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Abstract—The indirect impacts of digitalisation on energy use
and carbon emissions are large but uncertain. In this study, we
provide quantitative estimates of digitalisation impacts focusing
on both energy-saving and energy-increasing potentials.

We draw on studies of specific digital use cases in transport
and consumer goods sectors, and normalise impact estimates as
percent changes relative to reference cases without digitalisation.
For the industry sector, we draw on statistical models using panel
data that estimate how energy demand changes with increased
digitalisation. In each case we present the maximum uncertainty
ranges of impact estimates, and explore the conditions explaining
both lower and upper bounds.

We find strong evidence of both large reductions in energy
use through substitution or efficiency improvements (e.g., shared
ridehailing: -55% to -18%) and large increases in energy use
through rebound or induced demand effects (e.g., ridehailing:
+41% to +90%). In some cases, we find evidence of both negative
and positive impacts depending on deployment conditions or
use context (e.g., e-retail: -94% to +140%; mobility-as-a-service:
-50% to +20%). Study design also affects the uncertainty of
digitalisation impacts.

Common features of the lower and upper bounds of estimated
impact ranges point to generic strategies for aligning digitalisa-
tion with climate mitigation goals. These include limiting poten-
tial rebound through pricing or other constraints on increased
activity, and incentivising business models that integrate digitally-
enabled activities into wider systems of provision for mobility or
electricity.

Index Terms—digital applications, activity, carbon, climate

I. INTRODUCTION

The impacts of digitalisation on energy use and emissions
are direct, indirect and systemic [1]. Direct impacts from the
energy footprint of information and communication technolo-
gies (ICTs) and infrastructure (data centres, networks) are
estimated in the range 1.5 - 4% of global greenhouse gas
(GHG) emissions [2], [3]. Indirect impacts resulting from
changes in processes, systems, and user behaviour are more
uncertain, and vary widely across digital applications and
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sectors. Systemic impacts on economic activity more generally
(e.g., jobs, skills) and on society and governance systems are
more uncertain still as impact pathways are diffuse [4].

Quantifying the magnitude and uncertainty of indirect im-
pacts is the focus of this paper. Digital applications can
improve process efficiency, optimise system performance, and
substitute for energy-intensive activities; but reducing cost
and friction can also increase service demand (rebound), and
expand or intensify energy-using activities (induced demand)
resulting in overall growth (scale effect). Indirect impacts are
also called enabling or exacerbating effects [5] in relation to
GHG abatement mechanisms or potentials [3]. All these terms
refer to the energy or GHG impacts resulting from the use of
digital applications for certain purposes in specific contexts:
i.e., digital ‘use cases’.

A landmark 2017 assessment of ‘Digitalization and Energy’
[6] by the International Energy Agency (IEA) scaled up
quantitative estimates of indirect impacts by sector (buildings,
transport, industry, energy supply), emphasising energy-saving
opportunities that varied by sector and typically ranged in the
order of 5-15%.

The Group of Experts on Energy Efficiency (G-EEE) sim-
ilarly estimate sectoral potentials, drawing on IEA and other
data. For example, they find that optimization of industrial
processes enabled by digital applications such as internet of
things (IoT), automation, and advanced analytics could result
in 10-20% energy savings [7].

Industry-led studies including those by the Global e-
Sustainability Initiative [5] or GSMA [8] estimate net energy-
saving or emission-reducing impacts of digitalisation over sim-
ilar ranges but with little transparency on assumptions used.
Their emphasis is on demonstrating a positive ‘enablement
factor’ meaning that digital applications save more energy than
the ICT infrastructure uses in its operation (i.e., the ratio of
indirect impacts to direct impacts > 1).

There are two main approaches for estimating indirect
impacts: use cases and statistical modelling. The first approach
analyses specific applications using empirical data from use
cases or case studies in specific deployment contexts [3],
or from modelling simulations for emerging or prospective
applications for which sufficient observational data are not
yet available [9]. The IEA, GEEE and GeSI assessments fall
in this tradition. Bieser, Hintemann [3] synthesise indirect
impact estimates from multiple use cases across sectors, with
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GHG abatement potentials generally falling in the 10-20%
range, but with a lower range of 1.3-8.9% estimated from
the most recent global study by GeSI [5]. This GeSI study
is based on evidence from seven broad digital technologies
(digital access, fast internet, cloud computing, internet of
things (IoT), machine learning and artificial intelligence (AI),
augmented and virtual reality, and blockchain). All the indirect
impacts are expressed as net energy-saving (i.e., demonstrating
GHG abatement potentials). This one-sided emphasis is a
common bias in industry-led studies [3], exacerbated by the
methodological difficulty in use-case studies of accounting for
induced demand and scale effects which tend to lie outside
study system boundaries.

The second approach for estimating indirect impacts uses
statistical modelling of economy-wide or industry sector panel
data on ICT or internet penetration across countries over time
regressed against energy demand or greenhouse gas emissions
[10], [11]. This approach aggregates across all digital appli-
cations so does not identify specific causal mechanisms or
deployment contexts [12]. Depending on the system bound-
aries and energy demand data used, this statistical approach
may also implicitly include the direct and systemic impacts of
digitalisation as well as the indirect impacts. Economy-wide
studies in this tradition generally find digitalisation impacts
are net energy saving and vary as either a linear or U-shaped
function of economic development stage [13], although this
evidence is ambiguous in some studies [14].

II. METHOD & DATA

Our study draws on both these traditions to estimate the
indirect impacts of digitalisation on energy and emissions
in three energy-using sectors (transport, consumer goods,
industry). We are not concerned with the direct impacts on
energy use of ICT infrastructure itself; for recent reviews of
direct impacts, see: [2], [3].

For digital applications in transport and consumer goods
sectors, we draw on use-case based studies. These vary in
system boundaries and impact metric. Unlike the studies
reviewed in [3], we focus not just on use cases with demon-
strated energy-saving or GHG abatement potentials, but also
on applications that may result in net increases in energy use
through rebound, induced demand, or other effects.

For digital applications in industry, we draw on whole-
sector statistical modelling studies. Bieser, Hintemann [3]
note that use case-based data for industrial applications are
less systematically explored than in other sectors. Coarse
assumptions of up to 50% energy savings are generalised but
without supporting evidence [15].

Our method has four main steps: (1) identification of high
impact digital applications or use cases; (2) search & selec-
tion of relevant studies; (3) extraction of quantitative impact
estimates; (4) synthesis of impact ranges and characterisation
of conditions explaining lower and upper bounds. Overall,
our method is comprehensive but not systematic, aiming to
synthesise data per digital application on at least 3-5 impact
estimates based on robust study designs.

First, we identify the main types of digital application with
significant potential impacts on energy use in each sector
(transport, consumer goods, industry). For this we draw on five
recent cross-sectoral synthesis studies including two interna-
tional assessments by the IEA [6], [16], the sixth assessment
report of the Intergovernmental Panel on Climate Change
[17] as well as two other reviews [3], [18]. All five studies
estimate the relative magnitude of impact on energy use or
GHG abatement potential across multiple applications, and so
help distinguish a hierarchy of importance. Each application
we select is cited in at least one of these synthesis studies; most
of them are cited in two or more. This yields seven applications
in the transport sector and three in consumer goods, and an
interrelated cluster of four applications in the industry sector
(automation, AI, internet of things, digital twins) that combine
in enabling process efficiency and optimisation. Details of the
applications and data sources are provided in corresponding
results sections below.

Second, for each selected application we search for recent
literature providing quantitative estimates of indirect impacts
on energy use. For each application, we use search terms on
Web of Science, Scopus, and Google Scholar (convenience
sampling) together with mining of bibliographies (snowball
sampling) to identify relevant studies. As an example for
vehicle-grid integration as a digital application in the transport
sector, we use the search terms [(“Vehicle to grid” OR “V2G”
OR “V2X” OR “smart charging”) AND (“energy” OR “fuel”
OR “carbon emission*” OR “CO2”)].

In our search we prioritise systematic reviews, meta-
analyses, or other review studies if available (marked by * in
the data source tables below). We also seek to identify studies
from diverse geographies or application contexts if available.
For each application we target a sample of at least 3-5 studies
from which we can extract quantitative impact estimates.

For studies identified through search, our inclusion criteria
are: (1) relevance to a specific digitalisation use case or
digital application; (2) quantitative impact estimate of digi-
talisation use case relative to reported or calculable without-
digitalisation reference case; (3) definition of use case system
boundary and impact estimation methodology.

Criterion (2) on data availability is restrictive as relatively
few studies report clearly defined quantitative impact estimates
relative to a without-digitalisation reference case. We use
criterion (3) on study design as a screen to exclude studies
with unclear, incomplete, or otherwise insufficient information
on the estimation methodology used such that the impact
estimates cannot be interpreted. For example, a study reporting
a quantitative impact estimate but without explaining how the
reference case was measured nor whether the system boundary
included rebound effects would be excluded.

Third, we extract and synthesise quantitative impact esti-
mates. We supplement data extracted from reviews with impact
estimates from more recent studies if not already included in
the review.

For the use-case based studies in transport and consumer
goods, we normalise impact estimates as percent changes



(%∆) relative to without-digitalisation reference cases. These
reference cases are defined differently in each of the un-
derlying studies but in all cases represent an actual or a
hypothetical situation in which the digital application is not
implemented or present. Examples of reference cases include
control contexts in natural experiments, control groups in lab
or field experiments, counterfactual scenarios in modelling
simulations, or baseline measures that precede the digital
application being implemented.

Normalisation of impact estimates into percent change esti-
mates allows direct comparison of relative effect sizes between
digital applications. However, the magnitude of impact in
absolute energy (GJ) or emission (tCO2) terms depends on
the size of the activity affected.

For the statistical modelling studies in the industry sector,
we use regression coefficients to express impact estimates as
percent changes per 1% increase in ICT penetration (i.e., these
data are already normalised, although not relative to a without-
digitalisation reference case).

For all the quantitative impact estimates, we distinguish
activity, energy intensity, energy, and emission metrics. We
focus on activity and energy metrics if available as these
are the most direct measures of impact without confounding
factors such as the emission intensity of electricity. This
method follows the precedent set in the recent IPCC Sixth
Assessment Report (see Fig 5.12 in [17]) and also Wilson, Kerr
[18] who synthesised evidence on a wide range of consumer-
oriented digital applications.

Fourth, we present the maximum uncertainty ranges of
indirect impact estimates from lower to upper bounds for
each digital application. We also summarise the conditions
explaining both lower and upper bounds of the range. In
particular we note differences in the scope of deployment
(e.g., application or sector), study method (e.g., empirical
or simulation), and study system boundaries (e.g., whether
rebound and scale effects are included). Despite efforts to
standardise indirect impact assessment methodologies [19],
studies vary widely in design [20].

Our method is designed to provide a first order synthesis
of the indirect impacts of digitalisation on energy use across
transport, consumer goods, and industry sectors, identifying
both energy-saving opportunities and energy-increasing risks.

III. RESULTS

A. Impact Estimates from Use Cases of Digital Applications
in the Transport Sector

1) Selected digital applications: Table I summarises
mobility-related digital applications with high potential im-
pact, based on [3], [6], [16], [17], [18] (see Methods).
Digitalisation can impact activity, energy or emissions by
enabling substitution of private vehicle use (teleworking, ride-
hailing, e-retail), increasing vehicle occupancy (shared ride-
hailing, autonomous vehicles (AVs)), shifting travel to flexible
mode or multi-modal journeys (mobility-as-a-service (MaaS)),
facilitating electrification of vehicles (smart charging, vehicle-

grid integration (VGI)), and optimising travel patterns (freight
logistics, e-retail).

Transport applications intersect with other sectors partic-
ularly consumer goods (e-retail) and energy supply (VGI).
Vehicle-grid integration (VGI) uses scheduling algorithms and
network signals to control smart or bidirectional charging
of electric vehicles. This increases demand flexibility and
facilitates renewables integration in low-carbon electricity net-
works.

TABLE I
DIGITAL APPLICATIONS IN THE TRANSPORT SECTOR.

digital application definition
teleworking ICT-enabled remote working and interaction
ride-hailing on-demand ride-hailing platforms (e.g. Uber)
shared ride-hailing multi-occupancy flexible route ride-hailing

platforms (e.g., Uber Pool)
mobility-as-a-service
(MaaS)

multiple transportation services including
public and shared modes integrated into a
convenient package accessed through a dig-
ital platform, provider, or cloud service

freight logistics
optimisation

data-driven optimisation of freight logistics
including distribution, routing, and vehicle
capacity

vehicle-grid
integration (VGI)

electric vehicle charging and discharging to
support integration in low-carbon electricity
networks

autonomous
vehicles (AVs)

vehicles that sense, collect and process large
amounts of real-time data on surroundings to
enable operation without human involvement
or oversight

2) Studies reviewed with quantitative impact estimates:
Table II summarises the studies from which quantitative esti-
mates were extracted for the evidence synthesis, and the main
study design issues arising per digital application. Overall,
the evidence base is limited outside US, Europe, and China.
Recent reviews or synthesis studies provide useful impact
ranges for some applications including teleworking [21] and
VGI [22].

For teleworking, Hook, Court [21] systematically reviewed
impact estimates from 39 studies accounting for study design
and scope. Travel restrictions during the pandemic increased
uptake of teleworking with persistent effects but stronger
evidence of non-work travel rebound [23].

Ride-hailing and shared ride-hailing are separated as busi-
ness models with very different impact. Ride-hailing platforms
dominate digital mobility services [24]. In contrast, shared
ride-hailing has very low market share so impacts are assessed
using urban-scale simulations [25].

User-centric MaaS has the potential to suppress car use, and
ownership of second family cars (car-shedding) [26]. Uptake is
dependent on access to public transport and mobility services,
so is mainly in cities. Evidence on impacts is limited to a few
pilots, otherwise evidence is drawn from simulation models
[27].

In freight logistics, digitalisation impacts are via route
optimisation, increased vehicle capacity utilisation, shared-
fleet carrier collaboration, and potential vehicle automation



[28], [29]. Impacts are typically analysed using simulation
models [30], [31].

For both VGI and AVs, recent evidence syntheses have
drawn mainly on simulation modelling given low market
uptake to date. For VGI, Anwar, Muratori [22] synthesised
impact estimates from 11 studies on the value of managed EV
charging. For AVs, Silva, Cordera [32] and Kopelias, Demiridi
[33] reviewed environmental impacts from over 20 studies. Net
emission impacts depended on study system boundaries.

TABLE II
STUDIES PER DIGITAL APPLICATION IN THE TRANSPORT SECTOR WITH

QUANTITATIVE IMPACT ESTIMATES.

digital
application

n
studies

main
study
design1

geography refs∗†

teleworking n=5 inc. 1
systematic
review
(n>30)

empirical mainly
US,
Europe
(3 Global
South)

[21]∗†,
[17]∗,
[18]∗, [1],
[23]

ride-
hailing

n=5 empirical mainly US
cities

[24]∗†,
[34], [35],
[36], [37]

shared
ride-
hailing

n=4 inc. 1
synthesis
(n=7)

simulation US,
Europe,
NZ cities

[38]†,
[39], [25],
[18]∗

MaaS n=6 empirical,
simulation

Europe,
1 Australia

[26], [40],
[41], [27],
[42], [9]

freight
logistics
optimisa-
tion

n=6 simulation Global (+
regions),
China,
Greece

[43], [30],
[31], [44],
[29], [28]

vehicle-
grid
integration
(VGI)

n=6 inc. 1
systematic
review
(n=11)

simulation North
America,
Europe,
China

[22]∗†,
[45]†,
[46], [47],
[48], [49]

autonomous
vehicles
(AVs)

n=7 inc. 2
systematic
reviews
(each
n>20)

simulation North
America,
Europe,
China,
New
Zealand

[32]∗†,
[33]∗,
[50], [51],
[52], [53],
[54]

1empirical = based on observations, trials, real-world applications;
simulation = based on modelling, scenario assumptions
∗denotes review or synthesis studies
†denotes the main studies used in the evidence synthesis

3) Quantitative impacts: uncertainty ranges: Table III sum-
marises the maximum uncertainty range of impact estimates
per digital application from lower to upper bound of all
estimates found in the studies reviewed. Digitalisation impacts
are expressed as percent changes (%∆) relative to without-
digitalisation reference cases or counterfactuals (see Methods).
Impact estimates use different but related metrics: activity
(p.km or v.km), energy (GJ, fuel, or equivalent), greenhouse
emissions (CO2 or CO2e). Although different metrics cannot
be aggregated, the direction and magnitude of change between
metrics have similar interpretations.

For teleworking, the main impact is reduction in activity
or energy from reduced commuting travel. A larger num-
ber of studies use activity metrics, expressed as changes

in passenger.kilometres (p.km) or vehicle.kilometres (v.km),
both of which are proportional to changes in energy for
single occupancy private cars. (One passenger travelling one
kilometre equals one passenger.kilometre of activity. These
combinatorial activity metrics are commonly used in transport
studies).

For ride-hailing and shared ride-hailing, the main im-
pacts are increased activity from deadheading (relocation of
passenger-less vehicles) and substitution of alternative modes
(private vehicles, public transport). Some studies capture im-
pacts on vehicle ownership and induced demand.

The main impacts for MaaS are a shift in activity to
alternative modes (public transport and carsharing services)
and car-shedding [26]. Most studies simulate impacts on CO2

emissions for a range of scenarios combining uptake and
modal share assumptions based on stated preference data (e.g.,
passenger surveys).

For freight logistics, the long-term outlook is for significant
growth in overall activity (measured as tonne.kilometres) but
this is a secular trend and not specifically the result of
induced demand due to digitalisation. Against this backdrop,
digitalisation improves operational energy efficiency through
improved routing and vehicle capacity utilisation that combine
to reduce total vehicle distances travelled (vehicle.kilometres).
This is also captured in a few studies through changes in
energy consumption. All studies also estimate GHG reduction
potentials using emission factors or lifecycle analysis.

For vehicle-grid integration (VGI), the main impacts are
reductions in CO2 emissions from the electricity system at-
tributable to lower peak demand with managed smart charging
and advanced capabilities of EVs to provide grid-enhancing
ancillary services that help displace thermal power plants. In
addition, VGI contributes to lowering the curtailment rate (CR)
of variable renewable energy (VRE) generation, i.e., inter-
mittent wind and solar. This further reduces CO2 emissions.
Most studies report metrics in terms of changes in CO2 and
curtailment rates at an aggregate electricity system level, or
in terms of changes in the emission intensity of a kilometre
driven (∆gCO2/km) at the level of vehicle activity [46].

For autonomous vehicles (AVs), the main impacts relate
to increased efficiency through higher vehicle occupancy in
shared autonomous vehicles and rebound effects through in-
duced demand for travel. Study system boundaries typically
include direct effects (e.g., on driving speed and performance)
and indirect effects (e.g., travel cost reduction, new user
groups, less congestion) [50].

4) Conditions explaining lower and upper bounds of un-
certainty ranges: The main factors explaining both lower
and upper bound impact estimates (min-max ranges) include
variations in application characteristics, deployment contexts,
study methodologies, and study system boundaries.

For teleworking, min-max ranges are explained mainly by
variation in system boundaries including time rebound (e.g.,
non-work travel) and cross-sectoral effects (e.g. energy use in
offices or homes). The lower bound is from large reductions
in commuting travel (assumed to be in private cars) and some



TABLE III
SUMMARY OF IMPACT ESTIMATES (LOWER – UPPER BOUND RANGES)

IN THE TRANSPORT SECTOR.

digital
application

impact ranges
(∆A)

impact ranges
(∆I) or (∆E)

impact ranges
(∆C) or
(∆CR-VRE)

teleworking ∆A (v.km)
-20% to +3.9%
[21]
∆A (p.km)
-67% to +18%
[17]

∆E -15% to
-0.01% [21]

ride-hailing ∆A (v.km)
+81.5% to
+90% [all]

∆E +41% to
+90% [all]

shared
ride-hailing

∆A (v.km)
-55% to -18%
[all]

∆C -62% to
-12.6% [all]

MaaS ∆A (v.km)
-50% to +23%
[all]

∆E -50% to
+20% [all]

∆C -50% to
+20% [all]

freight logistics
optimisation

∆A (v.km)
-29% to -10%
[all]

∆E -95% to
+47% [all]

∆C -14% to
+41% [44]

vehicle-grid in-
tegration (VGI)

∆CR-VRE
-37.9% to
-15.4% [22]
∆C -14.5% to
+0.58% [22]

autonomous
vehicles (AVs)

∆E -45% to
+60% [50]

∆C -94% to
+48% [all]

Note: ∆A = % change in activity measured either in passen-
ger.kilometres (p.km) or vehicle kilometres (v.km); ∆I = % change
in intensity; ∆E = % change in energy use; ∆C = % change in
CO2 or CO2e; ∆CR-VRE = % change in curtailment rate (CR)
of variable renewable energy (VRE) generation
[] denotes the main studies used for the impact estimate ranges

office energy use. The upper bound is from inclusion of
non-work travel (leisure, retail) and home energy use and/or
increases in commute distances from home re-location (de-
urbanisation). The net impact is generally beneficial but overall
economy-wide savings are modest in those studies with more
comprehensive system boundaries.

For ride-hailing, the lower bound includes mode replace-
ment (fewer bus & taxi journeys). The upper bound includes
deadheading (≈ 69% of total vehicle.kilometres).

For shared ride-hailing, the lower bound is from integration
of shared modes into urban public transport systems, reducing
congestion and displacing private vehicle use. The upper
bound is from limited uptake during peak hours, rebound
from empty pick up trips increasing vehicle.kilometres, and
the ’cannibalisation’ of public transport modes as passengers
defect to the more flexible shared vehicles. The upper bound is
therefore associated with profit-oriented service providers and
the lower bound from social planner type system-optimising
service provision.

For MaaS, the impact range is explained by differing
assumptions about uptake rate, car-shedding propensity, urban
transport planning, and vehicle ownership costs. Lower bound
estimates assume maximised uptake and modal shares that
includes active (cycling, walking) and public modes within

integrated transport systems. Upper bound estimates assume
lower uptake and lower shares of public modes in less sup-
portive policy frameworks with only partial sharing of mobility
services information, and higher car dependence for non-MaaS
users.

For freight logistics, the lower bound represents rapid
systemic advances including automation, as well as stringent
policies to decarbonise freight. Some studies include fleet re-
newal with electrification. Upper bound estimates assume cur-
rent policies, moderate improvement of logistics and vehicle
efficiency, low uptake of low-carbon transport technologies.

For VGI, ranges are estimated using varying assumptions
about power grid conditions, the extent to which ancillary
services are provided by electric vehicles (EVs), and the
controlled proportion of EV charging loads. Lower bound
estimates assume power systems with limited diversity of VRE
supply and conventional grid flexibility (so more potential for
VGI to reduce curtailment). Upper bound estimates assume
VRE diversity and enhanced grid flexibility. Potential rebound
effects due to lower net operating costs of EVs are not
considered.

For AVs, impact estimates vary widely based on scenario
assumptions with lower bounds given by optimised AV system
designs for speed control and congestion reduction, and upper
bounds if lower money and time costs of travel induce travel
demand.

B. Impact Estimates from Use Cases of Digital Applications
in the Consumer Goods Sector

1) Selected digital applications: Table IV summarises dig-
ital applications related to consumer goods with high potential
impact based on [3], [6], [16], [17], [18] (see Methods). Two of
these impact ownership and use of physical goods or products:
exchanging or trading via digital platforms; and accessing
services (‘usership’) displacing ownership. A third application,
e-retail, impacts shopping behaviour and related travel.

TABLE IV
DIGITAL APPLICATIONS IN THE CONSUMER GOODS SECTOR.

digital application definition
P2P trading (goods) peer-to-peer exchange of privately-owned

goods through networks of individuals us-
ing a digital platform to create closed loop
supply chains

usership access to services (instead of owning
goods) enabled by functional convergence
onto multi-purpose digital devices. Also ‘e-
materialisation’

e-retail online shopping for products or goods deliv-
ered to homes

2) Studies reviewed with quantitative impact estimates:
Table V summarises the studies from which quantitative
estimates were extracted for the evidence synthesis, and the
main study design issues arising per digital application. The
evidence base extends beyond the Global North to include East
Asia and South America. Recent meta-analysis provide useful
impact ranges for some applications.



Digital platforms facilitate P2P trading or exchange of
goods and product-service system (PSS) business models [55],
[56] that can extend the lifetime of goods and reduce waste
[57].

On-demand services enabled by digitalisation are part of
a general shift from owning to accessing (or ‘usership’).
This also includes substitution of physical products (books,
newspapers, DVDs) for digital alternatives on purchase or sub-
scription models (‘e-materialisation’) [58]. Multi-functional
digital devices can displace single-purpose appliances [59],
[60]. Simulation studies estimate resulting changes in materials
and embodied energy [61].

For e-retail, Rai, Touami [62] conducted a systematic quan-
titative review of impact assessments from 21 studies com-
paring online and in-store purchase of various product types.
Most reviewed studies omitted changes in consumer behaviour
and variation due to newer business models (i.e., click-and-
collect, cross-border e-commerce, or quick commerce). This
is an important omission as the online value share of fast-
moving consumer goods is expected to rise to around 15% in
China, 12% in UK, and 8% in the US by 2025 [63].

TABLE V
STUDIES PER DIGITAL APPLICATION IN THE CONSUMER GOODS SECTOR

WITH QUANTITATIVE IMPACT ESTIMATES.

digital
application

n
studies

main
study
design1

geography refs∗†

P2P
trading
(goods)

n=5 inc.
1 meta-
analysis
(n=21)

empirical mainly
Global
North,
China,
Japan,
Latin
America

[57], [64],
[55], [65],
[56]

usership n=3 inc. 1
review

empirical,
simulation

global (11
regions)

[17], [58],
[61]

e-retail n=4 inc. 1
systematic
review
(n=21)

simulation mainly
Europe,
US, China

[62]∗†,
[66], [67],
[68]

1empirical = based on observations, trials, real-world applications;
simulation = based on modelling, scenario assumptions
∗denotes review or synthesis studies
†denotes the main studies used in the evidence synthesis

3) Quantitative impacts: uncertainty ranges: Table VI sum-
marises the maximum uncertainty range per digital application
from lower to upper bound of all impact estimates found in
the studies reviewed. Digitalisation impacts are expressed as
percent changes in activity, energy or emission metrics.

For P2P trading of consumer goods, the main impact is the
substitution of new goods production by sharing or renting
existing goods. Some studies also consider goods transport by
mode and distance [56]. For example, the range of impacts
for clothing-related applications represents variation across
garment type, material, and function [69]. Most studies es-
timate lifecycle GHG emissions. Koide, Murakami [64] sys-
tematically review consumer-oriented product-service systems
by application (e.g., clothes, books, media, tools) including

renting and sharing strategies (which also include mobility-
related applications). Fremstad [57] estimates changes in solid
waste generation as an outcome activity metric.

Usership impacts activity levels (numbers of devices) and
both operational and embodied energy of consumer good bun-
dles. E-materialisation studies report wide ranges depending
on adoption context and deployment conditions (e.g., emission
intensity of electricity) [17]. One simulation study estimates
energy impacts using optimistic assumptions of functional
convergence as digital devices displace large numbers of
single-purpose appliances [61]. However, the omission of
potential induced demand effects means energy savings are
overestimated [58].

For e-retail, the main impact is from substituting personal
shopping trips with last-mile delivery to homes. Most studies
estimate impacts on carbon footprint (kgCO2e) per purchase.
(A single purchase can consist of multiple items both online
and in-store). To provide context and scale: (1) the average
US consumer makes >300 in-store shopping trips per year;
(2) UK online shopping accounts for 27.6% of retail sales
[70]; (3) online shopping in China accounts for 13.7 MtCO2e
in 2018 [66].

TABLE VI
SUMMARY OF IMPACT ESTIMATES (LOWER – UPPER BOUND RANGES)

IN THE CONSUMER GOODS SECTOR.

digital
application

impact ranges
(∆A)

impact ranges
(∆I) or (∆E)

impact ranges
(∆C)

P2P trading
(goods)

∆A (kg waste)
-0.4% to +13%
[57]

∆C -89% to
+55% [all]

usership ∆A (kg/cap)
-65% to +3%
[61]

∆E -50% to
-12% [61]
∆E -90% to
+100% [17]

∆C -100% to
+100% [17]

e-retail ∆C -94% to
+140% [62]

Note: ∆A = % change in activity; ∆I = % change in intensity;
∆E = % change in energy use; ∆C = % change in CO2 or CO2e
[] denotes main studies used for ranges

4) Conditions explaining lower and upper bounds of un-
certainty ranges: For P2P trading of goods, impact estimate
ranges reflect heterogeneous characteristics of users and goods
and the extent to which renting or sharing displaces new
purchases. The lower bound assumes full displacement with
low rebound, long lifetime goods, and efficient transport of ex-
changed goods. In contrast, the upper bound assumes smaller
rental shares, rebound, and energy required for maintenance
and repair. Meta-analysis demonstrates the importance of in-
cluding rebound effects within study design system boundaries
[64].

For usership, ranges represent geographic differences be-
tween income and population in the Global North and South,
and scenario assumptions. In particular, the lower bound
estimates make more detailed assumptions on functional con-
vergence [61].

For e-retail, lower bound estimates are associated with large
reductions in personal car trips for shopping replaced by an



efficiently consolidated distribution network for e-retail goods.
Upper bound estimates are from additional consumer car trips
for shopping (e.g., store browsing prior to online purchase,
fragmented purchase, or purchase returns).

C. Impact Estimates from Statistical Models of Digitalisation
in the Industry Sector

In the introduction, we noted statistical modelling as an
alternative approach to estimating digitalisation’s indirect im-
pacts on energy. Rather than comparing digitalisation use cases
to a ‘without-digitalisation’ reference case to estimate percent
changes, statistical models fitted to panel data (countries or
industries over time) estimate the marginal effect of ICT
penetration over time on energy demand or greenhouse gas
emissions [10], [71]. This approach aggregates across all
digital applications so does not identify specific causal mech-
anisms or deployment contexts. As a result, impact estimates
tend to be smaller in magnitude and range.

As digitalisation is not the main effect on energy or emis-
sions, model results are sensitive to the non-ICT variables
included as controls for explaining energy and emission trends.
For country level studies, examples include economic struc-
ture, trade, R&D, urbanisation, and demographics [12].

Statistical modelling is common for both country-level
analysis and industry sector analysis or specific subsectors
like manufacturing. We summarise our review of this evidence
here.

1) Selected digital applications in industry and manufac-
turing: The fourth industrial revolution concept (Industry 4.0)
emphasises the integration of digital applications including AI
(artificial intelligence) and IoT (internet of things) into manu-
facturing and industrial processes [72]. This enables energy
savings through: (i) intelligent data-driven process control,
optimisation, and automation including IoT and digital twins;
(ii) substitution of resource-intensive manufacturing (including
through additive manufacturing); (iii) flexible or responsive
demand to support low-carbon electricity networks (industrial
demand response).

Here we focus on the cluster of digital applications designed
to improve industrial process efficiency and save energy in-
cluding through automation and monitoring (IoT).

2) Studies reviewed with quantitative impact estimates:
Table VII summarises the main characteristics of studies
reviewed that model observed relationships between ICT pen-
etration in industry or manufacturing sectors and resulting
impacts on energy. Different variables for digitalisation are
used including ICT capital and robot density, but also patent
intensity, hardware, software, or composite digitalisation in-
dexes depending on data availability.

As with economy-wide models, how models are specified
influences results. Most models control for variables that
affect industrial output, such as gross value added, number
of employees, and foreign direct investment. A few studies
consider mediators explaining the digital-energy relationship
and/or moderators of relationship strength.

TABLE VII
STUDIES REVIEWED PER DIGITAL APPLICATION

IN THE INDUSTRIAL SECTOR.

digital
application

n
studies

main
study
design1

geography refs

process
efficiency,
IoT and
automation

n=10 empirical OECD,
Europe,
China,
other
major
economies

[73], [74], [72],
[71], [75], [76],
[77], [78], [79],
[80]

1empirical = based on observations, trials, real-world applications;
simulation = based on modelling, scenario assumptions

3) Quantitative impacts: uncertainty ranges: Most studies
report digitalisation impacts in terms of energy intensity (∆I,
energy required per unit of gross value added) or energy
consumption (∆E). Some studies report impacts on carbon
intensity (∆CI, carbon emissions per unit output) or GHG
emissions (∆C).

Unlike with evidence from use-case studies, statistical mod-
els using panel data report percent change estimates as changes
associated with a +1% increase in digitalisation (measured
by ICT penetration). This is equivalent to the elasticity of
energy use with respect to ICT use. Elasticities are an indicator
of responsiveness measured as the percent change in an
outcome variable for a 1% change in an explanatory variable.
Relationships with elasticities of magnitude <1 are considered
inelastic (relatively unresponsive to change).

We denote this interpretation of the impact estimates by
using a subscript e such that ∆eE denotes a % change in
energy use associated with a 1% increase in digitalisation.
This is distinct from the use-case based impact estimates E
which denotes a % change in energy use relative to a without-
digitalisation reference case.

The full uncertainty ranges from the literature reviewed on
industry sector digitalisation are:

• ∆eI = -0.56% to +0.08%
• ∆eE = -0.58% to +0.04%
• ∆eCI = -0.70% to -0.28%

These elasticities are all less than one, but generally neg-
ative: i.e., digital applications in industry and manufacturing
lead to net energy-savings in absolute terms or through in-
tensity improvements (either in energy or carbon). However,
two studies find increases in ICT capital (as a measure of
digitalisation) does not automatically translate into improved
energy intensity unless it is actively managed [73], [74].

One advantage of the panel data models used in this type of
evidence synthesis is that their system boundaries are drawn
widely over whole industrial or manufacturing sectors over
time and so capture different indirect impact mechanisms.
However, studies that report impacts in relative terms of energy
or carbon intensity per unit output do not capture induced
demand or growth in output (‘scale effects’) resulting from
efficiency gains.



IV. DISCUSSION: EVIDENCE SYNTHESIS FROM USE CASES
IN TRANSPORT AND CONSUMER GOODS SECTORS

The impact estimates expressed as elasticities in the in-
dustrial sector are not directly comparable with the use-case
evidence expressed as percent changes relative to a without-
digitalisation reference case in the transport and consumer
goods sectors. Here we focus our discussion on the use-case
data.

A. Availability & generalisability of evidence:

Overall we find there is sufficient evidence available for
quantitatively assessing the indirect impacts of digitalisation
on energy across many different types of application and
context (Figure 1). For all digital applications we find quan-
titative impact estimates are available from multiple studies,
and in some cases systematic reviews, meta-analysis, or other
syntheses.

Although studies are more common in Europe and North
America, there is a good number of studies from China and
other Asian countries, as well as some studies from typically
underrepresented regions in global evidence syntheses of this
type such as the Middle East.

B. Opportunities & mechanisms that save energy:

Some digital applications show significant potential benefits
for energy or emission reductions (e.g., teleworking reductions
down to -15%; shared ridehailing to -55%; MaaS to -50%; P2P
trading of goods to -89%; e-retail to -94%); see also Figure 1.

These energy-saving potentials per application are achieved
by specific mechanisms through which digitalisation affects
energy use. These include substitution effects (e.g., shared
mobility for private mobility), efficiency improvements and
optimisation (e.g., freight logistics) and system integration
(e.g., VGI).

C. Risks & mechanisms that increase energy:

Some digital applications show significant potential to un-
dermine efforts to reduce energy or emissions unless carefully
managed (e.g., ride-hailing increases up to +94%; autonomous
vehicles to +60%; P2P trading of goods to +55%; e-retail to
+140%); see also Figure 1.

These energy-increasing potentials per application are also
explained by specific mechanisms through which digitalisation
affects energy use. These include perverse substitution effects
through which a more energy-intensive activity displaces a less
energy-intensive activity (e.g., shared mobility substituting for
cycling or walking), rebound effects (e.g., AVs), and induced
demand effects (e.g., teleworking, P2P trading of goods).

D. Relative vs absolute impacts on energy:

The impact estimates are expressed in relative terms (per-
cent changes) and can be easily compared. How they translate
into absolute impacts on energy (GJ) or emissions (tCO2) de-
pends on the scope and footprint of the activities to which they
apply (e.g., commuting travel for teleworking, urban travel
for ridehailing, or electric vehicle use for VGI). Consequently

some large percent changes may be relatively inconsequential
for total energy use (e.g., dematerialisation).

Large positive or negative impacts in relative terms are also
diluted when scaling from best or worse cases to aggregate ef-
fects across whole sectors. This is clearly shown by comparing
the use-case based ranges in Figure 1 with the much smaller
whole sector elasticities for the industry sector. Although these
measure a different type of effect size, comparing the effect of
1% ICT penetration with an order of magnitude higher 10%
ICT penetration would still only be associated with an impact
estimate range less than -10%.

E. System boundaries & rebound effects:
How studies of digitalisation impacts define system bound-

aries is an important determinant of estimate ranges. In gen-
eral, studies with more comprehensive system boundaries tend
to have smaller lower bound impact estimates; the more impact
mechanisms included, the lower the net energy-savings. In
particular, studies that explicitly include induced demand and
rebound effects report offsetting increases in activity or energy
that reduce net energy-saving benefits. This is emphasised
statistically by a meta-analysis of impact estimates in the
consumer goods sector [64].

Induced demand and rebound effects are included within
study designs for most but not all of the digital applications
reviewed. These include teleworking (less commuting travel
resulting in more leisure and retail travel), ridehailing (cheaper,
quicker, more convenient private taxis resulting in more taxi
travel), and P2P trading (wider choice of cheaper goods
resulting in more goods purchased).

Study system boundaries that exclude induced demand and
rebound effects may either have trivial or significant conse-
quences on impact ranges. For some digital applications, the
cost, time, or convenience benefits of digitalisation are small
relative to other usage attributes. These applications include
MaaS (easier multi-modal travel journeys), VGI (additional
value stream for EV owners from offering ancillary services
to the grid), and freight logistics optimisation (reduction in
fuel costs). However, for other applications, digitalisation
significantly increases the appeal of an activity resulting in
large effects on demand that bias impact estimates downwards
if omitted. These applications include e-retail (easier, quicker,
more impulsive consumption), and usership (proliferation of
digital devices).

For many digital applications, indirect impacts on transport
activity for people, goods, or materials are important but can
sometimes fall outside study system boundaries. Although
these tend to be induced demand effects for more transport
activity (e.g., teleworking impact on leisure travel, e-retail
impact on freight activity), they can also be substitution
effects resulting in less transport activity (e.g., MaaS or shared
ridehailing reducing vehicle.kilometres travelled in single oc-
cupancy cars).

F. Impact uncertainty & deployment conditions:
Overall, for the impacts of digital applications in transport

and consumer goods sectors we find strong evidence of both



large reductions in energy use (e.g., shared ridehailing: -55%
to -18%) and large increases in energy use (e.g., ridehailing:
+41 to +90%). These two examples are for digital applications
with consistently negative or consistently positive impacts on
energy use.

However, for most applications, we find evidence of impacts
spanning both negative and positive impacts depending on
application characteristics and deployment conditions (e.g.,
mobility-as-a-service, MaaS: -50% to +20%). Consequently,
we find that impact estimates tend to vary widely, with larger
ranges for digital applications that vary across subsectors,
contexts, user types, or geographies. This contextual variation
encompasses differences in business models (e.g., P2P trad-
ing), physical infrastructure (e.g., VGI), urban setting (e.g.,
MaaS, shared ridehailing), location (e.g., teleworking), and
user behaviour (e.g., e-retail).

Although this makes it hard to generalise how any given
digital application will impact energy use, there are some
common features of the lower and upper bounds to impact
ranges.

First, lower bound estimates tend to be associated with
optimistic or best-case deployment conditions. These are most
common in modelling simulations of digital applications with
limited real-world deployment data (e.g., VGI, MaaS, shared
ridehailing). Best-case conditions take the perspective of a so-
cial planner by optimising how an integrated system functions.
In contrast, upper bound estimates tend to be associated with
fragmented or competitive service provision and privately-
oriented business models resulting in externalities like con-
gestion.

Second, lower bound estimates also tend to assume or
estimate no or small rebound; upper bound estimates include
larger rebound.

Third, lower bound estimates may leverage larger energy
or emission savings by aligning digitalisation with other
decarbonisation or efficiency strategies (e.g., vehicle electri-
fication). This recognises that energy-saving potentials from
digitalisation are not transformative in isolation. Upper bound
estimates do not exploit these synergies.

This provides simple prescriptions for achieving net energy-
savings across widely different digital applications and de-
ployment contexts: (1) limit potential rebound through pricing
or other constraints on activity increases; (2) incentivise and
design business models that maximise overall service effi-
ciency; (3) integrate activities enabled by digital applications
into wider systems of provision (e.g., for mobility); (4) align
digitalisation with climate mitigation strategies.

G. Impact uncertainty & methodological variation:

Study design and methodological approaches for assessing
digitalisation impacts also affect estimate uncertainty. In gen-
eral, empirical studies based on observational data from real-
world deployment report narrower ranges than simulation stud-
ies using scenario-type assumptions about future deployment
that are designed to explore a wider hypothetical possibility
space.

Choice of impact metric also affects uncertainty ranges. In
general, activity metrics have wider impact ranges than those
using energy or emission metrics. Activity is a precursor to
energy use which in turn is a precursor to emissions, so the
three metrics are generally consistent in direction and magni-
tude. However, in some cases, confounding effects break this
consistency, for example, when digital transport applications
are also associated with vehicle electrification which results in
smaller changes in activity leading to larger changes in energy
or emissions due to fuel substitution rather than digitalisation
per se. If changes in activity or energy use involve electricity
as an energy carrier, then the emission intensity of electricity
is another important confounding factor for emission metrics.

For digital applications that interact with the energy sup-
ply (e.g., electric vehicle-grid integration, VGI), impacts are
expressed indirectly through changes in the penetration or
curtailment of intermittent renewable energy generation. While
an important enabling effect of digitalisation on the energy
supply sector, this makes the impact estimates harder to
compare.

V. CONCLUSIONS

Overall, our evidence synthesis of the indirect impacts
of digitalisation in transport, consumer goods, and industrial
applications shows clear potentials to reduce energy demand,
but with specific and identifiable risks of induced demand and
rebound in some cases. The conditions we identify that explain
the lower and upper bounds of the impact ranges help informed
deployment and policy to ensure digitalisation contributes to
net-zero goals.

Although observed impacts of discrete applications can be
large (both negative and positive) when expressed in relative
terms, scaling from best or worse case conditions per applica-
tion to aggregate effects across whole sectors means absolute
impacts are much smaller. As a result, the energy-saving
potential of digitalisation is not transformative in isolation,
but needs to exploit synergies with other decarbonisation
processes.

An important next step is to extend the evidence synthesis
to use cases from high-impact digital applications in the
buildings sector (e.g., smart heating and cooling, energy
management systems, demand response) and in industry (e.g.,
digital twins, robotics and automation, additive manufacturing)
[6].
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