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Abstract—An increase in ICT devices and services has led
to a rise in carbon emissions. As a result, there is a growing
demand for energy-efficient software; however, this demand
remains unmet due to the lack of knowledge regarding the
best practices for reducing energy consumption in software.
Unnecessary iterations and faulty looping conditions in different
loops can consume high energy, and loops are considered as
one of the most energy consuming entities. The purpose of this
study is to detect and rectify energy code smells in different
Java loop types by implementing static code analysis. Using
the DSR approach, a Java Maven custom SonarQube plugin,
GreenForLoops, was developed. The plugin underwent in-house
testing as well as evaluation by professionals from industry.
The professionals had provided feedback, which were later
analyzed by using a qualitative method. For internal testing,
16 different open-source Java projects were selected. The results
demonstrated considerable variations in the prevalence of energy
code smells across the projects. Additionally, the plugin provided
sample code suggestions to address each identified energy code
smell. Finally, based on professional reviews, the plugin received
an overall rating of Very Good. In conclusion, the plugin had
successfully detected code smells and suggested code samples to
rectify the detected code smells. However, it cannot be overlooked
that the plugin may also generate false positives.

Index Terms—Energy code smell, SonarQube, Sustainability,
Java, Energy-Efficient Software, Loop types.

I. INTRODUCTION

Human activities have had a significant impact on the planet
earth, influencing various aspects of environment, ecosystems,
and climate. With the advancements made by humans in the
field of technology, industry, and agriculture, there have been
profound effects on the planet’s health and balance. Due to
this, there has been an increase in pollution, global carbon
emission, and rise of temperature. Among all the sources of
carbon emission, ICT is one of them. The contribution of ICT
to Global Greenhouse Gas Emissions (GHGE) is projected to
increase notably from approximately 1% in 2007 to 3-3.6% in
2020, with an expected annual growth of 5.6-6.9%, potentially
surpassing 14% of the 2016-level worldwide GHGE by 2040
[1]. With the increase of our reliance on ICT devices and
services, there has also been an increase in the need of energy,
thereby multiplying the manufacture of energy via different
sources to power these devices. These devices can be software-
driven. Even though, software systems do not consume energy
directly, they can have impact in hardware utilization, leading

to indirect energy consumption [9]. Due to this, there is a
need for energy efficient software. There are multiple ways to
help in developing energy efficient software by estimating and
calculating energy consumption of a software.

Software systems play a significant role in our daily lives,
powering various applications and services. But the high
energy consumption by these software has been a major
concern [2]. As per the Wirth’s law [3], “Software is getting
slower more rapidly than hardware becomes faster.” There
are improvements in hardware in terms of performance, and
the hardware resources–CPU, memory, storage–have become
cheaper, but the results of refinements are neglected by soft-
ware inefficiencies as software designers and developers have
less concern on writing energy-efficient software to make the
good use of those resources [4]. Due to this, there has been
high energy consumption and carbon emission, which can have
negative impact in environmental sustainability.

One of the popular ways to estimate energy consumption
of software is static code analysis, which has less energy
consumption estimation overhead than dynamic code analysis
[5]. SonarQube1 is one of the several tools available for static
code analysis. This tool supports more than 30 programming
languages including Java. In addition, it also helps in detecting
code smells and assists in maintaining the quality of software
code2. Fowler and Beck [6] introduced ’Code Smell’ as a sig-
nal that points to potential deeper problems within a system. A
’Code Smell’ refers to a section of code with a high likelihood
of containing inherent errors or experiencing low performance,
and it can be Duplicated Code, Long Method, Large Class,
Long Parameter List, Temporary Field, Incomplete Library
Class, Data Clump, and Message Chains [7]. In case of energy
code smells, these are the patterns in software codes that might
increase the energy consumption of a software. In SonarQube,
all of these code smells are included as a different set of rules
and referred as maintenance issues [8].

Java is one of the most widely used programming languages
in various domains. While writing many Java applications,
there can be multiple loops that execute repeatedly. Loops
are considered as one of the most energy consuming entities

1https://www.sonarsource.com/products/sonarqube/
2https://docs.sonarsource.com/sonarqube/latest/



[5]. Inefficient coding practices like unnecessary iterations and
flawed looping conditions can lead to high energy consumption
and affect the overall energy efficiency of the software. The
management of this situation hinges upon the proficiency of
software developers.

The motivation behind exploring static code analysis tech-
niques to detect and rectify the energy code smells within the
different loop structures of Java is twofold. Firstly, it aims to
help developers uncover energy-related issues and assess their
impact on resource consumption, and apply appropriate opti-
mizations or refactoring strategies. By this, it will lower en-
ergy consumption and carbon footprints. Secondly, optimizing
energy efficiency in software has tangible benefits. Businesses
can reduce their operational costs by installing energy-efficient
applications [9]. Heavy resource usage resulting in fast battery
drain is one of the reasons for poor app review in app stores
[9]. So improved battery life on the devices can enhance user
experiences. Due to this, addressing energy code smells in loop
structures of Java can become crucial for both developers and
end-users.

The rest of this paper is organized as follows. In Section II
gives a background of this study. Further information regarding
the methodology is available in Section III. The results of
this research are described in Section IV, where results are
divided as per the sub-research questions and feedback from
the professionals from industry. In Section V, the results
presented in this paper are discussed along with the feedback
from professionals and threats to validity. Section VI reviews
the related work. At last, Section VII concludes with the
summary of this paper along with highlights to future work.

II. BACKGROUND

A. Static Code Analysis

Louridas [12] defined static code analysis as the process of
checking programs for errors without executing them and also
compared the tendency of programs to attract defects similar
to wool that attract dust and lint as it collects static electricity.
The paper furthermore explained that static code analysis is
employed after compilation and before testing. Static analysis
as the analysis of program code to evaluate and reason about
all potential behaviors that could occur during runtime, and
the static analysis approach is meant to assess the source code
by verifying its adherence to specific rules and examining the
usage of arguments, among other aspects [13]. Additionally,
static code analysis primarily revolves around examining the
control flow and data flow of a program [14].

The static code analysis can be divided into two approaches:
manual and automated [13]. In a manual approach, it is done
by humans in the form of self-review, peer review, walk-
through, and inspection or audit. In the case of automated, it is
carried out by automated tools resulting in faster and efficient
performance. The history and development of automated tools
can be traced back to 5 decades earlier. Lint, a tool developed
by Stephen Johnson at Bell Laboratories in the 1970s, has
inspired many tools, both open source and commercial, for
many programming languages and operating systems [12].

B. Understanding of Developers on Software Energy Con-
sumption

This section describes how much the software developers
and programmers are aware of energy consumption by soft-
ware, and need of energy efficient software.

Pinto and Castor [9] highlighted that insufficient knowl-
edge and inadequate tools are the two main energy related
problems and provided an overview of current literature on
how researchers in software engineering fields are addressing
these issues. Pang et al. [10] also argued that the education,
training, and knowledge do not mirror the demand for energy-
efficient computing. This study conducted a survey, where
122 programmers took part, indicating that programmers lack
knowledge of energy efficiency and the best practices to reduce
software energy consumption, underscoring the importance of
training on energy consumption. Software energy consumption
research gaps exist not just in the industry but also within
the field of academic research. Even though there are several
empirical studies focused on investigating the cause of energy
leaks in source code, there remains a little knowledge available
in literature regarding the potential effects of bad code smells
on energy consumption [11].

The two pieces of literature mentioned above highlight the
lack of knowledge, tools, and training required to address high
energy consumption. Due to this, some software developers do
not know in which part of a software program is consuming
more energy, and how codes can be refactored to minimize
energy consumption. Changes in software programs can add
efficiency on the changes made in hardware to reduce energy
consumption. The recent studies showed the better results in
energy saving outcomes after enabling and motivating software
developers to take part in the energy consumption process [9].

C. SonarQube

SonarQube is a systematic code review tool that aids in the
automated delivery of clean code or maintaining code quality.
It supports 30+ different programming languages and can be
integrated into Continuous Pipelines and DevOps platform2.
The primary idea of SonarQube operates on the foundation
of a source code analyzer component, which carries out
fundamental analysis tasks like code line counting, alongside
an application server that visually presents the analyzed data
through a browser interface [16]. SonarQube is one of the most
common open source automatic static code analysis tools used
in both industry and academia [17]. To perform code analysis,
SonarQube requires a set of defined rules.

When a project is analyzed in SonarQube, at first, it under-
goes a parsing process, where the source code is transformed
into an Abstract Syntax Tree (AST) [18] [19]. After the AST
is constructed, SonarQube performs a traversal of the tree
structure by the help of SonarSource Language Recognizer
(SSLR) toolkit, which is provided for each language [19]. As
SonarQube navigates this AST, it applies the rules to check
various code issues, code standard violations, code smells,
and security vulnerabilities in sample code. Furthermore, when
source code is analyzed by SonarQube, it not only reports the



Fig. 1. SonarQube Architecture3 [21]

code issues but also calculates the technical debt. SonarQube
integrates Software Quality Assessment based on Life-cycle
Expectations (SQALE) method to calculate the technical debt,
which is shown in the SonarQube issues dashboard [20].
In addition, to carry out static code analysis, SonarQube is
divided into multiple components.

The architecture of SonarQube is generally divided into
4 components: Database Server, Scanner Host, Plugin, and
SonarQube Server3 [21]. In addition, each programming lan-
guage can have a different number of in-built rules in Sonar-
Qube. These rules help to detect 3 types of issues: Bug,
Vulnerability, and Code Smell [23]. Furthermore, SonarQube
categorizes rules into five different severity levels and as-
sesses the severity based on their potential to negatively
impact software quality. Those categories of severity levels
are BLOCKER, CRITICAL, MAJOR, MINOR, and INFO [23].

III. METHODOLOGY

This section describes all the research methods and practices
that are applied for this study. Firstly, the goal and research
questions of this research are introduced, followed by explain-
ing the research method followed for the research. After that,
plugins rules for the SonarQube plugin and selection criteria
for the Java open-source projects are defined.

A. Goal and Research Questions

In general, the goal of this research is to detect the energy
code smells in different loop types and suggest the rectifying
measures for those smells. The goal of the study is defined
using the Goal-Question-Model technique [24], as shown in
the Table I.

As per the goal, the following are the main research ques-
tion and its sub-research questions along with its respective
rationale:

3https://www.youtube.com/watch?v=VzuY0jyrF80

TABLE I
GOAL DEFINITION

Analyze Static code related to different loop types
Purpose Detect and rectify code smells
With respect to Energy consumption
View point Developers
In the context of Different Java projects

Goal Statement
Analysis of static codes to detect and rectify energy code smells in different
loop types from the view-point of developers in different Java projects.

1) RQ 1: How can static code analysis contribute to the
detection and rectification of energy code smells in different
loop structures in Java?: The main rationale of this research
question is to investigate how static code analysis can be lever-
aged in detecting and rectifying energy-related code issues in
different loop types in Java.

The chosen method for this research involves developing
the SonarQube Java Maven plugin,GreenForLoops4, to assess
its effectiveness in addressing the main question, with sub-
research questions formulated accordingly.

Sub RQ 1.1: To what extent does the GreenForLoops plugin
demonstrate effectiveness across a wide range of real world
Java projects? As the plugin will be tested in different open
source Java projects, this sub research question helps to find
how this plugin performs in different Java projects of different
size chosen from various owners.

Sub RQ 1.2: How does GreenForLoops plugin help to
detect energy code smells in different loop types in Java,
incorporating factors such as the category of code smells
and their precise locations within the codebase? For this
sub-research question, this shows how the SonarQube detects
energy code smells in different loop structures in Java and
showcases them as per the type of code smells, either major
or minor, along with other metrics like fixing time, and the
actual line of code where the energy code smell is detected.

Sub RQ 1.3: How does GreenForLoops plugin assist in
rectifying energy related code smells related to different loop
types in Java? The rationale behind this sub-research question
is to explore how the SonarQube dashboard presents the
rectifying code samples for the identified energy code smells
based on the capabilities of the plugin.

B. Research Methods

This section explains the research method, Design Science
Research (DSR), adopted for this study design solution. In
order to design and construct the assessment of the artifact,
qualitative methodologies are employed.

1) Design Science Research: Design science involves the
creation and analysis of problem-solving artifacts that interact
with their specific context to bring about improvement [25].
It focuses on creating practical solutions that can improve or
solve real-world problems. Fundamentally, DSR is a problem-
solving approach that aims to effectively accomplish the anal-
ysis, design, implementation, and utilization of information

4https://github.com/ramgrg/greenForLoops.git



systems by generating ideas, practices, technical abilities, and
products [26]. This study addresses the problem of high energy
consumption associated with energy code smells in different
loop types of Java programming language.

2) Qualitative Research: Qualitative process helps to get
information about the feelings, opinions, and understanding
of participants. This is an approach to study the social world
that helps to describe and analyze the behaviour and culture of
humans or groups from the viewpoint of those being studied
[27]. In a way, it helps to understand the experience of people.
It also helps in comprehending a requisition question from a
humanistic or idealistic perspective [28]. In this research, the
experts from industry tested the plugin and their experiences
on working with the plugin were recorded. Through these
experiences and feedback collected via Google Form, the
efficiency and applicability of the plugin in a wide range
of Java projects were defined. In addition, 1 to 5 grading
system [29] available in Google form was also considered for
providing extra assessment criteria. In this grading system, 1
is considered as Unsatisfactory, 2 as Satisfactory, 3 as Good,
4 as Very Good, and 5 as excellent [29].

C. RULES DEFINITION

To perform static code analysis by SonarQube, a set of rules
should be defined. As per those rules, SonarQube analyses
the source code, a very similar way antivirus software detect
viruses [30]. In addition, if the source code violates these rules,
SonarQube labels those codes with issue [8]. By considering
the requirements of SonarQube, the following rules were
finalized for the plugin:

• Do not initiate an array inside a loop.
The process of initializing an array using a loop statement
results in high energy consumption, mainly due to the
repetitive execution of comparison operations and index
modifications [7]. In the plugin, this rule is classified as
Minor.

• Do not concatenate string inside loops. If you have to,
use StringBuilder instead [18].
String in Java is immutable; concatenation of string
creates new string, whereas StringBuilder is mutable and
provides a method to modify a string without creating a
new string, thereby consuming less energy [31]. This rule
is similar to one of a rule5 defined by SonarQube. In the
plugin, this rule is labelled as Minor.

• Do not access the collection size attribute and array
length in the body of a loop [18].
Initializing a loop without referring to array length
consumes 10% less energy than a loop initialized by
mentioning array length [32]. This rule is classified as
Minor.

• Do not access global variables inside for-loop; instead
try to use local variables.
The loops keep on iterating until the escape condition is
fulfilled. Inside the loop, if it is accessing some global

5https://rules.sonarsource.com/java/RSPEC-1643

variables, a problem may arise as global memory will be
repeatedly accessed in each iteration [7]. In the plugin,
this rule is classified as Minor.

• If possible try to avoid nested loops to avoid time
complexity.
In the nested loop, even though a simple operation is
running, the number of executions of the operation multi-
plies thereby affecting in energy saving as well as runtime
performance [7]. Therefore, refactoring of nested loops
into a single loop is suggested. This rule is categorized
as Major.

The plugin was developed by implementing these rules. To
develop plugin, the guidelines were followed as mentioned
in the Sonar-Java6 and tutorial7 provided by SonarQube for
custom plugin development. While developing the plugin, unit
testing and integration testing were performed so that bugs and
defects can be identified at an early stage.

D. Java Projects Selection

The performance of the plugin was evaluated as per its
applicability in a wide range of Java projects and detection
of energy code smells. The criteria for selecting Java projects
are defined in Table II.

TABLE II
SELECTION CRITERIA FOR JAVA PROJECTS

Inclusive Criteria Rationale
The project should be open-
source.

The source code and others information
about the projects are easily accessible.

Total lines of code should be
equal or more than 4500.

The code’s lower bound is established for
easy comparison between projects near
this limit and those surpassing it.

The project should be either
trending on GitHub or popular
in developer communities.

This criterion is introduced so that the
test results can have impact on developer
communities.

E. Research Reproducibility

This section expounds the process to replicate this study.
The GreenForLoops plugin is available in GitHub4. The repli-
cation package contains (i) the information about the plugin
(ii) how to configure the plugin in a system (iii) details about
the selected Java projects.

IV. RESULTS

In DSR, artifacts are evaluated for functionality, complete-
ness, consistency, accuracy, performance, reliability, usability,
and organizational fit [26]. This section presents research
results, findings, and solutions addressing the study’s problem.
As an artifact, a custom Java Maven SonarQube plugin,
GreenForLoops, was developed to detect and rectify energy
code smells in various Java loop types. The research has only
one main research question: ”How can static code analysis
contribute to the detection and rectification of energy
code smells in different loop structures in Java?”. This

6https://github.com/SonarSource/sonar-java/blob/master/docs/CUSTOM RULES 101.md/
7https://docs.sonarqube.org/latest/analyzing-source-code/languages/java/



main research question is answered by the three sub-research
questions. The first sub-research questions explains how the
SonarQube custom plugin performs while testing in the wide
range of real world Java projects. Secondly, it inquires into
how the plugin aids in detecting the energy code smells within
various Java loop structures. Lastly, the third sub-research
question examines how GreenForLoops plugin contributes in
rectifying the detected energy code smells in different Java
loop types.

A. Sub RQ 1: To what extent does the GreenForLoops plugin
demonstrate effectiveness across a wide range of real world
Java projects?

The objective of this sub-research question is to determine
the effectiveness of applying the GreenForLoops plugin on var-
ious Java projects from different vendors for detecting energy
code smells. As shown in the Table III, there are 16 selected
projects from 10 different owners. All the Java projects were
selected as per the criteria mentioned in Table II. Among
the project owners, Google leads the way with 4 selected
projects, closely followed by Alibaba with 3, and Apache
with 2 selected projects. The remaining owners–GeyserMC,
Karate Labs, The Algorithms, Kekingcn, Jagrosh, MyBatis,
and Spring–each of them has 1 selected project showcasing
a diverse range of projects from different owners.

TABLE III
TOTAL NUMBER OF PROJECTS PER OWNER.

Owner Number of projects
Alibaba 3
Apache 2
Google 4
GeyserMC 1
Karate Labs 1
The Algorithms 1
Kekingcn 1
Jagrosh 1
MyBatis 1
Spring 1
Total: 16

Table IV shows the list of all selected projects, its total
lines of codes and GitHub URLs along with the total number
of code smells detected during SonarQube analysis. Among
the 16 selected projects, JMusicBot, COLA, and Commons
Validator had the least number of lines of code with 4,785,
6,488, and 7,892 respectively, whereas Guava and Error Prone
had the largest codebase with 124,119 and 101,557 lines
respectively.

Furthermore, the feedback from the professionals described
in Section IV-D also sheds light on the applicability of the
plugin.

B. Sub RQ 2: How does GreenForLoops plugin help to detect
energy code smells in different loop types in Java, incorpo-
rating factors such as the category of code smells and their
precise locations within the codebase?

Table IV illustrates the overall number of energy-related
code smells identified in each project, following the elimina-

Fig. 2. A list of major and minor energy code smells

tion of false positives, and subsequently categorizing them into
major and minor energy code smells. In the The Algorithms
Java project, which contains 27,121 lines, the maximum
number of energy code smells - 547 in total, consisting of 184
major and 363 minor energy code smells - was detected. In
contrast, the COLA project, with 6,488 lines of code, exhibited
the detection of only 2 energy code smells: 1 major and 1
minor. In addition, Google Guava, with the largest codebase
among the selected projects, had 160 energy code smells (16
major and 144 minor code smells). On the other hand, JMu-
sicBot, with the least number of lines of code, had 16 energy
code smells, all of which were minor energy code smells.
Furthermore, Table IV also shows false positives detected in
every selected projects. Among the projects, Google Guava
had the highest number of false positives, with 36, followed by
MyBatis-3 with 21 false positives. On the other hand, COLA
and Spring Data REST displayed the fewest false positives,
each having only 1.

In SonarQube, the portal shows the total code smells de-
tected in a particular project along with the list of energy code
smells, which are separated as per the severity level of code
smells. Fig. 2 shows the list of some of the energy code smells
detected within the chosen projects, and the energy code smells
are further divided as per the severity levels.

For every issue, SonarQube also locates where the issue is.
If one of the issues as shown in Fig. 2 is clicked, it will open
a window as shown in Fig. 3 or 4, and the source codes with
the issue will be highlighted in red followed by the cause of
the issue.

C. Sub RQ 3: How does GreenForLoops plugin assist in
rectifying energy related code smells related to different loop
types in Java?

SonarQube detects energy code smells and provides cor-
responding rectifying approaches. By following these ap-
proaches, the source code can be refactored and optimized
to address the identified energy code smells. Fig. 5 and 6
show how to fix energy code smells related to nested loop
and string concatenation respectively. While displaying how
to correct code smells, SonarQube presents non-compliant and
compliant solution code samples, which are defined in the



TABLE IV
LIST OF THE SELECTED PROJECTS AND FINDINGS.

Project Name Total lines
of code

Total
code
smells

Major
code
smells

Minor
code
smells

False
Positives

Technical
debts

GitHub URL

Bytekit 9,241 37 4 33 2 1 day https://github.com/alibaba/bytekit.git
COLA 6,488 2 1 1 1 35 mins https://github.com/alibaba/COLA.git
Commons Config-
uration

20,952 21 1 20 7 6 hrs 45 mins https://github.com/apache/
commons-configuration.git

Commons Valida-
tor

7,892 15 0 15 5 5 hrs https://github.com/apache/commons-validator.
git

EasyExcel 16,431 17 0 17 4 4 hrs 40 mins https://github.com/alibaba/easyexcel.git
Error Prone 101,557 122 4 118 6 3 days 5 hrs https://github.com/google/error-prone.git
Geyser 52,343 126 8 118 16 3 days 6 hrs https://github.com/GeyserMC/Geyser.git
Google-java-
format

10,457 23 4 19 3 6 hrs 10 mins https://github.com/google/google-java-format.
git

Guava 124,119 160 16 144 36 5 days 4 hrs https://github.com/google/guava.git
Gooogle Guice 28,513 35 5 30 2 1 day https://github.com/google/guice.git
Karate 38,393 41 3 38 3 1 day 3 hrs

10mins
https://github.com/karatelabs/karate.git

The Algorithms-
Java

27,121 547 184 363 19 17 days https://github.com/TheAlgorithms/Java.git

kkFileView 9,534 42 3 39 7 1 day 1 hr https://github.com/kekingcn/kkFileView.git
JMusicBot 4,785 16 0 16 5 5 hrs 15 mins https://github.com/jagrosh/MusicBot.git
MyBatis-3 22,410 50 6 44 21 2 days https://github.com/mybatis/mybatis-3.git
Spring Data REST 13,250 3 0 3 1 1 hr https://github.com/spring-projects/

spring-data-rest.git

Fig. 3. SonarQube locating major energy code smell in source code

Fig. 4. SonarQube locating minor energy code smell in source code

GreenForLoops plugin. The compliant solution example acts
as a guideline to rectify energy code smells.

Furthermore, SonarQube also estimates the time it may take
to fix each individual energy code smell. The cumulative sum

Fig. 5. Rectifying measure for nested loop energy code smell

of all the time to fix each individual energy code smell gives
the technical debt of the project. Table IV shows technical debt
of each selected project. Among all projects, Guava had the
maximum technical debt of 5 days and 4 hours, whereas COLA
had the minimum technical debt, requiring only 35 minutes to
amend the energy code smells.

D. Feedback from Professionals

6 professionals tested the plugin in Java projects and pro-
vided their feedback. The participants were coded as P1, P2,

https://github.com/alibaba/bytekit.git
https://github.com/alibaba/COLA.git
https://github.com/apache/commons-configuration.git
https://github.com/apache/commons-configuration.git
https://github.com/apache/commons-validator.git
https://github.com/apache/commons-validator.git
https://github.com/alibaba/easyexcel.git
https://github.com/google/error-prone.git
https://github.com/GeyserMC/Geyser.git
https://github.com/google/google-java-format.git
https://github.com/google/google-java-format.git
https://github.com/google/guava.git
https://github.com/google/guice.git
https://github.com/karatelabs/karate.git
https://github.com/TheAlgorithms/Java.git
https://github.com/kekingcn/kkFileView.git
https://github.com/jagrosh/MusicBot.git
https://github.com/mybatis/mybatis-3.git
https://github.com/spring-projects/spring-data-rest.git
https://github.com/spring-projects/spring-data-rest.git


Fig. 6. Rectifying measure for string concatenation energy code smell

P3, P4, P5, and P6. P4 works in SonarSource8, the company
that developed SonarQube. Among the participants, three
were Software Developers, while the others held positions
as Principal Software Engineer, Software Engineer, and Lead
Software Architect. P4 had the most experience with 35 years,
followed by P1 with 15 years and P5 with 11 years. Both P2
and P3 had 5 years of experience, while P6 had the least
experience with 4 years.

Out of 6 participants, only 50% of of the participants take
energy consumption into account while programming, with the
other half not considering it. In case of performance rating of
plugin, half of the professionals had given Excellent rating,
whereas two professionals had rated the plugin as Very Good,
and the remaining one professional rated it as Satisfactory.

Furthermore, all of the participants had provided comments
after the testings. Overall, P1, P2, P3, P5, and P6 had
given Excellent rating. In the case of P3, the participant had
some configuration issue but seemed satisfied with the easy
installation features. Additionally, P5 and P6 suggested the
inclusion of more rules in the plugin. Some of the reviews are
mentioned below: “Overall helpful suggestion from the plugin.
Great work!”

“Seems quite promising, however, I encountered some build
issues during the configuration process. Overall, the tool
shows great potential, particularly with its containerization
feature, which enhances both accessibility and configurabil-
ity.”

“The plugin is working and fulfills the original needs. It’s
great to see the rationale of each developed rule. You also
could add more rules.”

As per P4, the results from static code analysis can be
contradictory to some of the real-case scenarios. Furthermore,
the participant emphasized that rules targeting architectural
decisions have a significantly greater impact compared to rules
focusing on low-level optimization: “Not allowing to initiate

8https://www.sonarsource.com

an array inside a loop seems to be a good rule to force
developers to reuse the same array in a loop.I think energy
consumption, like performance, needs to be precisely measured
to ensure a code pattern is more efficient than another. The
results are too often counterintuitive, so good practice and
rules should always be related to real-life studies. There are
only some corner cases where it’s true that string concate-
nation using ’+’ in Java is slow. For example: ’throw new
IOException(Unexpected document root ’” + elementName
+ ”’ instead of ’BugCollection’.”);’ is faster using the ’+’
operator than building a StringBuilder object. String concate-
nation using ’+=’ was so slow and so widely used that recent
versions of the JVM make it faster than StringBuilder. So we
should not rely on old measures but, again and again, collect
evidence that all new JVMs still have this not-yet-optimized
problem. One of the rules complains about ’while (re-
sult.is(Tree.Kind.PARENTHESIZED EXPRESSION)) { ’ but
moving the enum element into a local variable makes the
code harder to read. The rule related to time complexity in
nested loops should provide some evidence that the complexity
introduced by the single loop has a real energy consumption
benefit. It can also raises a lot of false positives for loops that
cannot be merged. In my view, energy consumption is well
correlated to mono-thread performances, and it’s easier to
measure performance. Rules targeting architectural decisions
are far more impactful than rules focusing on a low level of
optimization.”

V. DISCUSSION

This chapter provides a thorough analysis of test results
from diverse Java projects and industry professional’s feed-
back. It begins by explaining how these findings address the
research question and sub-questions, followed by a detailed
analysis of industry specialist’s feedback. The chapter con-
cludes with an assessment of potential study validity threats.

A. Addressing the Research Question and Sub-research Ques-
tions

In this section, it addresses the research questions and sub-
research questions as per the findings from the test results of
different Java projects.

1) RQ 1: How can static code analysis contribute to the de-
tection and rectification of energy code smells in different loop
structures in Java?: In this research, among the available static
code analysis tools, SonarQube was selected. For detecting
and rectifying code smells in different loop structures in Java,
a SonarQube custom Java Maven plugin, GreenForLoops,
was created. To address this research question, the plugin
was tested in 16 diverse Java projects, accompanied by a
comprehensive presentation of the total energy code smells
– categorized as major and minor – detected within each
project, their corresponding locations in the source code, and
a presentation of compliant source code sample to assist
developers in effectively correcting the identified energy code
smells.



Sub RQ 1.1: To what extent does the GreenForLoops
plugin demonstrate effectiveness across a wide range of
real world Java projects?
GreenForLoops plugin was tested in 16 different Java projects,
and these projects were from 10 different owners. In addition,
these Java projects have a total number of source code ranging
from 4,785 to 124,119. This concludes that the selection
of projects not only varies among different owners but also
exhibits significant diversity in terms of overall size and com-
plexity. Irrespective of the project size and vendor, the plugin
detected energy code smells in the selected Java projects.

Sub RQ 1.2: How does GreenForLoops plugin help to
detect energy code smells in different loop types in Java,
incorporating factors such as the category of code smells
and their precise locations within the codebase?
As shown in Table IV, the plugin had detected energy code
smells in the selected projects. In addition to listing the energy
code smells as shown in Fig. 2, every code smell was also
located and highlighted in red in its corresponding source
file. This helps developers identify the location of energy
code smells and correct them according to the suggested code
samples. Additionally, SonarQube categorizes the identified
energy code smells based on their severity levels, enabling
developers to prioritize and effectively address these issues.

While testing the plugin in the selected Java projects, false
positives were detected. Those source codes were classified
as false positives because they consisted of JUnit test codes,
nested loops with a small number of iterations, and code
that runs during debug mode. None of these code segments
will affect the application in a production environment. It is
already known that static code analysis tools can encounter
issues with generating false positives [8]. SonarQube analyzes
source code based on patterns and rules, which can sometime
misinterpret complex logic, and it inspects code without a deep
understanding of the overall program context, leading to false
positives. The code sample shown in Fig. 8 was categorized as
true positive as Sonarqube does not know the size of the array,
whereas the code snippet exhibited in Fig. 7 was labelled as
false positive since it involves only 56 iterations, resulting in
a relatively small time complexity.

Fig. 7. Energy code smell categorized as false positive

Sub RQ 1.3: How does GreenForLoops plugin assist in
rectifying energy related code smells related to different
loop types in Java?

Fig. 8. Energy code smell categorized as true positive

With the help of the plugin, SonarQube had suggested rectify-
ing code samples for each detected energy code smells. These
suggested compliant solution samples can be the guidelines for
developers to fix the energy code smells. The plugin does not
automatically rectify the code smells like in EcoAndroid [34]
and SORALD [35]. In addition, the plugin also forecasted the
time required to address each individual energy code smell,
as well as calculating the total technical debt of the entire
project. Even though the time taken to rectify the issue was
configurable and approximated according to the provided code
sample, it is important to acknowledge that the actual time
needed to fix a specific energy code smell may vary among
developers depending on their experience and work efficiency.
Nevertheless, SonarQube assists to provide an overall ballpark
estimation to resolve the discovered energy code smells in a
Java project. This feature empowers development teams with
valuable insights into the potential effort and resources needed
to enhance the overall energy efficiency and code quality of
their software.

Furthermore, the plugin also provides an explanation for
each identified energy code smell, clarifying why a particular
line of code is flagged as such, which was not done in other
plugins like ecoCode [18], EcoAndroid, and SORALD. For in-
stance, in the Fig. 6, the reason behind “String concatenation”
energy code smell is elucidated as: “String in Java is im-
mutable; concatenation of string creates new string, whereas
StringBuilder is mutable and provides a method to modify a
string without creating a new string, thereby consuming less
energy”. By providing the reason, the plugin serves to educate
the developer thereby improving the programming skills of
developers.

B. Feedback from Professionals

6 professionals took part in testing the plugin on Java
projects. In qualitative analysis, there are no specific rules on
fixing the sample size until the collected data is enough to
answer the research question [36], but 5 to 50 participants
are considered adequate [37]. From the feedback collection,
the overall grading of 4.16 has been received. As per the
grading system mentioned in Section III-B2, Very Good is
the overall grade after analysis. Furthermore, in the case of
feedback received from the participants, the majority expressed



satisfaction with the performance and effectiveness shown by
the plugin. Both P5 and P6 suggested adding more rules in
the plugins, which is one of the future plans.

However, P4 stated that the rules should always be backed
by real-life studies. The participant further mentioned that
sometimes the results of analysis can be contradictory and can
introduce false positives. To explain this point, the participant
provided some examples: string concatenation from ”+” in
Java can be faster than building a StringBuilder object in
some cases, and there can be some nested-loops that cannot
be merged into one. In addition, the participant also stated
that architectural decision-related rules have a greater impact
compared to rules that emphasize low-level optimization.

All the rules implemented in GreenForLoops plugin are
backed by scientific studies. All the rules along with its
references are shown in Section III-C. SonarQube uses static
code analysis to identify potential code issues. However, it may
not have access to complete contextual information and intent
of the code, leading to potential false positives. Developers
may attribute the issue-list reported by SonarQube as false
positive due to issues in checking mechanism, rule semantics
(e.g., software engineering principles that may not apply in
certain contexts), or conditions defining rule violations (e.g.,
specific complexity thresholds not universally applicable) [38].
Nevertheless, the plugin has rooms for improvement, and
implementation of the rules in the plugin can be optimized
for minimizing false positives.

C. Threats to Validity

To ensure the robustness and quality of this research, 3
different types of threats to validity are analyzed.

1) External Validity: Biasness in sample selecting the sam-
ple can be the potential threat to external validity. In our case,
the Java projects were selected as per the criteria mentioned in
Table II. 16 projects were selected from 10 different owners,
and the size of the project ranges from 4,785 to 124,119.
Random selection of different owners and its projects plus
addressing the projects in terms of overall size and complexity
allow not to introduce biases on selecting real-world Java
projects.

However, it may not accurately reflect energy code smells
patterns in projects developed in other programming languages
or executed in different environments. Replicating the study in
different programming languages and execution environments
can help to mitigate this potential threat to validity.

2) Internal Validity: The quality and effectiveness of the
plugin can pose a potential threat to internal validity. All the
rules selected for detecting energy code smells are backed by
the scientific studies, and references for each rule is given.
However, there can be multiple rules other than 5 defined rules
that can assist in detecting and rectifying energy code smells.
The limited number of defined rules in the study can have
impact in internal validity. However, adding more rules for
future studies can minimize this threat to validity.

3) Construct Validity: Construct validity refers to the extent
to which the SonarQube plugin accurately measures and

identifies energy code smells in different loop types. From
the professional feedback, the average rating of the plugin is
4.16. In the 1 (Unsatisfactory) to 5 (Excellent) grading scale,
the average rating of 4.16 is pretty decent. Nonetheless, it is
not possible to deny the chances of getting false positives.
In every selected Java projects, false positives were detected.
The participant, P4, also pinpointed the presence of some false
positives in the feedback, thereby suggesting the rooms for
improvement in the plugin

In addition, the study relies on static code analysis and lacks
real execution data, potentially overlooking dynamic runtime
optimizations that could have impact in energy consumption.

VI. RELATED WORK

A. Analysis of energy consumption by static code analysis

Energy bugs in applications can cause high battery drainage
in mobile phones resulting in serious issues with its durability
and performance. Jiang et al. [39] proposed a static analysis
technique called Static Application Analysis Detector (SAAD)
to detect two types of energy bugs, resource leak and layout
defect, in Android applications. In the research, it is mentioned
that SAAD detects the energy bugs by considering components
call relationship analysis, inter-procedural and interprocedural
analysis, whereas for layout defects, SAAD uses Lint which
performs some app analysis. This study performed experi-
ments on 64 applications from Google Play Store, in which
they found out that SAAD was able to detect resource leak
and layout energy defect by 87.5% and 78.1% accuracies.

Pereira et al. [40] presented a tool called jStanley9, a
static analysis Eclipse plugin, which statically detects energy-
inefficient Java collections and suggests more efficient Java
collection alternatives. For this tool, the data about energy
consumption and execution time for Java collections were
provided through CSV files. As a result, the paper had
presented improvement in energy gains between 2% and 17%,
and reduction in execution time between 2% and 13%.

B. Plugins related to static code analysis for energy consump-
tion

In case of energy consumption, there are multiple plugins
created for static code analysis for tools like SonarQube,
AndroidStudio10.

Ribeiro et al. [34] created an AndroidStudio plugin, EcoAn-
droid, to help developers in building energy-efficient Android
mobile applications. The plugin automatically applies energy
patterns to the source codes written in Java. These energy
patterns are typically illustrated by an anti-pattern demon-
stration and a set of instructions on how to modify the
code to reduce energy consumption. In addition, the study
has also indicated that apart from factors like 3G, WIFI,
heavy graphic processing, and screen usage of an application,
software codes–which are usually ignored by developers– can
be also a reason for high energy consumption. Even though

9https://greensoftwarelab.github.io/jStanley/
10https://developer.android.com/studio



EcoAndroid is built for different tools than the plugin built for
this study, the gist of the both plugin is the same: reduction
of energy consumption in coding.

1) SonarQube Plugins for energy consumption: There are
multiple papers about plugins related to SonarQube, which can
be guidelines while developing the plugin for this research.
Those papers have described the SonarQube architecture,
plugin integrations, and some of their GitHub repositories
contain guidelines on how to create a SonarQube plugin from
scratch.

Someoliayi et al. [35] introduced a new system, SORALD,
that uses metaprogramming templates to modify program
abstract syntax trees and recommend solutions for static anal-
ysis alerts. The research claimed that the system had fixed
10 issues from SonarQube. To enhance the convenience of
integrating SORALD into the workflow of developers, the
article introduced SORALDBOT – a bot that monitors changes
on GitHub repositories continuously, with the aim of detecting
new violations that arise from new commits, fixes those
violations, and propose the fixed version to the developers as
the patched version, a pull request to the relevant repository.
This plugin is very different to the plugin that is created for
this study on the basis of objective. But this paper can provide
insights on how different components are integrated in the
SonarQube and also the structure of a SonarQube plugin.

Goaër and Hertout [18] introduced a SonarQube plugin
called ecoCode that detects energy code smells of any native
Android application written in Java. The research also men-
tioned that energy smells can be organized into 8 categories:
optimized API, leakage, bottleneck, sobriety, idleness, power,
batch, and release. In their experiment, they examined three
types of files simultaneously. Those file types were Java files,
XML files such as manifest and certain type of resources,
and Gradle files that include information related to build,
settings and properties. The ecoCode plugin is taken as the
main reference for the plugin of this study. Two rules from
the ecoCode plugin are adopted as rules for this research.
The plugin created for this research will be for all general
Java projects, but the ecoCode plugin is only limited to native
Android projects written in Java even though is not just
focused for only loop types of Java.

Maia et al. [42] presented a SonarQube plugin called E-
Debitum to measure the energy debt of Android applications.
The study claimed that the plugin utilizes a comprehensive,
strong, and expandable lists of smells that are well enough to
help in reduction of energy consumption. They assumed that
the addition of new features on each releases will add new
energy code smells resulting in the increase of energy debt.
Furthermore, they introduced the direct relationship between
the cost of maintaining energy code smells and the duration
for which the release remains functional. While calculating
the energy debt,the research also suggested to consider how
frequent the code block that contains energy smells is executed
and re-utilized. The rules in this plugin may not add value
while listing the rules for the plugin designed for this study,
but it introduces the effect of energy code smells that can have

in software development cycle.

VII. CONCLUSION

In this research, the primary research question, ”How can
static code analysis contribute to the detection and rectifi-
cation of energy code smells in different loop structures in
Java?” was addressed through three sub-research questions.
Firstly, the plugin was tested in multiple real-world Java
projects to answer the first sub-research question. Subse-
quently, the second sub-research question was addressed by
illustrating how the plugin detected energy code smells in
the selected projects. Lastly, the third sub-research question
was answered by recommending code samples to rectify the
identified energy code smells.

To test the plugin, 16 open-source Java projects were
selected out of 10 different owners. Among these projects,
the highest number of energy code smells, specifically 547
energy code smells consisting of 184 major and 363 minor
energy code smells, were detected in The Algorithms Java. On
the other hand, only 2 energy code smells, comprising 1 major
and 1 minor energy code smells, were identified in COLA. In
addition, for every detected energy code smell, the plugin had
suggested code samples to fix it along with the rationale behind
the energy code smell. Subsequently, professionals reviewed
the plugin, and it received an overall rating of Very Good based
on the feedback received.

In conclusion, the plugin effectively detected code smells
and suggested code samples to rectify the detected code
smells. Nevertheless, it cannot be denied that the plugin may
not immune to generating false positives.

A. Future Work

The next steps involve expanding the plugin with additional
rules to detect more energy code smells in Java loop types.
Additionally, there are plans to extend plugin support to other
commonly used programming languages. Currently, the plugin
provides sample code suggestions for fixing detected issues;
the next phase focuses on developing automated code refac-
toring tools based on plugin analysis results to enhance the
efficiency of energy-consuming loops. Further refinement and
performance optimization will be done to improve accuracy
and efficiency, followed by collaboration with the industry.
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