
ON IMPACT IN SOFTWARE ENGINEERING
RESEARCH
ANDREAS ZELLER, CISPA / SAARLAND UNIVERSITY

ICSE NEW FACULTY SYMPOSIUM
GÖTEBORG, MAY 29, 2018

@AndreasZeller

@AndreasZeller

ANDREAS ZELLER: KEY FACTS

• PhD in 1997 on Configuration Management with Feature Logic

• Since 2001 professor at Saarland Informatics Campus  
(Saarland University / CISPA)

• Four 10-year impact awards 2009–2017 
(for papers 1999–2007)

• ACM Fellow in 2010

• ERC Advanced Grant in 2011

• SIGSOFT Outstanding Research Award on Friday

@AndreasZeller

WHAT IS IMPACT?

@AndreasZeller

WHAT IS IMPACT?

• How do your actions change the world?

• Often measured in citations, publications, funding,
people, …

• All these are indicators of impact, but not goals in
themselves

• We want to make the world a better place

• Gives meaning and purpose to our (professional) life

@AndreasZeller

WHAT MAKES IMPACTFUL
RESEARCH?

• Intellectual challenge – was it hard, or could anyone
have done this?

• Elegance – is your research specific to a context, or
can it be reused again and again?

• Usefulness – can someone make money with it?

• Innovation is the delta in any of these metrics

@AndreasZeller

VARYING PERSPECTIVES

• Programming Languages folks miss the intellectual
challenge

• Formal Methods folks miss elegance and
challenge

• Industry folks miss usefulness and applicability

@AndreasZeller

WHAT MAKES IMPACTFUL
RESEARCH?

• How did your work make the world a better place?

@AndreasZeller

MY PATH TO IMPACT

@AndreasZeller

MY PATH TO IMPACT

• Life can only be understood backwards;  
but it must be lived forwards 
(Søren Kierkegaard)

@AndreasZeller

CONFIGURATION MANAGEMENT  
WITH FEATURE LOGIC (1991–1997)

• Topic defined by my PhD
advisor Gregor Snelting

• Idea: Formally describe
variants and revisions with
feature logic

• “A unified model for
configuration management”

3.3 Combining Delta Features and other Features 19

..........

bug fixed f functionbug fixed f function

bug fixed f function procedurebug fixed f function procedure

bug fixed f function bug fixed f procedure

Figure 8: Delta features and other features

. This is only natural, since the change relies on the presence of the
change. Adding a new revision under implies that the revision is now tagged with

, so that the generalization property is not violated. Indeed,
.

3.3 Combining Delta Features and other Features

Besides all the delta features, other features are still allowed (and encouraged). Until now, we left
them out for clarity. However, there is no difference between the handling of delta features and other
features, as is shown in the following example.

Example 3.3 Consider figure 8. Here, we have figure 6 revisited, but enhanced with more features.
We assume that the change named fixes a bug and introduces a new symbol f , which is a function.
This is the situation in the upper lattice. Now let us assume a change leaving the bug fixed,
but changing f to a procedure. The result is the same lattice as in figure 6, enhanced with the new
features; the reader may verify that the lattice properties are not broken.

We may now select versions

according to their respective features (e.g. f procedure , which selects the revision with
the change applied, or f function , which leaves us the choice of being applied or not),
or

@AndreasZeller

FEATURE LOGIC:  
LESSONS LEARNED

• You can get plenty of papers accepted

• even if you miss the problem

• even if you do not evaluate

• “Modeling for the sake of modeling”

• Enabled much of my later work, though

@AndreasZeller

DDD (1994–1999)

• During PhD, programmed a lot

• Debugging was hard!

• Built the DDD debugger GUI 
with my student
Dorothea Lütkehaus

• Welcome change 
from formal work

@AndreasZeller

DDD (1994–1999)

• DDD was among the first dev
tools with a “professional” GUI

• Downloaded by the tens of
thousands

• Adopted as a GNU project: 
Street credibility with
developers

• Impact through usefulness

@AndreasZeller

DDD: LESSONS LEARNED

• Work on a real problem 

• Assume as little as possible 

• Keep things simple

– “real” as in “real world”, not “real papers”

– make things fit into real processes

– complexity impresses, but prevents impact

@AndreasZeller

DELTA DEBUGGING (1999–2003)

• After PhD, looking for new
topic

• Delta Debugging brought
together debugging and
version control

• Isolate failure causes
through repeated
experiments

@AndreasZeller

DELTA DEBUGGING (1999–2003)

• Delta debugging 
was a bomb

• Easy to teach +
understand

• 7 lines of algorithm 
(and 25 lines of Python)

• Spent two years on these

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(c′✔, c
′

✘) if |∆| = 1

dd
′(c′✘ \∆i, c

′

✘,2) if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✔

dd
′(c′✔, c

′

✔ ∪∆i,2) if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✘

dd
′
(

c′✔ ∪∆i, c
′

✘,max(n− 1,2)
)

else if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✔

dd
′
(

c′✔, c
′

✘ \∆i,max(n− 1,2)
)

else if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✘

dd
′
(

c′✔, c
′

✘,min(2n, |∆|)
)

else if n < |∆| (“increase granularity”)

(c′✔, c
′

✘) otherwise

dd(c✔, c✘) = dd
′(c✔, c✘,2)

dd
′(c′✔, c

′

✘, n) =

@AndreasZeller

DELTA DEBUGGING: LESSONS
LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

– Version control? tests? Never heard of it

– 25 lines of Python is probably excessive

– DD was my version model reborn

– Why debug? We build correct software

@AndreasZeller

MINING SOFTWARE ARCHIVES
(2003–2010)

• In the early 2000s, open-source
version repositories became
available

• Stephan Diehl saw an opportunity
for visualization and approached me

• Quickly expanded into data mining

• Tom Zimmermann: our MSc student

• Work of a research team

@AndreasZeller

MINING SOFTWARE ARCHIVES
(2003–2010)

• Our 2004 paper was the first ICSE
paper on mining software archives

• Handful of competing groups; 
instant hit

• MSR now a conference on its own

• Paper has 1200+ citations so far

• Impact at Microsoft, Google, SAP…

@AndreasZeller

MINING SOFTWARE ARCHIVES
(2003–2010)

• We are now after the gold rush

• Data still exciting (if you have some)

• Few new insights on old data

• Get out of a field when too crowded

3.5 Programmer Actions and Defects
Now that we know how to predict defects, can we actually prevent
them? Of course, we could focus quality assurance on those files
predicted as most defect-prone. But are there also constructive
ways to avoid these defects? Is there a general rule to learn?

For this purpose, let us now focus on H2: Is there a correlation
between individual actions (= keystrokes) and defects? For this
purpose, we would search for correlations between the count of
the 256 characters and the overall post-defect count per file; our
null hypothesis would be:

H0. There is no correlation between character distribution and
defect-proneness.

After a number of preliminary experiments, we focused on the
Eclipse 3.0 dataset. It is well known that most metrics of software
do not follow a normal distribution and our measures of key-
strokes are no exception. The distributions of characters appear to
have an exponential rather than a power-law character. Nonethe-
less, due to the heavily skewed distribution, we used a standard
non-parametric approach with the Spearman rank correlation. Of
course, with so many metrics (one for each character), we run the
risk of identifying spurious correlations, and we thus employed p-
value adjustment using Benjamini-Hochberg p-value correction
[3] to deal with this multiple hypothesis testing. In order to be
conservative in our findings and avoid Type I errors, we used a p-
value cutoff of ! ! !!!" for statistical significance [4]. Even
after taking these rigorous steps, all letters and digits showed a
statistically significant positive correlation with failures.

For the non-printable characters, this correlation is strongest for
the newline character (0.34). The correlation with newline char-
acters is not surprising: given a constant defect density, a file with
more lines would be assumed to also have more defects. For the
printable characters, though, we observed the highest correlation
for the lower-case letters “i” (0.34), “r” (0.34), “o” (0.34), and “p”
(0.35) – in other words, the more of these letters one would have
in a file, the higher the defect count. This is the more interesting
as these letters do not rank in the most frequently used English
letters; this is also in sharp contrast to characters such as “%”
(0.06) or the uppercase “Z” (0.19). Figure 3 lists the correlations
for the individual lower-case letters.

This high correlation for the specific letters “i” (0.34), “r” (0.34),
“o” (0.34), and “p” (0.35) came as a huge surprise to us; it is these
specific letters that named our approach IROP. All reported cor-
relations are statistically significant (p = 0.01), refuting H0 and
confirming our hypothesis H2.

3.6 Preventing Defects
Correlations like the above give way to immediate action. Our
first idea was to encode the defect likelihood as colors into the
keyboard (Figure 2), such that programmers would be aware of
the risk immediately when undertaking the specific action.

However, such an encoding on the keyboard would not impact
professional programmers, in particular touch typists. Therefore,
we constructed a special keyboard that would make it harder for
programmers to undertake defect-prone actions (Figure 4). Note
how the four letters of failure are conveniently removed, which
forces programmers to rethink their actions and to search for al-
ternatives.1
We deployed this keyboard to three Microsoft interns in our group
to carefully monitor its effect on defect reduction. It quickly
turned out that getting rid of the four letters of failure would not
be an easy task. While our test subjects could easily avoid “i”,
“r”, “o”, and “p” in their identifiers, the largest problem would be

1 We also explored removing the “Enter” key, but experienced

that this led to a sharp increase in the number of defects per line
as well as a drop in productivity (measured as LOC/day). These
effects will be explored in future research.

Our results show a strong correlation between specific pro-
grammer actions (keystrokes I, R, O, and P) and defects.

Figure 2: Color-coding keys by their defect correlation; (red = strong). The five strongest correlations are highlighted.

Figure 3: Defect correlation for the 26 lower-case letters.

@AndreasZeller

MINING SOFTWARE
REPOSITORIES: LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

– Empirical research is core field of SE

– simple parsers for multiple languages

– essence of 2004 paper is one line of SQL

– retrieval, precision, recall, etc, etc

– statistics, data mining, machine learning

@AndreasZeller

MINING APP ARCHIVES (2014–)

• How do we know an app
does what it should do?

• CHABADA checks for
mismatches between
description and behavior

• Novel usage of NLP;  
novel app store mining

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT

How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms

Security

Keywords

Android, malware detection, description analysis, clustering

1. INTRODUCTION

Checking whether a program does what it claims to do is a long-
standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some program
behavior will be beneficial or malicious. The problem is that any
specification on what makes behavior beneficial or malicious very
much depends on the current context. In the mobile world, for
instance, a behavior considered malicious in one app may well be a
feature of another app:
⇤Ilaria Tavecchia is now with SWIFT, Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

Figure 1: Detecting applications with unadvertised behavior.

Starting from a collection of “good” apps (1), we identify their

description topics (2) to form clusters of related apps (3). For

each cluster, we identify the sentitive APIs used (4), and can

then identify outliers that use APIs that are uncommon for that

cluster (5).

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as
advertised. In all the examples above, the user would be informed
and asked for authorization before any questionable behavior. It is
the covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As
a proxy for its implemented behavior, we use the set of Android
application programming interfaces (APIs) that are used from within

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00

http://dx.doi.org/10.1145/2568225.2568276

1025

@AndreasZeller

MINING APP ARCHIVES (2014–)

• The ICSE paper of 2014 is
among most cited

• CHABADA techniques now
adopted by Google and
Microsoft

• Most of your mobile apps
have gone through such an
analysis :-)

Checking App Behavior Against App Descriptions

Alessandra Gorla · Ilaria Tavecchia⇤ · Florian Gross · Andreas Zeller
Saarland University

Saarbrücken, Germany
{gorla, tavecchia, fgross, zeller}@cs.uni-saarland.de

ABSTRACT

How do we know a program does what it claims to do? After clus-
tering Android apps by their description topics, we identify outliers
in each cluster with respect to their API usage. A “weather” app that
sends messages thus becomes an anomaly; likewise, a “messaging”
app would typically not be expected to access the current location.
Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56%
of novel malware as such, without requiring any known malware
patterns.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software

General Terms

Security

Keywords

Android, malware detection, description analysis, clustering

1. INTRODUCTION

Checking whether a program does what it claims to do is a long-
standing problem for developers. Unfortunately, it now has become
a problem for computer users, too. Whenever we install a new app,
we run the risk of the app being “malware”—that is, to act against
the interests of its users.

Research and industry so far have focused on detecting malware
by checking static code and dynamic behavior against predefined
patterns of malicious behavior. However, this will not help against
new attacks, as it is hard to define in advance whether some program
behavior will be beneficial or malicious. The problem is that any
specification on what makes behavior beneficial or malicious very
much depends on the current context. In the mobile world, for
instance, a behavior considered malicious in one app may well be a
feature of another app:
⇤Ilaria Tavecchia is now with SWIFT, Brussels, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
 + Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. Used APIs 5. Outliers

Weather
 + Travel

Figure 1: Detecting applications with unadvertised behavior.

Starting from a collection of “good” apps (1), we identify their

description topics (2) to form clusters of related apps (3). For

each cluster, we identify the sentitive APIs used (4), and can

then identify outliers that use APIs that are uncommon for that

cluster (5).

• An app that sends a text message to a premium number to
raise money is suspicious? Maybe, but on Android, this is a
legitimate payment method for unlocking game features.

• An app that tracks your current position is malicious? Not if
it is a navigation app, a trail tracker, or a map application.

• An application that takes all of your contacts and sends them
to some server is malicious? This is what WhatsApp does
upon initialization, one of the world’s most popular mobile
messaging applications.

The question thus is not whether the behavior of an app matches
a specific pattern or not; it is whether the program behaves as
advertised. In all the examples above, the user would be informed
and asked for authorization before any questionable behavior. It is
the covert behavior that is questionable or downright malicious.

In this paper, we attempt to check implemented app behavior
against advertised app behavior. Our domain is Android apps,
so chosen because of its market share and history of attacks and
frauds. As a proxy for the advertised behavior of an app, we use
its natural language description from the Google Play Store. As
a proxy for its implemented behavior, we use the set of Android
application programming interfaces (APIs) that are used from within

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00

http://dx.doi.org/10.1145/2568225.2568276

1025

@AndreasZeller

MINING APPS:  
LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

– Yes, there is malware

– Descriptions and APIs

– Standard NLP techniques

– Standard NLP methods

– NLP, machine learning, 
recommendation…

– Security starts with SE

@AndreasZeller

MORE THINGS I DID

• Automatic repair

• Automatic parallelization

• Automatic website testing

• Structured fuzzing

• Automatic sandboxing

– Wesley Weimer beat us to it

– Struggled with complexity

– Langfuzz found 2000+ browser bugs

– lots of potential in here

– Built a company for that

@AndreasZeller

THINGS I STAYED AWAY FROM

• Symbolic techniques

• Formal methods

• Modeling

• Architecture

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

@AndreasZeller

YOUR WAYS TO HAVE IMPACT

@AndreasZeller

IMPACT AS A RESEARCHER

• Society funds research  
to take risks that no one else does

• Research is risky by construction –  
you should expect to fail, and fail again

• Tenure is meant to allow you to take arbitrarily
grand challenges – so work on the grand stuff

• If you lack resources, try smarter and harder

@AndreasZeller

IMPACT AS A TEACHER

• Teaching can be a great way to multiply your
message

• Not only focus on teaching the standards, but also
your research

• Teaching your research helps to propagate it and
make it accessible

• Engage students on topics dear to you

@AndreasZeller

IMPACT WITH INDUSTRY

• Do work with industry 
to find problems and frame your work

• Do not work with industry  
to solve (their) concrete problems

• Your role as researcher is more 
than a cheap consulting tool

• Many “research” funding schemes 
are there to subsidize industry

@AndreasZeller

IMPACT THROUGH TOOLS

• Getting your technique out as a tool is a great way
to have impact!

• Also allows to check what actual users need (and if
they exist)

• A tool can have far more impact than a paper

• Funding agencies and hiring committees begin to
realize this

@AndreasZeller

IMPACT AS FOUNDER

• Creating a company out of your research can be
great fun!

• Push your research and ideas into practice

• Again, shows you what the market wants 
(and what not)

• Plenty of support available (money, consultancy)

@AndreasZeller

IMPACT AS MENTOR

• Working with advanced students can be the most
satisfying part of your job

• The variety of SE research needs universal
problem solving skills

• Find such skills besides good grades

@AndreasZeller

A GREAT ENVIRONMENT

• My institution (Saarland University) hired me  
although I was the candidate with the fewest
publications

• But they liked the papers, so they hired me

• No pressure or incentives on papers, citations,
funding, etc.

• One single expectation: long-term impact

@AndreasZeller

SURVIVOR BIAS

• Researchers with great impact are the selected few
who survived academic selection

• What worked for me will not work for most

• Most of us have to struggle with plenty of bad,
misguided, short-term career incentives

• Follow incentives until tenured, then set better ones

• Get lucky!

ON IMPACT IN SOFTWARE ENGINEERING
RESEARCH
ANDREAS ZELLER, CISPA / SAARLAND UNIVERSITY

@AndreasZeller

LESSONS LEARNED:  
ON IMPACT IN SE RESEARCH

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

– possibly bursting your bubble

– immediate impact on adoption

– complexity inhibits impact

– tools may fade away, concepts persist

– learn new stuff and leverage it

– do not stay in your cozy SE corner

