

The pace of change will ever be slower than today

5G — a foundation for digitalization

5G starting with enhanced MBB and then enabling new evolved IOT use cases

Anything that can be connected will be connected, smart and interactive

Cellular for Massive IoT

Smart cities | Smart agriculture | Smart manufacturing | Wearables | Waste management | Transport and logistics | Environment monitoring and protection

	Peak Throughput	Battery life	Voice	Mobility	Bandwidth	Coverage
Cat-M1	0.8/1 Mbps (300/375 kbps)	10+ year	Supported	Connected & idle mode mobility	1.4 MHz	160dB (+15dB)
NB-IoT	227/250 kbps (21/63 kbps)	10+ year	Not Supported	Idle mode mobility	200 kHz	164dB (+20dB)
EC-GSM-IoT	473/473 kbps (97/97 kbps)	10+ year	Not Supported	Idle mode mobility	200/600 kHz	164dB (+20dB)

Advanced antenna systems with beam tracking

- Realistic use-case deployment
- Multiple transmission points with multiple beams
- High frequency (mmWave), 28 GHz
- High vehicle speed, 165+ km/h
- Seamless mobility with Gb/s performance

5G for serving multiple purposes

Technologies that drive industry changes

Machine intelligence

- Cognitive technologies and deep learning
- Responsible machine intelligence
- Capsule networks

Automation

- Model driven
- Automated life cycle management
- Autonomous systems

Radio evolution

- mm Wave and massive antenna technologies
- Multi-purpose, multicharacteristic radio
- Flexible spectrum assignment and utilization

Programmable networks

- Software defined networking
- Network abstraction
- Network slicing

Cloud technologies

- Distributed cloud and edge computing
- Micro services and DevOps
- Virtualization, containers

3

Rapid development

 high level language of programming packet processors

Platform independence

 independent of the specifics of underlying hardware

SDN compliance

 P4 works in conjunction with SDN control protocols

The importance of edge computing

3

Edge computing pushes intelligence and processing capabilities closer to the end user or where the data originates or is needed

Drivers for edge computing

- Higher capacity services
- Lower latency services
- Legal/corporate/administrative domains

Data center companies \rightarrow smaller sites in 2nd/3rd tier cities Fixed and cable operators → central offices/exchanges, gateways/servers on business premises Mobile operators → servers at cell-sites or aggregation points (also small cell indoor cells) IT companies → servers at company sites Mesh-network vendors/ → gateways or access-points service providers IoT companies → localized controller or gateway for clusters of devices Device and silicon vendors → smart endpoint (smartphone, car, raspberry pi)

Magnus Frodigh | © Ericsson 2018 | 2018-05-30

Edge compute challenges

Application platform

- Common interface for deployment of 3rd party applications
- Orchestration and automated scaling of applications (e.g. application mobility between data centers)

Cloud platform & SDN

- Low platform overhead
- Carrier grade performance, resilience, and security
- Platform support for HW accelerators (GPUs , FPGAs)
- Joint orchestration of networking and compute

Edge optimized HW

 Low footprint and environmentally hardened for non-DC sites

Balancing robot Cloud based solutions that work

Mixed reality example

Mixed reality is the integration of digital information with the user's environment in real time.

Large number of use cases

- connecting remote workers
- assisting with complex tasks
- more efficient warehousing and logistics
- enhanced learning outcomes
- real-time data & analytics visualization

Any reshaping idea that can be tried will be tried and trigger change

video

— mixed reality

Building trustworthiness in 5G

3

Five properties contributing to trustworthiness of 5G systems

Standardization, system design principles, implementation considerations, security monitoring, build security for 5G

Real-time

- Intelligent decision making on live data
- Network edge, IoT sensors and more
- 5G: ultra-low latency

Beyond games and simulations

- Reinforcement Learning
- Safe exploration
- Simulators + live systems

Distributed & decentralized

- From data center to network edge
- Distributed learning
- Local vs. global decisions

Machine Learning + Reasoning

- Extract high-level knowledge from ML
- Validation and explanation
- Use ML to guide Reasoning

Machine Intelligence is key for managing network complexity

Magnus Frodigh | © Ericsson 2018 | 2018-05-30

Digital doesn't respect boundaries — regardless of the industry, digitalization will uncover inefficiencies and create value.

From industry 1.0 to 4.0

One-stop shop floor solution

Industry-grade cellular connectivity

The three basic foundations going forward

