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Abstract—Data centers have a considerable environmental
footprint, mainly arising from their electricity consumption.
Co-locating data centers with renewable energy sources al-
lows reducing this footprint, but comes with the challenge of
production intermittency. Users of data centers could adopt
“digital sufficiency” behaviors and adjust their use of these
infrastructures when renewable production is low, by adapting
their job submissions.

In this work, we investigate how effort from users can help
to minimize energy consumption in critical periods. We study
five behaviors, namely renouncing the submission, degrading it
spatially or temporally, reconfiguring it and postponing it to
later. These behaviors are combined with a three-state feedback
mechanism to provide simple information on the status of
renewable production. We propose a validation of our method
through a reproducible experimental campaign with a state-of-
the-art simulator. We show, for example, that if users accept
to apply the above behaviors on 50% of their job submissions
at periods of low production, brown energy consumption can be
reduced by 8%. Energy savings are linear in the size of the effort
made by users.

To the best of our knowledge, this is the first time all these user
levers are combined in a context of renewable-energy powered
data center. Future works could focus on refining the user model,
introducing states and behaviors of anticipation before a drop in
production and investigating the willingness of real users to adopt
the behaviors.

Index Terms—Energy-aware, HPC, simulation, eco-feedback,
reproducibility

I. INTRODUCTION

The Information Technology (IT) industry has growing
environmental impacts. Estimations of the carbon footprint of
the IT industry range from 1.8% to 3.9% of global greenhouse
gas emissions in 2020 [1]. About a third of this footprint is
attributable to data centers, the server farms that constitute
the backbone of the Internet infrastructure. For example, data
centers represent 2.4% of the total electricity consumption of
a country like France [2].

To reduce this impact, large IT companies have been making
100% renewable energy commitments in the last decade [3].
Most of the time, these commitments are achieved through
green tariffs or power purchase agreements [3]. A problem
with these contracts is that they do not directly create the new
renewable capacity necessary to cover the electricity demand.
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For this reason, companies have started going one step further,
and installing on-site renewable sources on their data centers
(e.g., Google in Belgium [4]). Often, the renewable electricity
produced is actually sold to the market, leaving the burden of
balancing demand with intermittent supply to grid operators.
The ultimate step for a truly sustainable data center would be
to self-consume this electricity to become fully autonomous
in energy supply.

Some papers in the scientific literature study the use and
smart management of energy storage systems to overcome
the challenge of intermittency [5], [6]. As usual, and like in
the majority of works in the field, the levers considered are
levers of efficiency, i.e., optimizing systems to consume fewer
resources, for the same service provided to the user. These
techniques have the potential to decrease direct environmental
impacts of IT, but fail to address indirect (enabling and
systemic) effects [7]. In particular, efficiency in IT often leads
to rebound effects [8]. For this reason, an increasing number of
international bodies (like IPCC in their 2022 report [9]) have
started to acknowledge that efficiency measures must also be
accompanied by sufficiency measures, i.e., strategies aiming at
decreasing the absolute level of resource and energy demand.

The term “digital sufficiency” is relatively new and was
theorized recently by Santarius et al. [10]. One of its major
dimensions is “user sufficiency”, and consists in voluntarily
decreasing the demand for digital services. We argue that
environmental-aware people are ready to make efforts, as in
the example of users of French telecom operator Telecoop
restricting their use of mobile data [11].

In previous work, we characterized the impact of so-called
“digital sufficiency behaviors” for data center users [12]. In
this paper, we propose to study their potential to reduce the
load in the data center in periods of low electricity production.
We suppose that the users interact with the data center by
submitting batch jobs, like in a High Performance Computing
(HPC) platform. We consider different types of user flexibility,
without excluding the most radical ones: submitting less,
shorter or smaller tasks, and submitting later. Our aim is to
understand how these behaviors would impact the management
of a data center only powered by renewable energy.

Our main contributions are:

• a model of user flexibility for data center users, including
delaying, reconfiguring, degrading and renouncing their
job submissions;



• a three-state energy feedback mechanism to inform users
on the state of renewable production;

• both their implementation in a state-of-the-art and open-
source simulator;

• a set of reproducible experiments to validate the ap-
proach.

With these contributions, we investigate the two following
research questions:

(1) How much does user effort impact energy consumption?
Is there a threshold where more effort does not result in
more energy savings?

(2) Does the third state in the energy feedback mechanism
have an added value or is it sufficient to only consider
nominal and low-renewable states?

The remainder of this article is organized as follows. In
Section II we propose an overview of the works related to
the impact of user behavior on data center usage. Section III
describes our context and defines the proposed behavior. Then,
in Section IV, we detail the experimental environment used
for validation purpose. Results are described in Section V
and discussed in Section VI. Limitations are presented in
Section VII. Finally, Section VIII suggests future works and
Section IX concludes the article.

II. RELATED WORK

This section gives an overview of other studies involving
users to reduce the carbon footprint of data centers.

Orgerie et al. look at energy savings reachable through
accepting temporal delay in the start times of jobs [13]. Their
results show that 3% energy can be saved if all users accept
delay, and this delay is of 15 hours on average. Guyon et
al. look at the impact of spatial reconfiguration of jobs on
energy consumption [14]. Users can decide to submit their
jobs on a smaller number of computing nodes (‘big’, ‘medium’
or ‘little’ version). Having all users submitting their jobs in
‘medium’ allows for 20% energy savings compared to ‘big’,
thanks to better bin-packing and machine switch off. In another
article, they combine the two levers previously mentioned by
proposing their users to accept both delay and reconfiguration
in their jobs [15].

Apart from these works on user involvement, a rich lit-
erature can be found on the integration of renewable en-
ergy in data centers, as discussed in a recent survey [16].
This integration is sometimes combined with so-called “green
SLA” (Service Level Agreement), where users ask for a
low environmental footprint in their contract with the data
center operator [17], [18]. These objectives are typically met
through other levers (e.g., self-supply of renewable energy,
geo-distributed data centers).

Basmadjian et al. go a step further, and propose in the
project All4Green a collaboration between the energy supplier,
the data center and customers [19]. The objective is to better
match the supply and demand of electricity. Many mechanisms
are leveraged: “internal flexibilities” (namely migrations, use
of batteries, and adjustment in the cooling temperature) and

Delay Reconfig Degrad Renounce RE?∗

Orgerie et al. [13] ✓
Guyon 2019 [14] ✓
Guyon 2018 [15] ✓ ✓
All4Green [19] ✓ ✓ ✓

Madon et al. [12] ✓ ✓ ✓ ✓
∗is the work in the context of Renewable Energy integration?

Table I: Summary of related works and their links to the
behaviors studied in this article (Figure 1)

“external flexibilities” (namely delay and performance degra-
dation for users). Their approach allows 38% energy savings
with internal flexibilities only, and a further 5.5% with external
flexibilities. It proves particularly useful in the context of
demand response: they can reduce the power by 50% during
a 2-hour window.

In a previous work, we introduce one additional user
flexibility: renouncing the job submission [12]. The three
other levers are also characterized: ‘delay’ (temporal shifting),
‘reconfig’ (downsizing of requested resources) and ‘degrad’
(performance degradation). We provide a ranking of their effi-
ciency to reduce the load in the data center in a short window
of time (one or four hours), with the help of simulation.

A brief summary of related works is given in Table I. To
the best of our knowledge, our study is the first to combine all
four user levers together in the context of renewable energy
integration. These levers are the center of the study, compared
to others where they play only a secondary role. We include
the flexibility ‘renounce’ in a deliberate approach of digital
sufficiency [10]. Unlike most studies, we use a state-of-the-
art simulator and provide all the software and material to
reproduce the experiments as open-source repositories.

III. MODEL

Renewable energy production is not constant over time.
Our approach consists in providing information on production
status to users when they want to submit a job, and let them
decide how to react. The provided feedback is made simple
by adopting the three colors of a traffic light. Users, when
submitting jobs, are shown a green, yellow or red light, ranging
from high to low renewable production. A user can then
choose to react by either renouncing if they consider that this
particular job is not critical, reconfiguring the job to reduce
its load on the infrastructure, or waiting some later occasion
to resubmit. This section describes our model in more detail.

A. Main components

Our data center model is composed of the following com-
ponents:

• Users: they are the humans that make use of the system,
by submitting jobs to it.

• Jobs: they are masses of calculations that must be carried
out, modelled by an execution time and number of com-
puting resources (later called ‘cores’) needed to complete.

• System: it is the renewable energy powered data center,
subdivided into



– the platform: group of servers, executing the jobs,
– the scheduler: program that receives the job requests

from the users and assigns them to specific servers
in the platform to complete their execution, and

– the power plant: renewable energy sources produc-
ing the electricity to power the servers.

For the sake of simplicity, memory, network and ancillary
equipment such as cooling and lighting are not modelled.

B. Energy state model

The users adapt their job submissions to the current state
of renewable energy production. When production is low, they
are invited to submit fewer and smaller jobs. To simplify the
information that is given to them, we define three “energy
states”, named like the colors of a traffic light:

• Green state: The system is alright: there is enough
energy to power the whole platform.
We are in this state when the energy production is greater
than the max energy consumption of the platform Efull.

• Yellow state: The system is disturbed: the production is
not enough to power the whole platform, but it can power
a big part of it.
We are in this state when the energy production is below
Efull, but above a certain threshold τ , that we fixed
arbitrarily to 0.5Efull.

• Red state: The system is critical: the production is low,
we must reduce the energy consumption of the platform.
We are in this state when the energy production is below
the threshold τ .

This three-state model can be seen as an eco-feedback
design [20], providing simple yet actionable information to
the users. Compared to a two-state model, it allows for more
expressiveness. In our case, the yellow state indicates that
a user effort would be appreciated, but the situation is not
critical. It can also be seen as a transition state between
green and red, giving the information that the system will
soon become critical or is not critical anymore but not yet
calm. Finally, this model provides a useful abstraction layer.
It is easy to change the way the energy states are defined, by
selecting different thresholds or changing the metrics on which
they are based. For example, one could define the energy states
based on level of battery or instantaneous data center power
consumption instead of renewable production like here.

Note that our energy state model is entirely defined, for a
given renewable energy production data, by the thresholds on
max energy consumption (50% and 100%, in our case). Time
is discretized into units of time during which the system is
considered to be stable. The time intervals during which one
energy state occurred are called “state windows” or simply
“windows”. They can last one or several units of time. For
example, if energy production is under the red threshold from
6:00 to 8:00, we say that a “red state window” of 2 hours
occurred.
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Figure 1: Graphical representation of the sufficiency be-
haviors compared to the baseline.

C. User behavior model

We make the hypothesis that the users will adapt their sub-
mission to the state of the system. We consider six submission
behaviors: the baseline and five “sufficiency behaviors”. They
are illustrated in Figure 1 and described below.

• Rigid: submitting the job now and without modification.
• Reconfig: submitting the job now, but dividing by two

(rounded up) the number of cores requested. The execu-
tion time increases proportionally.

• See you later: delaying the job submission by one hour.
The user will then take a new decision on that job.

• Space Degrad: submitting a degraded version of the job
now, requesting only half (rounded up) of the original
number of cores. The execution time remains the same.

• Time Degrad: submitting a degraded version of the job
now, which takes half of the original execution time.

• Renounce: not submitting the job (and never submitting
it in the future).

IV. EXPERIMENTS

We design a simulation campaign to investigate the potential
of the “traffic light” approach to manage efficiently the phases
where renewable energy is scarce.

A. Behaviors for each energy state

In the absence of data on the actual behaviors that would
be chosen by the users in reaction to eco-feedback, we made
the following assumptions.

• Green state: there is enough energy, we assume that
users submit normally (Rigid behavior).

• Red state: we assume that users will make an effort by
adopting any of the sufficiency behaviors, depending on
their context. Some will accept to reconfigure or degrade
the job, if they can. Some will choose to come back
later, when the energy state is hopefully better (See You
Later). And some will simply Renounce the job, which
was maybe not important enough.

• Yellow state: we exclude the behavior Renounce, as we
assume that the sacrifice would be too big in regard
to the criticality of the state. See You Later is also
excluded because a yellow state is an intermediate state,
so delaying jobs might push them to red states. However,
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we added behavior Rigid, as some users might choose to
ignore the warning and submit normally.

• Equiprobability of behaviors: finally, we assume that
each time users take a decision, they make a uniform
randomized choice.

Distinction had to be made between monocore and multi-
core jobs, as space degradations and reconfigurations are not
possible on monocore jobs. The modifications applied to the
jobs depending on the energy state are illustrated in Figure 2.

B. Experimental plan

To answer research question (1), we simulate an IT platform
powered by renewable energy and introduce an additional pa-
rameter α. This parameter allows us to vary user involvement,
and represents the probability of making a modification to the
job when in red or yellow state (see Figure 2). It can take four
values, from low effort (α = 0.25), medium effort (α = 0.5),
big effort (α = 0.75), up to max effort (α = 1).

For each value of α, the simulation is repeated 30 times,
to minimize the effect of randomness. As weather and tasks
input are always identical, the only difference between each
of the 30 experiments is the random choice of effort and then
of the exact behavior, following Figure 2. We also add two
experiments, for comparison purposes:

• full rigid, where all jobs are submitted Rigid all the time
(equivalent to α = 0). This corresponds to the baseline.

• full renounce red, assuming that all users would Re-
nounce submitting jobs in red state. This provides an
upper bound on energy savings reachable.

To answer research question (2), the whole experimental
campaign is repeated, without taking into account the yellow
state. They are instead treated by users as green states.

In the end, our experimental campaign consists of (4 values
for alpha) × (30 repetitions) × (2 treatments) + (2 exp. for
comparison) = 242 simulation runs.

C. Experimental setup
Software. The experiments were run with Batsim1, a state-

of-the-art infrastructure simulator [21] based on SimGrid2.
Batsim simulates the resource and job management system
including the job manager, resource manager and scheduler,
using discrete event simulation. The implementation of the
user behaviors described in Section III is available in Batmen3,
our open-source plugin for Batsim enabling the simulation of
users.

IT workload. As an input of our simulation, we use a
workload adapted from the MetaCentrum trace4. This log
contains two years worth of record of the Czech National
Grid Infrastructure MetaCentrum from January 2013 to April
2015 [22].

Given the high heterogeneity of the workload, we performed
the following filtering:

• Step 1: (excludes 87% jobs representing 86% core-hours)
– Using only the period from June 1, 2014, to Novem-

ber 30, 2014. This part was taken because no cluster
was removed or added during this period of time.

– Removing clusters with GPU, because our simulation
only simulate jobs running on CPU.

– Selecting only the clusters with 12- or 16-core ma-
chines, because our simulated platform is composed
of 18-core machines.

• Step 2: (excludes a further 5% jobs, 86% core-hours)
– Removing jobs running on more than 18 cores,

because our scheduler does not authorize multi-
machine execution.

– Removing jobs running for more than 15 hours, to
mitigate inertia in the system.

After the above filters, our workload is six-months long and
contains 693066 jobs and 474 users.

Energy Production Data. We consider electricity pro-
duction from photovoltaic panels. The energy input data is

1https://batsim.org/ version 4.10
2https://simgrid.org/ version 3.31
3https://gitlab.irit.fr/sepia-pub/mael/batmen version 2.0
4file METACENTRUM-2013-3.swf available at https://www.cs.huji.ac.il/

labs/parallel/workload/l metacentrum2/index.html

https://batsim.org/
https://simgrid.org/
https://gitlab.irit.fr/sepia-pub/mael/batmen
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html


generated from weather (solar irradiation) data provided by the
website renewables ninja5. The reference point for the weather
is 2019, in the city of Toulouse, France. Data is provided with
one-hour time steps. Note that the weather and workload traces
are not from the same year. However, we took care to align
the days in the IT workload with the days in the weather,
i.e. the workload of June 24 will be replayed with the energy
production of June 24.

For the experiments, we do not take into account energy
storage systems. We simply consider that, in periods of low
energy production, electricity has to come from other sources,
be it batteries, power generator or the electricity grid. However,
batteries and fuel cells are considered in the Datazero project,
and were taken into account to produce a suitable sizing for
both IT and energy platforms (see below).

IT&power platform. Both platforms were created by col-
leagues, ensuring that the volume of renewable production
is sufficient to cover the energy needs from IT, taking into
account the efficiency of batteries. The sizing technique used is
similar to the one described in this article [25]. The simulated
renewable sources consist of a = 145m2 of solar panels
with efficiency η = 0.206. The power produced at time t is
obtained by the formula η × a× irr(t), with irr(t) the solar
irradiation. The simulated IT platform is composed of 42 18-
core machines, with idle power consumption 62W and max
power consumption 143.4W6.

Scheduler. To handle the multicore workload and platform,
we chose a bin-packing scheduler with idle machine switch
off. To be more precise, the jobs are in queue sorted by
decreasing requested number of cores and then by increasing
submission time. The list of machines is sorted by increasing
number of available core, with the switched-off machines at
the end. At each scheduling decision, we go through the job
queue in order. For each job, the list of machines is traversed
to find the machine with the smallest number of available cores
that fit the job, if any. If the job is scheduled on a switched-
off machine, the machine is switched on (with a delay of 150
seconds). At the end of the bin-packing algorithm, if there are
idle machines, they are switched off (delay of 7 seconds).

Time and carbon footprint of the campaign. The exper-
imental campaign ran in 7 hours on a 2x16-core Intel Xeon
Gold 6130 and its output took 55 GB storage space. According
to a watt meter on the machine used, it consumed 2 kWh
of electricity, in the city of Grenoble (France). Assuming a
French carbon intensity of electricity of 38 gCO2e/kWh7, the
carbon footprint of our experiments is estimated to 76 gCO2e.

Reproducibility. All the material to reproduce our exper-
imental campaign and its analysis are available in a GitLab
repository8. It contains the Nix file defining the software
dependencies, the scripts to launch the experiments and the

5open-source weather data repository available at https://www.renewables
.ninja/ [23], [24]

6we use SimGrid energy model
7https://www.rte-france.com/eco2mix
8experiment repository available at https://gitlab.irit.fr/sepia-pub/open-sci

ence/sufficient-behaviors-with-renewables (use the tag maelPhD)
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Notebooks to analyze the output data and produce the graphs
included in this article.

D. Metrics

From the simulation outputs, we compute both energy- and
effort-related metrics. They are defined below and reported
later in the Results (Section V).

1) Energy-related metrics: Batsim simulates the energy
consumption of the infrastructure thanks to the underlying
energy model from SimGrid. These logs are compared with the
energy production data, identical for all simulations. In case
the renewable production is in excess compared to the energy
consumed, we say that we are in a phase of overproduction.
On the contrary, when the production is insufficient to cover
the energy consumption, we talk about underproduction (see
Figure 3).

We compute on each experiment the following metrics:
• energy total: the energy consumed by the IT platform

overall
• energy red / yellow: the energy consumed during red /

yellow state windows
• overproduction: the excess renewable energy produced

in phases of overproduction, that was not consumed by
the IT platform (orange in Figure 3). It is typically sold
to the grid or stored in batteries.

• underproduction (aka “brown energy”): the excess of
energy consumed in phase of underproduction, that could
not be produced by the renewable sources (blue in
Figure 3). It has to be bought from the grid or drawn
from batteries.

2) Effort-related metrics: In addition to energy, we want
to report the effort made by the users when they adopt the
various behaviors. The effort is a subjective quantity, that will
not be experienced the same way by different users. All the
same, we will report for each experiment:

• the number of jobs submitted without modification

https://www.renewables.ninja/
https://www.renewables.ninja/
https://simgrid.org/doc/latest/Plugins.html#host-energy
https://www.rte-france.com/eco2mix
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables/-/tags/maelPhD


Reconfig See You later Degrad Renounce

weight 25 50 75 100

Table II: Weights for metric weighted effort (without unit).

• the number of jobs that were reconfigured, degraded,
renounced and delayed by a See You Later.

Additionally, we propose to aggregate all the above in a
metric of weighted effort, where we associate to each behavior
a weight, supposed to represent the inconvenience for the
user. We follow the ranking of behaviors according to their
“acceptability” proposed by Madon et al. [12] and choose
arbitrary values, given in Table II. With N the total number
of job, nb the number of jobs affected by behavior b and wb

the weight associated to behavior b (Table II):

weighted effort =
∑

b∈{Rigid,Reconfig,
See You,Degrad,Renounce}

nb × wb

N
(1)

For example: if a job is delayed one time by a See You
Later and then degraded, the effort for this job will be counted
as 125/N . Note that this is more than a single Renounce
(100/N ), since we assume that it is less cumbersome for a
user to simply Renounce a job than to connect to the platform
a first time, realize that the state is red, decide to come back
later, realize that the state is still red and then decide to Degrad.

To give an idea, summed over all jobs of a simulation, a
weighted effort of 0 corresponds to submitting all the jobs
without modification (100% Rigid) and a weighted effort of
100 corresponds to renouncing all jobs (100% Renounce).

V. RESULTS

The data presented in this section are obtained following the
experimental campaign. They are based on Batsim scheduling
and energy outputs in addition to custom user behavior logs,
on which we computed the metrics described before.

A. State Window distribution

To get an understanding of the distribution of green, yellow
and red state windows in the experiments, Figure 4 shows
a typical week (left graph). The window distribution follows
day-night cycle with green state during the day, red state
during the night and yellow state in-between. This reflects a
classic pattern for photovoltaic production. One of the days is
yellow due to the lack of sun. It is also possible to have one
or more full red days. Also, the length of the yellow windows
is small compared to the green and red ones.

On the full experiment of nearly 6 months duration, the
distribution of state window is given, aggregated by hour of
the day, in the right graph of Figure 4. The day/night pattern
is confirmed as green states are always starting after 6:00 and
stopping before 18:00, whereas red state are very rare between
19:00 and 15:00. The exact distribution would vary depending
on the season and geographic location of solar panels, but the
overall shape should be similar.

Red state is the most common state, accounting for 56% of
the experiment duration. Green state comes in second (36%
of experiment duration). Yellow is the rarest state, appearing
less than 8% of the time. Also, yellow states typically last at
most one hour (85%), and a yellow state last 6 consecutive
hours at maximum. Concerning red states, they typically last
between 11 hours and 16 hours (80%). 10% of red state lasts
less than 11 hours. Only once did a red state last up to 23
hours.

B. Energy consumption

The results concerning energy and user behavior are pre-
sented in Tables III and IV. For each metric, the mean
and standard deviation σ are computed on the n = 30
replicates of each experiment. The accuracy displayed in the
tables is calculated by the formula 3 σ√

n
and corresponds to a

confidence interval of 99.7%, if we suppose normality of the
outputs.

Table III focuses on the energy-related metrics.
Energy savings. First, we see that by adopting sufficiency

behaviors, users were successful to cut the energy consumption
during critical periods: the energy consumed during red and
yellow windows decreases with the effort α. The relationship
is linear: a Pearson correlation analysis between α and energy
red / yellow gives coefficients of -0.992 and -0.965, respec-
tively.

This is also the case with the underproduction, which is the
quantity that we seek to minimize. Here again, the relationship
is linear (Pearson coefficient -0.991).

We see that the variability of our results is very small: the
confidence intervals are close to the mean. This is due to
the size of our workload (almost 700000 jobs) and the 30
replicates for each experiment, which greatly limit the effect
of randomness.

Influence of yellow states. Concerning the yellow states,
their presence improves the energy-related metrics. In every
behavior scenario, the version with yellow state yields bet-
ter results for every energy-related metrics than the version
without yellow states.

Remarks. Firstly, it is important to note that even if full
renounce red is the best scenario in terms of energy, it does not
lead to zero energy consumption in red windows. This is due
to the inertia in the system. Already running tasks and tasks
already in the queue are not impacted by this behavior, because
the users already submitted them. This inertia phenomenon
was already discussed in related work [12], where authors
called the baseline energy consumption “residual mass” and
the consumption caused by jobs submitted inside the window
“fluid mass”.

Secondly, we note that overproduction of energy is at least
twice as big as underproduction, and similar to the energy
consumed overall. It means that the electrical infrastructure is
oversized and produces more energy than needed by the IT
infrastructure. This is linked to the fact the experiments are
done in summer and fall, while the electricity sizing was made
over the whole year, taking into account battery efficiency.
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Figure 4: Window state distribution in the inputs. Left graph: data from 5 days of solar irradiation in Toulouse, August
26-30, 2019, one-hour time step. The two thresholds defining the windows are displayed as horizontal lines. Right graph: over
the 162 days of the input trace, as a function of the time of the day.

user effort yellow? energy red energy yellow energy total overproduction underproduction

full rigid (α = 0) 8458 1145 15143 16532 8098
low (α = 0.25) no 8194 ± 4 1124 ± 1 14816 ± 5 16609 ± 3 7843 ± 4
low (α = 0.25) yes 8165 ± 6 1120 ± 2 14779 ± 8 16616 ± 4 7813 ± 6

medium (α = 0.5) no 7882 ± 7 1099 ± 2 14429 ± 9 16695 ± 4 7539 ± 7
medium (α = 0.5) yes 7827 ± 7 1089 ± 2 14361 ± 8 16705 ± 4 7480 ± 6

big (α = 0.75) no 7503 ± 7 1073 ± 2 13969 ± 10 16794 ± 4 7174 ± 7
big (α = 0.75) yes 7422 ± 8 1053 ± 2 13862 ± 11 16815 ± 6 7087 ± 8
max (α = 1) no 7019 ± 8 1047 ± 2 13400 ± 11 16910 ± 5 6717 ± 7
max (α = 1) yes 6915 ± 8 1020 ± 2 13253 ± 11 16943 ± 5 6602 ± 7

full renounce red 5620 944 11683 17308 5481

Table III: Mean energy metrics in kWh, confidence interval 99.7%

Lastly, we see that overproduction increases with α. This is
an unwanted effect, since excess renewable energy production
will then have to be stored or sold to the electricity grid.
It may also appear counter-intuitive because periods of over-
production are also “green states”. In fact, this is again due
to the inertia in the system. Degrad and Renounce tend to
decrease the “fluid mass”, i.e., the load in the infrastructure
due to jobs submitted inside red windows. But this fluid mass
partly overflows to periods of overproduction, where it gets
equally decreased. See You Later and Reconfig should in
principle counter-balance this effect by moving load from un-
derproduction to overproduction periods. Overall, we note that
overproduction increases less than underproduction decreases,
which is a reassuring result.

C. User effort

Table IV focuses on user-effort-related metrics.
Increasing effort. Similarly to energy-related metrics, we

observe a strong correlation between the effort probability α
and the user effort metrics. This is directly due to the definition
of α in our model, which corresponds to the proportion of
jobs that will be modified in red and yellow states. The metric
weighted effort, as a linear combination of the others, is no
exception. The Pearson correlation coefficient between α and
weighted effort is 0.993.

Once again, the results feature a very small variability
thanks to the size of our data.

From this table, we also notice that Reconfig is the least
used behavior, with only 2.7% reconfigured jobs at most. This
is due to the large proportion (77%) of one-core jobs in our
log, for which the reconfiguration is not available (see decision
chart in Figure 2).

Among all the user effort scenarios, full renounce red is the
one that requires the most effort, if we look at the number of
renounced jobs. However, the scenario max effort with yellow
states has a higher number of modified jobs, because it leads
to the modification of all jobs in the red and yellow phases.
With the weights of Table II, max effort scenarios with and
without yellow states result in a bigger weighted effort than
full renounce red.

Influence of yellow states. Overall, taking into account
yellow state increases user effort. For the same effort scenario,
the presence of yellow state increases the metrics degraded
jobs and reconfigured jobs, and decreases the number of
unmodified jobs. As behaviors Renounce and See You Later
are not available in yellow states, the number of renounced
jobs and see you later jobs is not modified.

VI. DISCUSSION

A. Trade-off between energy and effort

We plot in Figure 5 the energy gains as a function of user
effort. Both graphs use the energy metric underproduction,
but Figure 5a expresses effort as the number of modified jobs,
whereas Figure 5b uses the weighted effort metric. In both



user effort yellow? unmodified jobs renounce jobs degraded jobs reconfigured jobs see you later jobs weighted effort

full rigid (α = 0) 100 % 0 % 0 % 0 % 0 % 0
low (α = 0.25) no 90.2 ±.02 % 3.4 ±.02 % 3.4 ±.02 % 0.4 ±.01 % 3.4 ±.02 % 7.8 ±.02
low (α = 0.25) yes 89.1 ±.02 % 3.4 ±.01 % 4.3 ±.02 % 0.6 ±.01 % 3.4 ±.02 % 8.5 ±.02

medium (α = 0.5) no 80.3 ±.03 % 7.4 ±.02 % 7.4 ±.02 % 0.9 ±.01 % 7.4 ±.02 % 17.0 ±.03
medium (α = 0.5) yes 78.2 ±.02 % 7.5 ±.02 % 9.3 ±.02 % 1.2 ±.01 % 7.5 ±.02 % 18.5 ±.02

big (α = 0.75) no 70.5 ±.03 % 12.3 ±.02 % 12.3 ±.02 % 1.4 ±.01 % 12.3 ±.03 % 28.0 ±.03
big (α = 0.75) yes 67.3 ±.03 % 12.3 ±.02 % 15.3 ±.03 % 2.0 ±.01 % 12.3 ±.04 % 30.3 ±.03
max (α = 1) no 60.7 ±.00 % 18.2 ±.03 % 18.2 ±.03 % 2.1 ±.01 % 18.2 ±.05 % 41.5 ±.03
max (α = 1) yes 56.4 ±.01 % 18.2 ±.03 % 22.2 ±.03 % 2.7 ±.01 % 18.2 ±.04 % 44.6 ±.02

full renounce red 60.7 % 39.3 % 0 % 0 % 0 % 39.3

Table IV: User effort metrics, in percentage of the total number of jobs in the workload (except the last column, without
unit), confidence interval 99.7%. Note that the sum of columns 3 to 7 is not 100%, because a job that was delayed by a See
You Later will be counted both as See You Later and as its final behavior, which can be rigid, Degrad, Reconfig or Renounce.
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Figure 5: Underproduction (Table III, last column) as a function of user effort. Each point represents an experiment.
Scenarios full degrad red, full reconfig red and full renounce red are given for comparison, and are not included in the linear
regressions. Full renounce red gives a higher bound on energy saving achievable (-32.3% compared to full rigid).

cases, we can see that user effort and gains in underproduction
counter-balance each other, and the relationships between
these two quantities are linear.

In the previous section, we observed that energy consump-
tion in red and yellow phases was linearly correlated to the
effort parameter α. This followed almost directly from the
parameter’s definition. In the present case, linearity between
underproduction gains and user effort do not directly de-
rive from the definition of α, but demonstrate that our 3-
state energy approach was conclusive to transform efforts in
red/yellow phases to brown energy savings.

As a result, we can answer our first research question:

(1) The sufficiency behaviors adopted by the users allow to
reduce the underproduction, i.e., the energy consumption
that could not be matched by renewable production. The
energy savings are linear with the size of the effort, with
a maximum effort giving an energy saving of −18.4%
compared to no effort.

There is no threshold after which the effort provided does
not result in a fair amount of energy savings. To obtain
a balanced level between user effort and energy savings,
one has to set either a maximum effort acceptable or a
minimum energy saving wanted.

B. Relevance of yellow states
From Figure 5, we observe that adding yellow windows

helps further reducing the underproduction, while also in-
creasing the effort. It is not surprising, since scenarios with
yellow windows are scenarios with red windows to which extra
phases of user effort are added. A higher number of jobs gets
modified, lowering their energy consumption (Reconfig and
Degrad), hopefully anticipating for red phases to come. The
relevant question to ask is: have the yellow states made it
possible to reduce underproduction at a lower marginal cost
in effort?

To answer this question, we plotted the gains in underpro-
duction per unit of effort in Figure 6. We see that experiments
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Figure 6: Ratio between gains in underproduction (com-
pared to full rigid) and user effort. A high ratio indicates
good gains per unit of effort. Full rigid is not displayed as
its ratio is undefined (0 modified jobs, 0 weighted effort). The
other “full” scenarios are given for comparison.

with yellow windows yield lower gains per modified job (6a)
than their red-only counterparts. In other words: contrary to
our expectations, yellow windows do not succeed to bring
some extra gains at the cost of a low effort on this metric.
However, with the metric weighted effort (6b), we see no
difference between scenarios with and without yellow win-
dows, probably because the behaviors adopted during yellow
windows are lower-effort behaviors for this metric.

We can now answer our second research question:
(2) On average, adding yellow states helps further reducing

energy consumption in all the metrics considered. But
yellow states can be considered as an additional effort,
and they result in additional savings of the same scale, if
not slightly smaller, as other efforts.

C. User incentives and weighted effort metric

Interestingly, we note in Figure 6a that the marginal gains
increase with α (low to max effort). This is an indication
that “the more people who make an effort, the greater the
impact of a user’s additional effort”. We will have to see if this
observation is confirmed by other data (workload, scheduler)
of if it is specific to our inputs.

In any case, since brown energy savings and effort are
correlated, it is important to motivate users to adopt the
sufficiency behaviors during the critical periods. A possible
incentive could be a financial reward for the effort made. For
this, the weighted effort metric can prove very useful. In fact,
we observe in Figure 6b that this metric is almost perfectly
proportional to the gains. The coefficient of proportionality
is γ = 33.9 kWh/unit of effort (slope of the line in Fig-
ure 5b). Renouncing a job corresponds to a weighted effort of
wRenounce/N (Equation 1). By multiplying by the coefficient

of proportionality, it derives that renouncing a job allows
reducing the underproduction by γ ∗ wRenounce/N = 33.9 ∗
100/69306 = 0.00489 kWh on average. This is consistent
with the average length and size of jobs in the workload, and
the power consumption of machines. We could imagine giving
to the user a reward equivalent to the cost of the electricity
saved that way.

VII. LIMITATIONS

Our study has a number of limitations that are discussed in
this section.

A. Limits of the model

1) User hypothesis for the modeling: We assumed that
users have some technical knowledge and control on the jobs
they send. Otherwise, they could not apply the sufficiency
behaviors on the jobs they send. Depending on the type of
data center, this hypothesis might not hold. For example, if a
data center runs mainly automated jobs (e.g., automatic testing,
critical services), there is no room for users to decide on the
way to run the jobs.

2) Behaviors Degrad and Reconfig: We also assumed that
the jobs can always be degraded. However, this is only true
for some jobs, e.g. convergence-based algorithms where the
convergence criterion can be tuned or video transcoding where
the quality can be lowered. Moreover, users might have to
make timely changes in the application to modify the number
of cores required (e.g., changing some parts of the code or
configuration files), which makes Degrad and Reconfig not
realistic for real-time response. Improvement of the model is
needed to take this into account.

3) Behavior See You Later: The behavior See You Later can
create some abnormalities in the submission behavior. First,
job submission order is not preserved by this behavior. For
example, if a user submits job1 at 13:30 and job2 at 14:00 in
the original workload, a See You Later on job1 and a Rigid
on job2 will lead to a change in the order of the two jobs.
Moreover, it could lead to shifting submission time to a time of
the day when the user is usually not connected to the platform.
For example, we observe simulated users submitting late at
midnight when they typically stop submitting after 18:00 in
the original workload.

B. Limits of the experiments

1) Equiprobability of every non-rigid behavior: In the
experimental campaign, the behaviors are drawn at random,
assuming that each non-rigid behavior has the same probability
(for a fixed window state and number of cores, see Figure 2).
This has a number of drawbacks:

• it might not reflect the real popularity of each behavior,
• different users might have different preferences, and
• the choice of behavior is likely influenced by the nature

of the job (criticality, size, difficulty to reconfigure, . . . ).
However, there is no data available on the popularity of each

behavior, and we have no information on the nature of the jobs
in the input workload (i.e., which ones are critical or difficult



to reconfigure). Consequently, doing a randomized campaign
with equiprobable behaviors seemed the most reasonable
method to test the potential of our approach experimentally.
New studies are needed to explore how the mix of probabilities
impacts both the results and the link between effort and gains.

2) Limited experimental conditions: The experimental cam-
paign presented in this paper explores a rather limited set
of parameters. First, current input data only include one IT
workload (MetaCentrum 2), characteristic of a High Perfor-
mance Computing infrastructure. It would be interesting to
see how the approach can be adapted to other types of data
centers, like cloud infrastructures. Similarly, we used only
one renewable energy trace, in the period from June 1 to
November 30, 2019, which means that two seasons (winter
and spring) are not included. Besides, we only looked at
solar energy as a renewable source, one sizing for the IT and
electrical infrastructure and have not included non-IT energy
consumption of the data center in the model. Finally, the
simulations are run with only one scheduling policy (bin-
packing with greedy machine shut-down), which is rather
naive and not state-of-the-art.

However, the focus of this paper is to estimate the po-
tential of user behaviors, and does not aim at evaluating
the exact gains in all possible configurations. We argue
that the results would be similar with other sets of work-
load/platform/scheduler. Since our code is open-source and
our experiments reproducible, it would be easy to verify it
in the future.

VIII. FUTURE WORKS

The promising results of our approach together with its
current limitations inspire possible extensions for this study.

Thresholds for red/yellow/green states. In our approach,
the state window distribution is defined with thresholds on
energy production. While this has the advantage of being
simple and actionable, it might not be the best suited if
the objective is to minimize underproduction. States could
rather be defined on instantaneous power consumption, with
red states when consumption is above production, green state
when production is in excess and yellow states in-between.

Additionally, one could use weather forecasts to anticipate
energy shortages. For example, yellow states could be used
to that end, as a pre-warning before a red state. Users would
be encouraged to submit jobs that would finish before the red
state, in order to limit energy consumption in that period.

Other user behaviors. To the best of our knowledge, this
article is, to date, the one studying the most user levers
together. However, more behaviors could be included. For
example, See You Later, Degrad and Reconfig could be made
parametric on the delay time or scaling factor, respectively.
Another behavior of interest is to allow users to checkpoint
(stop and resume) their running jobs. This would allow the
potential energy savings to go beyond the “fluid mass” [12].

Energy-state scheduler. For now, only the user is informed
of the window state. A scheduler which uses different strate-
gies depending on the window state could also be implemented

with: a performance-driven strategy on green state; a balance
between power-saving and performance in yellow state; and a
power-saving strategy in red state (shutdown machines even if
jobs are still pending in the queue. . . ).

More realistic replay method. Replaying a recorded work-
load the way we do in this paper – and in the vast majority
of similar works – has been criticized in the literature [26].
Indeed, we limit ourselves to replaying the jobs at their original
timestamps of submission as in the recorded log. The problem
is that this does not necessarily preserve the logic behind the
user submissions, and possible dependencies between them.
A feedback system could be implemented for users to wait
for their previous jobs to finish before submitting new ones.
User model could also include information on work hours.
This would altogether solve the issues mentioned with See
You Later (see VII-A3).

Impact of eco-feedback. Our approach consists in com-
municating simple information to users to encourage them
to adopt eco-responsible behaviors, an approach sometimes
called “eco-feedback”. More research is needed to understand
the actual effect of this eco-feedback on data center users,
as it has been done for example in the software engineering
field [27]. This would allow to empirically define the propor-
tion of them who are ready to renounce, degrade, etc.

IX. CONCLUSION

This paper introduces a new model for renewable-energy-
aware user behaviors.

A three-state energy feedback mechanism informs users on
the status of renewable production: green when production is
abundant, red when production is low, and yellow in-between.
Five users behaviors (Reconfig, Space Degrad, Time Degrad,
See You Later and Renounce) are considered and evaluated
to reduce the energy consumption during critical times by
modifying the characteristics of jobs submitted.

Experiments show that the approach is conclusive and
allows reducing brown energy consumption. Energy gains are
proportional to the efforts made by users. With the current
model, yellow states have no particular added value: they
increase the gains in exchange for a similar cost in effort.

Future work could focus on refining the feedback mech-
anism to base it on the difference between production and
consumption in real time, and to introduce state forecast
to allow anticipation. The actual willingness to adopt the
behaviors could also be investigated.
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