select versions

according to their respective features (e.g. f procedure , which selects the revision with
the change applied, or f function , which leaves us the choice of being applied or not),
or
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FEATURE LOGIC:  
LESSONS LEARNED

• You can get plenty of papers accepted 

• even if you miss the problem  

• even if you do not evaluate 

• “Modeling for the sake of modeling” 

• Enabled much of my later work, though
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DDD (1994–1999)

• During PhD, programmed a lot 

• Debugging was hard! 

• Built the DDD debugger GUI 
with my student 
Dorothea Lütkehaus 

• Welcome change 
from formal work
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DDD (1994–1999)

• DDD was among the first dev 
tools with a “professional” GUI 

• Downloaded by the tens of 
thousands 

• Adopted as a GNU project: 
Street credibility with 
developers 

• Impact through usefulness
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DDD: LESSONS LEARNED

• Work on a real problem 

• Assume as little as possible 

• Keep things simple

–  “real” as in “real world”, not “real papers”

–  make things fit into real processes

–  complexity impresses, but prevents impact
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DELTA DEBUGGING (1999–2003)

• After PhD, looking for new 
topic 

• Delta Debugging brought 
together debugging and 
version control 

• Isolate failure causes 
through repeated 
experiments
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DELTA DEBUGGING (1999–2003)

• Delta debugging 
was a bomb 

• Easy to teach + 
understand 

• 7 lines of algorithm 
(and 25 lines of Python) 

• Spent two years on these
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DELTA DEBUGGING: LESSONS 
LEARNED

• Work on a real problem 

• Assume as little as possible 

• Keep things simple 

• Have a sound model

–  Version control? tests? Never heard of it

– 25 lines of Python is probably excessive

–  DD was my version model reborn

–  Why debug? We build correct software
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MINING SOFTWARE ARCHIVES 
(2003–2010)

• In the early 2000s, open-source 
version repositories became 
available 

• Stephan Diehl saw an opportunity 
for visualization and approached me 

• Quickly expanded into data mining 

• Tom Zimmermann: our MSc student 

• Work of a research team
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MINING SOFTWARE ARCHIVES 
(2003–2010)

• Our 2004 paper was the first ICSE 
paper on mining software archives 

• Handful of competing groups; 
instant hit 

• MSR now a conference on its own 

• Paper has 1200+ citations so far 

• Impact at Microsoft, Google, SAP…
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MINING SOFTWARE ARCHIVES 
(2003–2010)

• We are now after the gold rush 

• Data still exciting (if you have some) 

• Few new insights on old data 

• Get out of a field when too crowded

3.5 Programmer Actions and Defects 
Now that we know how to predict defects, can we actually prevent 
them?  Of course, we could focus quality assurance on those files 
predicted as most defect-prone.  But are there also constructive 
ways to avoid these defects?  Is there a general rule to learn? 

For this purpose, let us now focus on H2: Is there a correlation 
between individual actions (= keystrokes) and defects?  For this 
purpose, we would search for correlations between the count of 
the 256 characters and the overall post-defect count per file; our 
null hypothesis would be: 

H0. There is no correlation between character distribution and 
defect-proneness. 

After a number of preliminary experiments, we focused on the 
Eclipse 3.0 dataset.  It is well known that most metrics of software 
do not follow a normal distribution and our measures of key-
strokes are no exception.  The distributions of characters appear to 
have an exponential rather than a power-law character.  Nonethe-
less, due to the heavily skewed distribution, we used a standard 
non-parametric approach with the Spearman rank correlation.  Of 
course, with so many metrics (one for each character), we run the 
risk of identifying spurious correlations, and we thus employed p-
value adjustment using Benjamini-Hochberg p-value correction 
[3] to deal with this multiple hypothesis testing.  In order to be 
conservative in our findings and avoid Type I errors, we used a p-
value cutoff of ! ! !!!" for statistical significance [4].  Even 
after taking these rigorous steps, all letters and digits showed a 
statistically significant positive correlation with failures. 

For the non-printable characters, this correlation is strongest for 
the newline character (0.34).  The correlation with newline char-
acters is not surprising: given a constant defect density, a file with 
more lines would be assumed to also have more defects. For the 
printable characters, though, we observed the highest correlation 
for the lower-case letters “i” (0.34), “r” (0.34), “o” (0.34), and “p” 
(0.35) – in other words, the more of these letters one would have 
in a file, the higher the defect count.  This is the more interesting 
as these letters do not rank in the most frequently used English 
letters; this is also in sharp contrast to characters such as “%” 
(0.06) or the uppercase “Z” (0.19).  Figure 3 lists the correlations 
for the individual lower-case letters. 

This high correlation for the specific letters “i” (0.34), “r” (0.34), 
“o” (0.34), and “p” (0.35) came as a huge surprise to us; it is these 
specific letters that named our approach IROP.  All reported cor-
relations are statistically significant (p = 0.01), refuting H0 and 
confirming our hypothesis H2. 

 

3.6 Preventing Defects 
Correlations like the above give way to immediate action. Our 
first idea was to encode the defect likelihood as colors into the 
keyboard (Figure 2), such that programmers would be aware of 
the risk immediately when undertaking the specific action. 

However, such an encoding on the keyboard would not impact 
professional programmers, in particular touch typists.  Therefore, 
we constructed a special keyboard that would make it harder for 
programmers to undertake defect-prone actions (Figure 4).  Note 
how the four letters of failure are conveniently removed, which 
forces programmers to rethink their actions and to search for al-
ternatives.1 
We deployed this keyboard to three Microsoft interns in our group 
to carefully monitor its effect on defect reduction.  It quickly 
turned out that getting rid of the four letters of failure would not 
be an easy task.  While our test subjects could easily avoid “i”, 
“r”, “o”, and “p” in their identifiers, the largest problem would be 

                                                                    
1 We also explored removing the “Enter” key, but experienced 

that this led to a sharp increase in the number of defects per line 
as well as a drop in productivity (measured as LOC/day). These 
effects will be explored in future research. 

Our results show a strong correlation between specific pro-
grammer actions (keystrokes I, R, O, and P) and defects. 

 
Figure 2: Color-coding keys by their defect correlation; (red = strong).  The five strongest correlations are highlighted. 

 

 
Figure 3: Defect correlation for the 26 lower-case letters. 
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MINING SOFTWARE 
REPOSITORIES: LESSONS LEARNED

• Work on a real problem 

• Assume as little as possible 

• Keep things simple 

• Have a sound model 

• Keep on learning

–  Empirical research is core field of SE

–  simple parsers for multiple languages

–  essence of 2004 paper is one line of SQL

–  retrieval, precision, recall, etc, etc

–  statistics, data mining, machine learning
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MINING APP ARCHIVES (2014–)

• How do we know an app 
does what it should do? 

• CHABADA checks for 
mismatches between 
description and behavior 

• Novel usage of NLP;  
novel app store mining

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT

How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms

Security

Keywords

Android, malware detection, description analysis, clustering

1. INTRODUCTION

Checking whether a program does what it claims to do is a long-
standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some program
behavior will be beneficial or malicious. The problem is that any
specification on what makes behavior beneficial or malicious very
much depends on the current context. In the mobile world, for
instance, a behavior considered malicious in one app may well be a
feature of another app:
⇤Ilaria Tavecchia is now with SWIFT, Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
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"Theme"
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Figure 1: Detecting applications with unadvertised behavior.

Starting from a collection of “good” apps (1), we identify their

description topics (2) to form clusters of related apps (3). For

each cluster, we identify the sentitive APIs used (4), and can

then identify outliers that use APIs that are uncommon for that

cluster (5).

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as
advertised. In all the examples above, the user would be informed
and asked for authorization before any questionable behavior. It is
the covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As
a proxy for its implemented behavior, we use the set of Android
application programming interfaces (APIs) that are used from within
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MINING APP ARCHIVES (2014–)

• The ICSE paper of 2014 is 
among most cited 

• CHABADA techniques now 
adopted by Google and 
Microsoft 

• Most of your mobile apps 
have gone through such an 
analysis :-)
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Saarland University

Saarbrücken, Germany
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MINING APPS:  
LESSONS LEARNED

• Work on a real problem 

• Assume as little as possible 

• Keep things simple 

• Have a sound model 

• Keep on learning 

• Keep on moving

–  Yes, there is malware

–  Descriptions and APIs

–  Standard NLP techniques

–  Standard NLP methods

–  NLP, machine learning, 
recommendation…

–  Security starts with SE
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MORE THINGS I DID

• Automatic repair 

• Automatic parallelization 

• Automatic website testing 

• Structured fuzzing 

• Automatic sandboxing

–  Wesley Weimer beat us to it

–  Struggled with complexity

–  Langfuzz found 2000+ browser bugs

–  lots of potential in here

–  Built a company for that
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THINGS I STAYED AWAY FROM

• Symbolic techniques 

• Formal methods 

• Modeling 

• Architecture

• Work on a real problem 

• Assume as little as possible 

• Keep things simple 

• Have a sound model 

• Keep on learning 

• Keep on moving
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YOUR WAYS TO HAVE IMPACT



@AndreasZeller

IMPACT AS A RESEARCHER

• Society funds research  
to take risks that no one else does 

• Research is risky by construction –  
you should expect to fail, and fail again 

• Tenure is meant to allow you to take arbitrarily 
grand challenges – so work on the grand stuff 

• If you lack resources, try smarter and harder
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IMPACT AS A TEACHER

• Teaching can be a great way to multiply your 
message 

• Not only focus on teaching the standards, but also 
your research 

• Teaching your research helps to propagate it and 
make it accessible 

• Engage students on topics dear to you
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IMPACT WITH INDUSTRY

• Do work with industry 
to find problems and frame your work 

• Do not work with industry  
to solve (their) concrete problems 

• Your role as researcher is more 
than a cheap consulting tool 

• Many “research” funding schemes 
are there to subsidize industry
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IMPACT THROUGH TOOLS

• Getting your technique out as a tool is a great way 
to have impact! 

• Also allows to check what actual users need (and if 
they exist) 

• A tool can have far more impact than a paper 

• Funding agencies and hiring committees begin to 
realize this
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IMPACT AS FOUNDER

• Creating a company out of your research can be 
great fun! 

• Push your research and ideas into practice 

• Again, shows you what the market wants 
(and what not) 

• Plenty of support available (money, consultancy)
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IMPACT AS MENTOR

• Working with advanced students can be the most 
satisfying part of your job 

• The variety of SE research needs universal 
problem solving skills 

• Find such skills besides good grades
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A GREAT ENVIRONMENT

• My institution (Saarland University) hired me  
although I was the candidate with the fewest 
publications 

• But they liked the papers, so they hired me 

• No pressure or incentives on papers, citations, 
funding, etc. 

• One single expectation: long-term impact
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SURVIVOR BIAS

• Researchers with great impact are the selected few 
who survived academic selection 

• What worked for me will not work for most 

• Most of us have to struggle with plenty of bad, 
misguided, short-term career incentives 

• Follow incentives until tenured, then set better ones 

• Get lucky!
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LESSONS LEARNED:  
ON IMPACT IN SE RESEARCH

• Work on a real problem 

• Assume as little as possible 

• Keep things simple 

• Have a sound model 

• Keep on learning 

• Keep on moving

–  possibly bursting your bubble

–  immediate impact on adoption

–  complexity inhibits impact

–  tools may fade away, concepts persist

– learn new stuff and leverage it

– do not stay in your cozy SE corner


