

1SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

The Language as a Software Engineer

Margaret H. Hamilton

May 31, 2018

 mhh@htius.com www.htius.com

mailto:mhh@htius.com
http://www.htius.com/

2SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

When we ask developers who are looking for a better way to
develop software and we ask them what their most pressing
issues are:

● Integration too late if at all
● Lack of traceability, flexibility and evolvability
● Reuse methods ad hoc and error prone
● Software unreliable even with extensive testing
● Costs too much. Takes too long

Why still? Not unlike 50 years ago when the field was brand new*.
What to do...
* M. Hamilton, “What the Errors Tell Us”, IEEE Software - Special issue "50 years of Software Engineering"

3SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Most people would say impossible to do much—at least in the
foreseeable future—software by its very nature is destined to
have these kind of problems

Nevertheless, I believe it is not impossible, partly based on
many of my own experiences together with others throughout
the last 60 years or so:

● Some of the software projects
● What has and what has not changed
● Lessons we learned along the way
● What we have done (are doing) about it
● Implications for systems of the future

4SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Observations on Earlier Experiences
● No field for software engineering...you were on your own...knowledge (or lack thereof)

passed down from person to person
● A manager hired you if you "knew" the commands in his computer's native language.

Like "knowing" a set of English words would mean you could write a novel
● Tricky programmers admired; organization vulnerable when one left
● If a system crashed, software the one blamed (THERAC-25)
● Terms undefined: leading to errors, misunderstandings and drama; e.g., "software",

"error" and "computer systems" meant different things to different people
● Tribal. Software "types" could mix things up if involved with software areas unfamiliar

to them; e.g., the operating system functionality with the target system functionality
● Some things quite different then; some not
● Life cycle not unlike today's traditional life cycle. Waterfall, Spiral, Agile... going from

requirements to coding to endless testing and maintenance

5SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

First Project (LGP-30)

● Introduced to computers by Ed Lorenz at MIT in 1959
● Developed weather prediction applications in hexadecimal and binary
● Known for his ground breaking work in chaos theory, his love for

software related experimentation was contagious
● Improving development/productivity techniques

‒ Hardware/software relationships

‒ Errors a nuisance. Each debug session took forever.

‒ Paper tape solution

‒ Stage computer runs and spend more time up front

6SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Important not to make an
error (the computer told
everyone)!
When it crashed, we heard
loud siren-like and fog horn-
like sounds.
Since it belonged to the
programmer standing in front
of the console, it was no
secret
Operators and programmers
would come running to find
out whose program it was
The crash site where the
program halted could be
found in a foot-long register
on the console with its
blinking and flashing lights

7SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Another Early Project (SAGE)

Used assembly language on the first AN/FSQ-7 (XD-1), at MIT's Lincoln Labs, to look
for enemy airplanes. HUGE machine; largest computer system ever built
● Important not to make an error (the computer told everyone)!
● When it crashed, we heard loud siren-like and fog horn-like sounds. Operators and

programmers would come running to find out whose program it was
● Since it belonged to the programmer standing in front of the console, it was no secret
● The crash site where the program halted could be found in a foot-long register on the

console with its blinking and flashing lights
● Next step: write the contents of the register on a piece of paper
● One challenge: keeping track of which program caused which crash
● My solution: take polaroid picture of each programmer posing next to his or her bug
● The pictures became more creative as time went on
SAGE: semi-automatic ground environment

8SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Another Early Project (SAGE)...cont.
● One time, one computer operator called me at home at 4am. "Something terrible

happened. Your program no longer sounds like a seashore".
● I got in the car and rushed to work. We had found a new way to debug, using sound
● Again, debugging was time consuming. No tools for finding errors

‒ "Ernie challenge"...Latin and Greek
‒ 24 hour turnaround encouraged careful thought and “playing computer” at the

 front end; multiple test cases created for each night's test runs
‒ Followed by endless rounds of testing

● Fascination with errors: a never ending past time of mine was to look for more ways
to understand what made a particular error(s) or class of errors happen and how to
prevent it in the future (e.g., documenting code)

● Sage definitely came with drama, especially having to do with errors; but, this was
only the beginning of what would come next: the Apollo onboard flight software
project at MIT, under contract to NASA

9SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Apollo On-Board Flight Software
● The challenge was unique: build man-rated software; meaning

astronauts' lives were at stake. It had to WORK—the first time
● Not only did the software, itself, have to be ultra-reliable, but it would

need to be able to detect an error and recover from it in real time
● Learning by "doing" and "being". Hardware engineers came with

rules; we didn't. Problems had to be solved that had never been solved
before. At times, we made it up

● Most developers were fearless and young; yet, dedication and
commitment a given

● Managers (mostly from hardware backgrounds) for whom software
was a mystery, gave us total freedom and trust

10SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

No Time to be a Beginner
● Unmanned missions

‒ Unmanned missions flight software synchronous
‒ AGC Block I assembly language

● Beginner's experience
‒ "Augekugel" method
‒ Lunar Landmark tables
‒ "Forget it"?

● Manned missions came next
‒ Manned missions flight software asynchronous
‒ AGC Block II assembly language, interpreter language

11SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

On-Board Flight Software More Complex for Manned Missions
● Asynchronous (multi-programming environment): higher priority jobs

interrupted lower priority jobs based on every job's priority relative to every
other job's priority

● Developers manually assigned a unique priority to every process in the flight
software to ensure all events would take place in the correct order and at the
right time

● It quickly became clear; no one and nothing is perfect (software gurus,
hardware gurus, even astronauts)

● Always searching for new ways to prepare for and recover from the
unexpected: going from program specific to system-wide protection.
‒ Lightning struck spacecraft at least twice
‒ P01 (Apollo 8): daughter's "debug" session and reactions, program note

resolution, real-time "debug" in flight, program change implemented for
all later missions

● Houston meeting said it all

12SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

MIT SCAMA
Room
P01 (Apollo 8):
daughter's
"debug" session
and reactions,
program note
resolution, real-
time "debug" in
flight, program
change
implemented
for all later
missions.

Photograph taken by MIT-IL
(now Draper). Courtesy of
Draper.

13SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

"July 17, 1969 at MIT, during
the Apollo 11 mission...
checking the monitor console
and analyzing data on
information received while in
direct communication with
Houston's Mission Control."

14SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Each Mission Exciting. Apollo 11 Special
We had Never Landed on the Moon Before

● Everything going perfectly until something totally unexpected happened; just as the
astronauts were about to land on the moon, the flight computer became overloaded

● The software's Priority Displays (AKA Display Interface Routines) of 1201 and 1202
alarms interrupted the astronaut's normal mission displays to warn them there was an
emergency
– Allowing NASA's Mission Control to understand what was happening
– Alerting the astronauts to place the rendezvous radar switch back in the right position

● It quickly became clear that the software not only informed everyone there was a
hardware-related problem, but the software was compensating for it

● The Priority Displays gave the astronauts a go/no go decision (to land or not to land)
● With only minutes to spare, the decision was made to go for the landing
● The rest is history. The Apollo 11’s crew became the first humans to walk on the moon;

and, our software became the first software to run on the moon

15SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Software's Systems-Software Error Detection and Recovery Mechanisms Took Control
● System-wide “kill and recompute” from a "safe place" snapshot-rollback restarts triggered by

overload; keeping only the highest priority jobs (Priority Displays highest priority)
● Steps earlier taken within the multi-programming environment became the basis for solutions

within a multiprocessing environment
● With this as a backdrop, the Priority Displays were created, changing the interface between

the astronauts and the flight software from synchronous to asynchronous (the software and
astronauts becoming parallel processes in a system of systems)

● This would not have been possible without an integrated system of systems (and teams)
approach and contributions made by other groups to support our flight software's systems-
software team in making this become a reality

● The hardware team at MIT changed their hardware and the mission planning team in Houston
changed their astronaut procedures; both working closely with us to accommodate the Priority
Displays for both the CM and the LM; for any kind of emergency and throughout any mission

● Mission Control well-prepared to know what to do if the Priority Displays interrupted the
astronauts

16SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Story Behind the Story
● On-board flight software systems-software meeting with hardware

people (65-66)
● Proposal for error detection and recovery in real time during an

emergency
● Hardware concerns
● System concerns
● Solution...”count to 5”
● Resolution: all systems go!
● Steps taken towards implementation

17SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Apollo Experiences Gave Insight to Understanding Software
(and its Life Cycle) as a System

● Everything somehow related to everything else; for better or worse (e.g., systems
software error's impact on everyone's runs and off-line versions)

● The very way one communicates can cause or prevent crashes, ACS daily memos.
Define terms better (e.g., what is an "error", catastrophic vs FLT)

● Programmers and mission designers necessarily became interchangeable; as did life
cycle phases

● Relationship of real-time and development (async)
● Everything a moving target. The only constant is change
● Never say never: more than one way to solve a problem (how affected, not what

caused it)
● Once interface errors (data, timing, priority conflicts) resolved, related issues

resolved: e.g., integration, traceability, flexibility, evolvability and reuse

18SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Opportunity to Make Every Kind of Error Humanly Possible,
Each With Hidden Secrets. On Hindsight, a Blessing in Disguise

● Task at hand: develop the CM and the LM software, including the systems-software
shared between them and the structure of the software ("glue") that defined the
relationships between and among the mission phases.

● Updates continuously submitted from hundreds of people (including "guests") over
time and many releases for each and every mission (software for one mission worked
on concurrently with software for other missions)

● Making sure everything would play together; that the software parts would
successfully interface to and work together with each other as well as with other
systems (hardware, peopleware and missionware)

● Handicapped by hardware time and space constraints: software "experts" prided
themselves with tricky programming; carefully crafted, creative code admired more
than number of lines of code a person wrote

● "Requirements thrown over the wall": assumptions by some "non-software experts"
that all software programs would somehow interface together "magically"

19SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Opportunity to Make Just About Every Kind of Error Humanly Possible...(cont.)

● Shared erasables (data) between mission phases
● With multi-programming, shared responsibilities and more interfaces within and between

every mission phase (8 tasks based on timing, 7 jobs based on priority); man-in-the-loop
multi-processing within the overall system of systems

● Push and pull on trade-offs: e.g., more error detection and recovery vs more accuracy in
equations

● We evolved our “software engineering” rules with each new relevant discovery; while top
management rules from NASA went from complete freedom to bureaucratic overkill

● Not possible (certainly not practical) to test the software by ”flying”a real mission: 6 levels of
testing

● System of systems simulations: mix of hardware and digital simulations of every (and all
aspects of an) Apollo mission which including man-in-the-loop simulations (real or simulated
human interaction), making sure that a complete mission from start to finish would behave
exactly as expected (of course, assuming the simulations themselves were ultra-reliable)

● No on-board flight software errors ever known to occur during flight

20SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Having Been Through These Experiences
One Could Not Help but Learn from Them

● We asked ourselves,"what can we do better for future systems? What
should we keep doing because we are doing it right?"

● We were on a new "mission": create more advanced means for
designing systems and building software

● Goal: address problems considered next to impossible to solve, if not
impossible, with traditional approaches; at least in the foreseeable
future

● With initial funding from NASA and DoD, we performed an
empirical study of the Apollo effort

21SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Analysis has Taken on Multiple Dimensions,
not just for Space Missions but Systems in General:

Lessons Learned from this Effort (and their Impact) Continue Today:
● Always ask "what if?". Always "expect the unexpected".
● Systems are asynchronous, distributed and event driven in nature. This should

be reflected in the language to define them and the tools to build them,
characterizing natural behavior in terms of real-time execution semantics

● Once having done so, no longer a need to explicitly define schedules of when
events occur. By describing interactions between objects, the schedule of
events is inherently defined

● The life cycle of a target system is a system with its own life cycle
● Every system inherently a system of systems

22SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Most Interesting of All: Errors Found
(During Pre-Flight Testing of the Software)

● The errors were full of surprises: they told us what to do and where to go
● We concentrated on:

‒ Interface errors (data, timing and priority conflicts)
‒ Errors found by manual means (Norton, Augekugel...)
‒ Previously existing errors (most subtle and hardest to find)

● Categorizing the errors led to a systems theory of control* that has continued to
evolve, based on lessons learned from Apollo and later projects

● Its axioms led to a set of allowable patterns that led to a language evolving
together with its automation** and preventative development paradigm,
development before the fact (DBTF)

* M. Hamilton and W. Hackler (2008), "Universal Systems Language: Lessons Learned from Apollo", IEEE Computer, Dec. 2008.
** http://htius.com/Examples/tax_example/documentation/do_all_taxes.op.collector-full

http://htius.com/Examples/tax_example/documentation/do_all_taxes.op.collector-full

23SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. USL™ is a trademark of Hamilton Technologies, Inc.

24SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Root problem: traditional system
engineering and software development
languages and their environments support
users in "fixing wrong things up" ("after
the fact") rather than in "doing things in
the right way in the first place" ("before
the fact").

25SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. USL™,Development Before the Fact™, DBTF™ System Oriented Object™ and SOO™ are trademarks of Hamilton Technologies, Inc.

A system defined with the language, the universal systems language
(USL), that has the systems theory of control as its foundation, has
properties that inherently support its own development, “before the
fact”. With this language

 Every object a System Oriented Object (SOO), itself developed in terms of
other SOOs. A SOO integrates all parts of a system including function, object
and timing oriented. Every system an object; every object a system

 Instead of Object Oriented Systems, System Oriented Objects. Instead of
model driven systems, system driven models

 Unlike traditional languages, it is based on a preventative philosophy: instead
of finding more ways to test for errors, late into the life cycle, find ways not to
allow them, in the first place; just by the way a system is defined

26SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. USL™,Development Before the Fact™ is a trademark of Hamilton Technologies, Inc.

With the Language, Every System Defined
from the Very Beginning to Inherently:

● Integrate all of its parts (e.g., types, functions, timing, structures)
● Maximize its own reliability
● Capitalize on its own parallelism
● Maximize the potential for its own

‒ Reuse
‒ Automation
‒ Evolution

RESULT: a formal based system with built-in quality, and built-in
productivity for its own development

27SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. SOO™, Universal Systems Language™ (USL™), Development Before the Fact™ and DBTF™ are trademarks of Hamilton Technologies, Inc.

Every System Defined with Properties of Control
● A formalism for representing the mathematics of systems, USL is based on a set of axioms and

formal rules for their application
● Same language used to define and integrate

‒ All aspects of and about a system and its relationships and its evolutions
‒ Functional, resource and allocation architectures, including hardware, software and

peopleware
‒ Sketching of ideas to complete system definitions
‒ GUI with documentation…with application
‒ All definitions

● Syntax, implementation, and architecture independent
● Unlike formal languages that are not friendly or practical, and friendly or practical languages that are

not formal; USL is considered by its users to be not only formal, but friendly and practical as well
● Unlike a formal language that is mathematically based but limited in scope from a practical

standpoint (e.g., kind or size of system), USL extends traditional mathematics with a unique concept
of control enabling it to support the definition of any kind or size of system

28SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. USL™ is a trademark of Hamilton Technologies, Inc.

 (Re)Define model with USL

 Analyze automatically the model to ensure it was defined
properly

 Generate automatically much of the design and all of the
code, production ready, for any kind or size of system

 Execute the model

 Deliver the real system

Process of Building a System

29SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

USL Philosophy:
Reliable Systems Defined in Terms of Reliable Systems

A recuarsively reliable
and reusable process

MORE ABSTRACT SYSTEMS

ABSTRACT SYSTEMS

PRIMITIVE
SYSTEMS

A large library of reusables
has evolved over years
of development.

● Use only reliable
systems

● Integrate these
systems using
reliable systems

● The result is a
system(s) which is
reliable

● Use resulting reliable
system(s) along with
more primitive ones
to build new and
larger reliable
systems

30SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. Object Map™, OMap™, Type Map™, TMap™, Function Map™, FMap™, Primitive Control Structures™, USL™, are all trademarks of Hamilton Technologies, Inc.

*Map: tree of control spanning networks of relations between objects

Every System Defined with Function Maps (FMaps) and Type Maps (TMaps), the Major Building Blocks of USL.
Every FMap and Every TMap is Defined in Terms of 3 Primitive Control Structures

All model viewpoints can be obtained from
FMaps and TMaps. FMaps of functions are
by their very nature integrated with TMaps
of types*.

TMap properties ensure the proper use of
objects in an FMap. Types TMap and
Object Map (OMap, an instance of a
TMap), facilitate the ability of a system to
understand itself better and manipulate all
objects the same way.

Primitive types reside at the bottom nodes
of a TMap. Each type is defined by its own
set of axioms. Inputs and outputs of each
function are members of types in the TMap.
Primitive functions in an FMap, each
defined by a primitive operation of a type
on the TMap, reside at the bottom nodes of
an FMap. Each primitive function (or type)
can be realized on a top node of a map on a
lower (more concrete) layer of the system.

A system is defined from the very
beginning to inherently integrate and make
understandable its own real world
definition.

31SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc.

A USL system model defined in terms of the three primitive control structures will have all its (and its derivatives') interface errors (~75% to 90% of all errors) eliminated at the
definition phase. These are typically found (if they are found) during testing in traditional development.

Each of the 3 primitive control structures has a set of rules that follow the 6 axioms.

A system is defined from the very beginning to inherently maximize its own reliability and predictability

Where: inputs, locals, outputs, inputs1, inputs2, outputs1 and outputs2 are Ordered Sets of variables. In the Include structure, the Left child is a higher priority than the Right child; and
the leftmost output variable is the highest priority variable.

32SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

Definition for Making a Table Requirements: Build a system for making a table.
The legs are round and the top is flat; both made
of hard or soft wood.

Determine:
- relevant parts (objects)
- tasks needed (actions)
 and their relationships
 for making a table
 using available parts

table {TupleOf}

Top| wood Legs {OSetOf}

Leg| wood

wood {OneOf}

Soft| NatHard| Nat

TMap

legs=make_legs(round)

top,legs=make_parts(flat,round)Includetable=assemble(top,legs)

top=MakeTop(flat)
 Or:is:soft,wood(flat)

table=MakeATable(flat,round)Join

top=FinishHardWood(flat)top=FinishSoftWood(flat)

FMap

Where flat and round are each a wood type of object.

33SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc.

A system is defined from the very
beginning to inherently maximize its
own flexibility to change and the
unpredictable and to capitalize on
its own parallelism

Every object has a unique priority
Each object and changes to it are
traceable

Each object can be safely reconfigured
("pluggable" and "unpluggable")

Every system is event-
driven

Concurrent patterns can
be automatically
detected

Every object has a unique parent
and is under control

Every parent has a higher priority and
behaves as a master scheduler for its
children

Every input is an event
Every output is an event
Every function is event
driven

Single reference, single
assignment

Systems Defined in Terms of the Primitive Control Structures
Result in Properties for Real Time Distributed Environments

34SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

A System is Defined from the Very Beginning to Inherently
Maximize the Potential for its Own Reuse

Syntax defines an interface
pattern for families that want
to use a structure's hidden
(template of) capabilities
in terms of functions. It is
used to verify the correct
construction of family uses.

hidden functions to be
applied when used in
another map to structure
a particular nodal family
(a parent and its children)

Where: x,x1,x2,
xa,xb,ya,yb are
Ordered Sets
of variables.Structure ya,yb = CoInclude?(x)Join

x1,x2=clone2(x)
ya,yb=f0(x1,x2)Include

yb=f2(x2)Join

xb=id[b](x2)

ya=f1(x1)Join

xa=id[a](x1)

ya=left?(xa) yb=right?(xb)

Definition

Syntax

ya,yb = ?(x)

ya=left?(xa) yb=right?(xb)

CI

a,b = coordinate(plans)

a=taskA(plans) b=taskB(plans)

CI

defined by

inherits Use

A Derived
FMap Structure

35SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

36SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. TMap™, OMap™ and Object Map™ are trademarks of Hamilton Technologies, Inc.

37SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

38SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.
FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

39SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.
FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

40SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. Object Map™ (OMap™), Type Map™ (TMap™), Execution Map™ (EMap™) and Function Map (FMap™) are all trademarks of Hamilton Technologies, Inc.

41SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. USL™, 001 Tool Suite™, RT(x)™, RMap™, Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc.

42SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. OMap™, TMap™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc.

43SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.
USL™, RT(x)™, FMap™, TMap™, dXecutor™, 001Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc.

44SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc. Xecutor™, RT(x)™, USL™, 001Analyzer™ and RAT™ are all trademarks of Hamilton Technologies, Inc.

The need for most kinds of testing used in a traditional environment
is removed. Most errors are prevented because of that which is
inherent or automated (i.e., reused)

Since RT(x) automates the process of going from
requirements to design to tests to use cases to other
requirements and back again the need to ensure the
implementation satisfies the design and the design
satisfies the requirements is minimized

One Might Ask "How Can One Build a More Reliable System and at the Same Time
Increase the Productivity in Building it?" Unlike the Traditional "Test to Death"
Philosophy, Less Testing Needed with the Use of Each New DBTF Capability
● Correct use of USL eliminates majority of errors including all interface errors and their derivatives
● 001Analyzer hunts down the errors resulting from incorrect use of USL
● Inherent reuse and, if software, automation removes need for most other testing: e.g., built in

aspects, inherent integration, all of code and much of the design automatically generated by 001
Resource Allocation Tool (RAT) with same integrity and consistent with the system definition

● 001 RAT generates 1) embedded test cases into the code for finding incorrect object use during
execution; 2) test harnesses with OMap editor for testing each object and its relationships

● Maintenance shares same benefits as development
‒ developer doesn't ever need to change the code
‒ application changes made to the specification-not the code
‒ architecture changes made to the configuration-not the code
‒ only the changed part of the system is regenerated and integrated with the rest of the application

(again, all automatically). The system is automatically analyzed, generated, compiled, linked and
executed without manual intervention.

45SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

We Continue to Discover New Properties in USL Systems (and
their Derivatives). Just by the very way a system is defined:
● No interface errors
● Seamless integration
● Traceability, flexibilty and evolvability
● Maximum reuse (derivable and inherent)
● Much inherent design

A system's definition provides input to and serves as the basis for
USL's automation to inherit and pass on the definition's properties
of control to the system's derivatives (e.g., the code)

46SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Properties of Control Built into the Language "Come Along for the Ride"
● With the language to define it, software can be developed with "built-in"

reliability and "built-in" productivity throughout its life cycle
● Much of what seems counter intuitive with traditional approaches becomes

intuitive...less testing becomes necessary with each new before the fact capability
● A language without preconceived notions: the more reliable the system, the higher

the productivity in its development
● Unlike what has been in large part a manual process or automation to support the

manual process; automation does the real work
● The language's own automation, a large system (millions of lines of code) in its

own right, is completely defined with and generates itself

47SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

This is possible because of USL's mathematical foundation
● Roots from Apollo and later systems
● Also takes roots from—other real world systems, formal methods, formal

linguistics and object technologies
● Evolved over several decades
● Always stood its own when put to test (academic, government, commercial)
● Used in research and "trail blazer" organizations; positioned for more widespread

use
● A Radical Departure, Redefines what is Possible
● New to the world at large, it would be natural to make assumptions about what is

possible and impossible based on its superficial resemblance to other languages—
like traditional object oriented languages

● It helps to suspend any and all preconceived notions when first introduced to this
language because it is a world unto itself—a different way to think about systems

48SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

Along the way it becomes clear that many aspects of the
pressing issues can be addressed with a preventative
approach; ultimately eliminated altogether
 Integration too late if at all

 Lack of traceability, flexibility and evolvability

 Reuse methods ad hoc and error prone

 Software unreliable even with extensive testing

 Costs too much. Takes too long

Several software engineers' tasks become no longer needed

49SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

What we do about what we have learned, however, depends on how ready and
how open developers (managers, technical people) are to a change in how we
build software
● Research and "early user" applications in diverse environments including comparisons,

studies, experiments, contests, "shootouts" e.g,
 – Academic Research: MIT, Carnegie Mellon, Stevens Institute of Technology
 – Commercial: CitiBank, Scott Paper
 – Aerospace: Honeywell, Lockheed
 – Software Productivity Consortium
 – DoD: Star Wars National Test Bed, Navy, Air Force, DOE, Army, NSA
● Unique criteria for each study: comparisons conducted by US government agencies,

industry and academic organizations; refereed by third party observers or by the agency
sponsoring the competition

● From initial establishment of system functional requirements through operational
validated code

● USL did not disappoint when put to the test
● The larger and the more complex the system, the better the results

50SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

The errors showed us how we can do without them. They led
us to a language where each of its definitions:
● Inherently replaces what used to be aspects of the system's own life

cycle, or
● Serves as the input for the language's automation of what used to be

manual processes in the system's own life cycle, or
● Results in many parts of the system's own life cycle no longer needed

A language that by the very way a system is defined can serve as a
software engineer in its own right

A language with a preventative paradigm that leads "before the fact" to
the future

51SE50th.09w0.0Copyright © 1986-2018 Hamilton Technologies, Inc.

The Language as a Software Engineer

Margaret H. Hamilton
Hamilton Technologies, Inc.

May 31, 2018

Images on Slide 1 and this Slide
are from The Apollo Prophecies
Copyright © Nicholas Kahn &

Richard Selesnick

mhh@htius.com www.htius.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

