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Abstract—Buildings account for a significant share of global
energy consumption, with Heating, Ventilation, and Air Condi-
tioning (HVAC) systems being responsible for up to 60% of a
building’s energy usage. For this purpose, existing scheduling
and control solutions can be used to design more sustainable
energy systems and limit their environmental impact. However,
these approaches mainly consider HVAC, ignoring other energy
systems in buildings such as lighting control and plug loads. In
addition, these solutions have to be customized for a specific
building instance, hindering portability across different appli-
cation domains. This paper presents a holistic approach for
efficiently scheduling smart building energy systems through
AI planning methodologies. AI planning enables decoupling
domain knowledge from problem representations, enhancing
portability and allowing for straightforward runtime adaptation
when needed. We evaluate our approach in a smart office setting
and show how AI planning enables reducing energy consumption
by up to 30%.

Index Terms—Energy Efficiency, Energy Systems Scheduling,
AI Planning, Adaptation

I. INTRODUCTION

Buildings consume a significant amount of energy, account-
ing for approximately one-third of global energy consump-
tion [1], [2]. The environmental impact of energy consumption
in buildings is increasingly recognized, leading to a growing
demand for sustainable building practices. Improving energy
efficiency in buildings can help reduce global energy con-
sumption and associated greenhouse gas emissions, leading to
a more sustainable and environmentally-friendly future. The
Heating, Ventilation, and Air Conditioning (HVAC) system
stands out as one of the most energy-intensive components
within buildings, accounting for 38% of total energy con-
sumption worldwide [2], [3], but reaching up to 60% in
more extreme climate zones [2]. Nonetheless, it is crucial
to acknowledge the influence of other energy systems within
buildings, including lighting control, plug loads from electrical
appliances and equipment, and building automation systems.

Optimizing these energy systems can yield a significant
reduction, up to 60%, in overall energy consumption [4].
Moreover, the proliferation of sensors and Internet of Things
(IoT) devices provides monitoring capabilities in buildings,
which can be exploited to offer tailored and real-time optimiza-
tion solutions according to the observed situations. Therefore,
smart buildings can greatly benefit from scheduling solutions
of energy systems operations to achieve more sustainable

practices. For instance, motion sensors and video cameras
may provide occupancy states of rooms and working spaces
in office buildings; thermostats and humidity sensors can be
used for thermal comfort purposes in residential buildings;
and smart plugs can capture information about the energy
consumption of electric equipment. Building administrators
typically want to schedule the operation of energy systems in
buildings for different purposes, e.g., meeting load demands,
ensuring occupants’ thermal comfort or reducing energy con-
sumption. Currently, this process requires domain expertise
and is performed for each energy system independently. This
task becomes even more complicated when we consider the
dynamicity of today’s buildings. For instance, modern office
buildings operate in a hybrid mode where employees work
from home on certain days of the week, attend the office on
other days, and occasionally gather in the office all together
for specific events.

Designing sustainable and energy-efficient systems in smart
buildings has gained significant attention recently. Most of the
existing state-of-the-art solutions focus on the optimization
and control of HVAC systems to reduce energy consump-
tion [5]–[7]. The use of Artificial Intelligence (AI) and Ma-
chine Learning (ML) techniques is becoming more prominent
lately, especially for buildings that support real-time moni-
toring with IoT devices and sensors [8]–[12]. However, such
solutions largely ignore energy systems besides HVAC, and
thus fail to capitalize on an all-inclusive framework to exploit
the full potential of energy savings that can be achieved in
buildings. In addition, data-driven approaches heavily rely on
accurate and reliable data input. Any deviation from normal
behavior during runtime results in sub-optimal solutions, ne-
cessitating the retraining of utilized models in such dynamic
buildings. Finally, most existing solutions are custom-made,
tightly coupled with the specific buildings’ properties and
characteristics, hindering their portability in different building
types or different situations.

This paper presents the first approach, up to the authors’
knowledge, that leverages AI planning [13] to offer a holistic
solution for efficient scheduling of energy systems operations
in smart buildings. In particular, AI planning enables the
definition of generic domain knowledge including possible
scheduling actions within a single AI-domain model that may
be used for any smart building of the same type (e.g., airport



buildings). Subsequently, the unique properties of a particular
building, including spatial and contextual information, are
encapsulated within an AI-problem file. An AI planner uses a
domain model and problem file to generate an efficient energy
system schedule that minimizes energy consumption. This
allows defining a single instance of the domain model that may
be paired with different problem files representing different
buildings or building situations. The main contributions of this
paper can be summarized as follows:

– Enabling cross-building portability of scheduling solu-
tions by separating domain knowledge from problem
representations.

– Enabling runtime adaptation of generated schedules
through re-planning capabilities.

The rest of this paper is organized as follows. Section II
provides an overview of the state-of-the-art for designing
energy-efficient systems, as well as existing approaches relying
on AI planning. In Section III, we present an overview of our
proposed approach, and then go into the details of our solution
in Section IV. Section V shows the experimental evaluation
of our solution, and Section VI concludes the paper.

II. RELATED WORK

This section provides an overview of the literature concern-
ing the scheduling of energy systems to enhance operational
efficiency. It then provides a comparison of these works against
our proposed solution.

The intersection of Information and Communication Tech-
nology (ICT) and energy efficiency has garnered increasing
attention in recent years [14]. Given its substantial energy
consumption, optimizing the energy efficiency of HVAC sys-
tems in buildings has become a priority, and several strate-
gies have been developed for this purpose. Some preva-
lent occupancy-based approaches include setting back the
thermostat during unoccupied hours and at times when the
building is vacant [5]. Other works focus on saving energy
using systems such as lighting control, window shading, and
controlling plug loads [4]. For instance, [9] controls lighting
systems by estimating the behaviors of occupants in residential
buildings. Other existing approaches control HVAC systems
based on thermal comfort feedback provided by occupants [6].
More sophisticated solutions include the application of Model
Predictive Control (MPC) and Adaptive Predictive Control
Strategies (APCS) [8]. Such strategies enable scheduling
HVAC operations efficiently by relying on their capability
of forecasting dynamic future conditions [15]. For instance,
[10]–[12] utilize occupant number prediction to adjust HVAC
and save energy. Reinforcement learning (RL) is another
technique used as a scheduling solution for HVAC systems,
as described in [16]. These algorithms learn from experience
and can adapt to changes in the environment, making them a
suitable approach for HVAC systems. RL is specifically uti-
lized to optimize energy efficiency and thermal comfort. Other
scheduling solutions for HVAC systems include rule-based
scheduling, heuristic scheduling, and genetic algorithms [5].
These approaches have been shown to be effective in various

types of buildings and environments and have been the subject
of extensive academic research.

Finally, Digital Twin (DT) approaches for buildings offer
significant potential for enhancing HVAC performance by
providing a dynamic and real-time simulation environment [7].
In [17], authors propose the application of DT to an energy
recovery ventilation unit to improve the operational efficiency
of the HVAC system. Additionally, [18] proposes a DT frame-
work for HVAC systems to improve thermal provision ability
and energy efficiency.

Despite the above efforts, there has been a relative lack of
focus on cross-building portability of the developed solutions
and dynamic scheduling of energy systems. Current data-
driven methods often overlook the potential for a generic,
adaptable building model, leading to the need for extensive,
scenario-specific modifications. Such prolonged and frequent
adjustments not only increase the complexity but also con-
tribute to additional usage of computational resources and
energy resulting from training and running AI/ML models
[19]. Thus, this work provides a solution for scheduling of
energy systems (including HVAC) using AI Planning that
focuses on cross-building portability and runtime adaptation.
Efficient schedules for different runtime situations of buildings
will also be considered (e.g., scale up rooms, occupants etc.).

III. OVERVIEW

This section provides two motivating scenarios to highlight
the needs and challenges associated with providing efficient
scheduling solutions for energy systems operations. Then,
it introduces how we leverage AI planning for generating
schedules for efficient energy systems operations.

A. Smart Building Energy Systems Scheduling

We consider the case of a smart office building, where
employees adopt a hybrid working mode (remote and on-
site). This means that the number of employees present in
the building in any given day may change, depending on the
number of people opting to work from home. For such cases,
current practices require generating energy systems operations
schedules on a day-to-day basis. Smart technologies can be
used for generating such schedules, especially that they have
the potential to achieve energy savings that go up to 60% [4].
Indeed, IoT devices and data can be exploited to get insights,
analyze patterns and provide more efficient schedules for
the various energy systems that co-exist in the building. For
example, in office buildings, rooms’ occupancy patterns can
be learned from sensor data to efficiently schedule HVAC
systems, control lighting, and provide the needed electric
load according to the number of occupants and activities
taking place in different rooms throughout the day. Note that
we consider that data provided by devices is accurate, and
handling faulty sensing situations is out of the scope of the
paper.

However, in smart buildings, providing a holistic solution
for scheduling energy systems operations is not a trivial
task and requires addressing multiple challenges. First, even



though there exist approaches for automating the scheduling of
energy systems operations, they usually target HVAC systems
only, and hence do not capture the potential efficiencies
that can be achieved by integrating and coordinating all
energy systems within a building. Second, buildings can be
dynamic environments where space properties are constantly
changing. For example, the number of occupants in rooms
can change on an hourly or daily basis. In addition, the
carbon intensity may change depending on the electricity
provider [20]. This requires providing scheduling solutions
that are flexible enough to enable frequent re-configuration
when certain properties of buildings change, in a timely and
cost-effective manner. Finally, most existing solutions have to
be tailored to one specific instance of a building. This happens
either by training machine learning models on a representative
dataset of a building, or by embedding buildings’ properties
and characteristics into custom-made solutions. This hinders
the portability of such approaches, and solutions may not be
readily applied for different systems and in different situations.
For instance, solutions targeted towards office buildings may
not be directly applied to airport buildings, and may necessitate
re-training models, revising some aspects to take additional
needs into consideration.

B. Power Generation Scheduling of Hydropower Plants

Another case we consider is a hydropower plant, where
appropriate power generation scheduling - referring to the
strategic planning of when and how much electricity to gener-
ate - is fundamental to reducing resource waste and increasing
equipment lifespan. However, providing a comprehensive so-
lution for hydropower plant scheduling is not straightforward
and involves multiple challenges. Firstly, seasonal changes and
weather conditions, as well as the highly nonlinear nature
of the rainfall-runoff process makes it unfeasible to rely
solely on historical data and real-time weather forecasts to
predict variability of water inflow in extreme weather which
is essential for estimation of energy generation. In addition,
the fluctuations in electricity demand, environmental impact
concerns and maintenance requirements significantly influence
the plant’s ability for consistent power generation and re-
quire adapting the schedules according to specific situations.
Existing approaches often focus on specific aspects of the
operation [21], such as optimizing generation based on water
inflow prediction or volume of water in reservoirs, without
integrating other considerations. In addition, many current
solutions are customized for specific plants, trained based on
private and local historical data.

C. Solution overview

To address the aforementioned challenges, this paper
presents an approach for efficient scheduling of energy sys-
tems operations in smart buildings by leveraging AI Planning
methodologies. AI Planning is a model-based technology
devoted to decision making, which can be used in a variety
of application domains. Traditionally, robotics [22] has been a
paradigmatic application area, but other uses including flexible
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Fig. 1: Cross-building AI planning for efficient scheduling of
energy systems.

manufacturing [23], agriculture and process management [24],
and adaptive management of IoT Data flows [25] can be
found in the literature. There are very few works utilizing AI
planning for enhancing energy efficiency. In [26], ontologies
are used for user activity recognition, and planning based
on Hierarchical Task Networks is used for controlling device
operations using sensors and actuators. [27] uses AI planning
for controlling operations in network systems while reducing
energy consumption.

The novelty of using AI planning for scheduling energy
systems operations lies in the separation of domain knowledge
representation and problem instances. In particular, as shown
in Figure 1, AI planning defines a domain file – also called AI-
domain model – that contains generic information to represent
any smart building type (e.g., airport buildings). These include
general properties of IoT devices that may be deployed, energy
models used to evaluate energy consumption [28], and actions
for scheduling the operations of various energy systems.
Because it encapsulates generic information, the domain file
is defined once per building type. Then, the problem file
– also called AI-problem – captures information related to
a specific building instance under a specific situation (e.g.,
a typical working day in a university building). The file
includes spatial information such as the number and type of
rooms in a building, context information provided by IoT
data (temperatures inside rooms, occupancy levels in rooms,
etc.), constraints that have to be taken into account (e.g.,
temperature bounds for thermal comfort), and other properties
of the building instance. In addition, the problem file includes
defining a goal state, e.g., reducing energy consumption or
carbon footprint. We explain in detail how the domain and
problem files are designed in Section IV.

The domain and problem files are then fed to an AI
planner [29] that generates a plan consisting of a schedule
for the various energy systems, aiming to minimize energy
consumption. For this purpose, the planner leverages algo-
rithms based on forward/backward chaining search and/or
heuristics (e.g., A∗ algorithm) to find a plan that optimizes
metrics defined in the problem file. The specific algorithm
used for solving the planning problem depends on the planner;
for example, the LPG [30] planner relies on local search
to find plans, while Metric-FF [31] is built on top of the
Fast-Forward planning system [32]. To provide schedules for
different building instances, only the problem file that contains



buildings’ properties needs to be modified. Consequently,
the primary advantages of using AI planning over other
approaches for scheduling energy systems operations include:
(i) providing an energy-efficient schedule that integrates and
coordinates all energy systems by defining appropriate actions
that can be performed, (ii) enhancing portability through
decoupling of domain knowledge and problem representations,
and (iii) enabling adaptation under different situations through
re-planning.

IV. EFFICIENT SCHEDULING OF ENERGY SYSTEMS

This section presents the planning methodology for effi-
ciently scheduling energy systems in smart buildings. While
this involves using state-of-the-art AI planners as a black box
to provide schedules for efficient energy systems operation,
defining the AI domain knowledge and problem files is not
a trivial task, since we have to capture context information,
runtime behavior and goals. We start first by providing an
overview of automated planning systems. Then, we show
how domain models and problem instances are created for
generating schedules in energy systems.

A. AI Planning

An AI planning system (“planner”, for short) takes a prob-
lem formalisation, or model, as input and uses some problem
solving technique, such as heuristic search, propositional satis-
fiability, or other, to work out its solution. [29]. The descriptive
models used by planning systems are called planning domains.
These include a description of the planning environment, i.e.,
states, and actions that can be taken by the planner in order to
reach a certain goal. In addition, a cost can be associated with
one or more actions. Formally, we define a planning domain
as follows:

Definition 1: Planning Domain. A planning domain is a
state transition system Σ = (S,A, γ, C), where:

– S is a finite set of states of the system. These refer to
the states of the energy systems under consideration (e.g.,
temperature setpoints, luminosity levels).

– A is a set of actions that may be performed by an agent.
Actions are used to alter systems based on conditions and
effects (e.g., turning ON/OFF HVAC systems, increasing
maximum plug load).

– γ : S×A → S is the state transition function. If γ(s, α) is
defined then action α is applicable to state s, with γ(s, α)
being the predicted outcome. For example, turning ON
the cooling system in a specific room may lead to a
decreased temperature in that room.

– C : S × A → [0,∞) is a cost function with the same
domain as γ. It can represent a cost function minimizing
monetary cost, energy consumption or other parameters
that have to be optimized.

Given a planning domain, we can then define one or more
planning problems P = (Σ, s0, G) where Σ is a state-
transition domain, s0 is the initial state, and G is a set of
ground literal goals. The goal state is typically the desired final

state of the system, for example meeting certain energy de-
mands, or achieving energy savings while taking into account
people’s thermal comfort preferences. We propose a planning
problem to generate a schedule for the operations of energy
systems aiming to reduce energy consumption. For the sake of
clarity and conciseness, we only consider temperature and light
control systems in the provided examples. However, note that
the definition is generic enough to cover any energy system. To
define the planning problem, we first model a planning domain
(defined earlier) and an initial state s0, where all energy
systems are turned off. s0 also includes information about
building properties to be taken into account when scheduling
energy systems, such as the number of occupants in each
room ri at each time t, occri(t), the inside temperature θinri (t)
inside each room, the outside temperature θout(t), and the
lighting levels ϕri(t) inside rooms at a given time. In addition,
constraints such as inside temperature bounds θmin and θmax

and minimum lighting level ϕmin are defined. The goal state
G is one where all constraints are met

[1] θinri (t) >= θmin

[2] θinri (t) <= θmax

[3] ϕri(t) >= ϕmin

(1)

An AI planner takes as input a planning domain and a
planning problem, and finds a solution consisting of a set of
actions that transform the system from the initial state to reach
the final desired goal state.

Definition 2: Plan. A plan is a finite set of actions:

π = ⟨α1, α2, . . . , αn⟩ (2)

where the plan’s length |π| is n, and its cost is the sum of the
action costs: cost(π) =

∑n
i=1 cost(ai) . A plan π is applicable

to a state s0 ∈ S if there are states s1, s2, . . . , sn such that
γ(si−1, αi) = si for i = 1, . . . , n. In this case, γ(s0, απ) = sn
(with απ being the last action in plan π). A solution for P is
a plan π′ such that γ(s0, α1) . . . γ(sm, α′

π) satisfies G.
In our case, the planner generates a plan π = ⟨α1, α2, ..., αn⟩
where the total energy consumption ϵtotal is minimized, and all
goal conditions are met. π is a schedule consisting of a series
of actions to configure energy systems at several timesteps,
according to the initial situation of the building, defined in
s0. Techniques used to generate plans from the initial state to
the goal state include: (i) graph based search techniques, (ii)
state-transition systems, (iii) constraint solvers that make use
of symbolic predicates, constraints and effects, (iv) heuristic
approximations such as removing negative predicates. Com-
parison of scale, benchmarking and speed of AI planning
solvers has been evaluated within the International Planning
Competition held bi-annually since 20001. The planners (clas-
sical, temporal, uncertainty tracks) have been compared based
on the scale of problems, heuristic planning accuracy and time
taken to solve benchmark problems.

1https://www.icaps-conference.org/competitions/



B. Scheduling Energy Systems with AI Planning
To express planning domains and problems, we use the

Planning Domain Definition Language (PDDL) [29]. PDDL is
an action-centered language that enables defining states (also
called predicates), and actions with preconditions and effects.
PDDL divides the definition of a planning problem into two
parts: the domain defines the state variables and actions, while
the problem defines the initial state of the environment and
the goal conditions, as well as one or more metric to be
optimized. The same domain description may be paired with
multiple problem instances, with varying grounded objects,
initial conditions, goals, and cost functions.

Listing 1: PDDL Domain File
1 (:types room sensor window system property -object
2 hvac window_shading lighting_control -system
3 temperature_sensor light_sensor -sensor
4 occupancy -property))
5 (:predicates
6 (hvac_on ?h -hvac)
7 (open ?ws -window_shade)
8 (light_on ?l -lighting_control)
9 (temperature_set ?h -hvac)

10 (occupied ?r -room)
11 ...)
12 (:functions
13 (number_occupants ?o -occupancy)
14 (temperature_inside ?r -room)
15 (temperature_outside)
16 ...
17 (lighting_level ?r -room)
18 (plug_load ?r -room)
19 (energy_consumption)
20 (:action temperature_setting_cooling_21
21 :parameters (?o -occupancy)
22 :precondition (and (>=(time)0)
23 (=(occupancy_type ?o)1)
24 (>(temperature_outside) (max_temperature))
25 (>=(number_occupants ?o)4)
26 (<=(number_occupants)6))
27 :effect (and (assign (temperature_setting) 21)
28 (increase (energy_consumption) 6000))
29 (:action light_setting_500
30 :parameters (?o -occupancy ?ws -window_shading)
31 :precondition (and (>=(time)0)
32 (=(occupancy_type ?o)2)(not (open ?ws))
33 :effect (and (assign (lighting_level) 500)
34 (open ?ws) (increase (energy_consumption) 2000))
35 (:durative-action hvac_cooling_off
36 :parameters (?o -occupancy)
37 :duration (=? duration 1)
38 :condition (and
39 (at start (on)) (at start(cooling))
40 (at start (>=(temp_inside)(min_temp)))
41 :effect (and (at start (not(on)))
42 (at end (increase (time)1))
43 (at end (increase(temp_inside)
44 (+(*(*(nb_occupants)0.5)-1)2))))

1) Defining domain models: As shown in Listing 1, the
domain file specifies the type of objects that exist in the smart
building. In particular, we define rooms, sensors that may
be installed in rooms, and the energy systems for which we
provide a schedule – in this case HVAC, window shading, and
lighting systems (Lines 1–4). We then define predicates, which
are propositions that represent the state of the environment
and may either be true or false. For example, we can define
predicates that reflect the state of the HVAC system (whether
it’s turned ON or OFF) or the state of rooms’ occupancy
(Lines 5–10). In addition, the numerical planning subset of
PDDL allows introducing state variables whose values are

rational numbers. These are instances of functions whose
values can be modified by actions (Lines 12–19). In our
domain definition, functions are used to model and control
temperatures inside and outside rooms, the level of lighting in
rooms, and plug loads throughout a smart building.

We next define the actions that can be taken by the AI
planner to schedule energy systems (Lines 20–44). Actions
in PDDL are characterized by parameters, preconditions that
must be satisfied prior to executing the action, and effects.
We first define actions for selecting the initial configura-
tion of different systems at the beginning of the schedule
(HVAC temperature setpoint, lighting levels, etc.). For in-
stance, Lines 20–28 show an action to set up the temperature
for HVAC systems depending on the outside temperature,
inside temperature, and number of occupants inside a room.
Similarly, the action defined in Lines 29–34 is used by the
planner to set up the lighting and window shadings. Note
how the effect of each action includes increasing the value
of the energy_consumption function. As described later,
this function is used as a cost function to be optimized by the
planner when searching for an efficient schedule.

We further define durative actions to provide a schedule for
controlling energy systems. These are a special type of actions
characterized by the fact that they are executed over a specific
duration, rather than instantly. In addition, preconditions and
effects of such actions are annotated with special durative
tags to specify when a proposition holds: (i) a proposition
can hold at the start of the interval (time point when the
action starts)—i.e. keyword at start; (ii) a proposition can
hold at the end of the interval (time point when the action
effects are asserted)—i.e. keyword at end; (iii) a proposition
should hold over the entire interval (invariant over the action
duration)—i.e. keyword over all. For example, Lines 35–
44 in Listing 1 show a durative action for turning OFF the
cooling system after the temperature inside a room has reached
a specified threshold. Note how this condition should hold at
the start of the action (Line 40). The effects of this action —
increasing the time and the inside temperature — characterized
with the at end keyword, will take place after the action has
been executed (Lines 42− 43).

2) Defining problem instances: In the PDDL problem file,
we instantiate objects and define the initial state of the smart
building.

Listing 2: PDDL Problem File
1 (:init
2 (=(temperature_outside) 27)
3 (=(temperature_inside) 27)
4 (=(energy_consumption) 0)
5 (=(min_temperature) 20)
6 (=(max_temperature) 23)
7 (=(number_occupants ?o) 2))
8 (:goal
9 (and

10 (all_done)
11 (>=(temperature_inside) 20)
12 (<=(temperature_inside) 24)))
13 (:metric minimize (energy_consumption))

As shown in Listing 2, the problem file includes initializing
values for the outside and inside temperature, the number of



occupants in the room, and thermal comfort bounds. Such
information can be provided by the different sensors deployed
in a smart building via querying a smart building’s data
management system. The energy_consumption function is
initialized to 0, with each action increasing its value by
specified increments, as described earlier. Our goal is to
provide a schedule for the whole scheduling period, while
keeping the temperature inside the rooms within bounds that
take into account the thermal comfort of occupants (Lines 8–
12). In addition, we further specify a metric to be minimized.
In our case, we want the planner to provide a schedule
that minimizes the total energy consumption. Hence, the AI
planner will choose actions that result in the minimal value for
the energy_consumption function, all the while satisfying
the conditions specified in the goal state. Note that a planning
horizon can be specified to provide schedules tailored to
different use cases. For instance, in office buildings, schedules
are typically needed only during operation hours (e.g., from
8 a.m. to 7 p.m.), whereas in airports, planning is required
continuously and may be triggered periodically (e.g., every
few hours) as needed.

A part of an example output using PDDL planners such as
LPG [33] is provided below:

1 0.0010: (TEMPERATURE_SETTING_21 O1) [D:1.0000; C:0.1000]
2 0.0012: (TURN_COOLING_ON R1) [D:1.0000; C:5500.0000]
3 1.0013: (HVAC_IS_COOLING R1) [D:1.0000; C:4000.0000]
4 2.0015: (HVAC_COOLING_OFF R1) [D:1.0000; C:0.1000]
5 3.0017: (TURN_COOLING_ON R1) [D:1.0000; C:5500.0000]

The plan indicates the temperature setpoint for the HVAC
system, and turning ON and OFF the HVAC according to
intervals defined in the domain file.

C. Enabling Cross-Building Scheduling of Smart Energy Sys-
tems

A distinguishing feature of AI planning is the separation of
domain models and problem instances. This enables domain
knowledge to be captured and modeled in one domain file that
includes all possible actions that can be taken by the planner,
regardless of the specific problem instances. In contrast, in
data driven approaches that leverage machine learning for
optimizing energy consumption, it is necessary to train models
for each building instance. Even in cases where a generic
model can used for different buildings, there is still a need
for fine-tuning to guarantee an optimal performance of the
energy system. Hence, the separation provided by AI planning
between domain knowledge and building representation proves
to be particularly advantageous, since it allows to effectively
decouple the general domain knowledge from the particular
problem instances; we encapsulate in the domain file the
general rules, constraints, and actions that can be taken by the
planner for controlling energy systems in any smart building
(e.g., setting temperatures, scheduling systems).

On the other hand, the problem file includes details about
a particular smart building instance in a specific situation.
We can thus define multiple problem files for different smart
buildings, or for the same building under different conditions,

without needing to change the existing domain model. For
example, the same domain file shown in Listing 1 may
be coupled with two different problem files that represent
different types of buildings (e.g., office building vs. elderly
care facility). The different characteristics of these buildings
will be captured in the problem file (Listing 2) which can also
include different metrics to optimize for: the thermal comfort
of occupants may be more important in the elderly care facility
than in the office building. In addition, the same domain model
can be used with problem files that represent buildings in
different climate zones.

Hence, the primary advantage of using AI planning is
enabling portability of domain knowledge of all energy sys-
tems by encapsulating all possible configuration actions in
one domain file, and instantiating different problem to handle
different situations in buildings. This also allows for quick
runtime adaptation, e.g., in case of an emergency situation,
which would otherwise require re-training Machine Learning
models or re-modeling optimization solutions. As part of our
future work, we plan to define problem files that capture differ-
ent needs of building administrators and country regulations.
Using weighted metrics, plans can be generated to optimize for
multiple objectives, such as energy consumption, occupants’
thermal comfort, and carbon footprints.

V. EXPERIMENTAL EVALUATION

This section provides the experimental evaluation of our ap-
proach. We first present the experimental setup used through-
out the evaluation, and how we generate energy scheduling
plans in V-A. We then evaluate the generated schedules
against current practices in V-B, and showcase the adaptation
capabilities of our approach in V-C. We finally show in V-D
how our models can be adapted for defining actions depending
on building administrators’ specific needs.

A. Experimental Setup

We evaluate our approach by generating plans for schedul-
ing the HVAC system in an office building. For this purpose,
we use Co-zyBench [7], a benchmarking platform for evalu-
ating the performance of HVAC control systems in terms of
occupants’ thermal comfort and energy efficiency. As shown in
Figure 2, Co-zyBench consists of the following Digital Twins
(DTs): (i) the Building DT for modeling and simulating a
building and its HVAC system; and (ii) the Occupant DT
for modeling and simulating occupants’ trajectories in the
building. A co-simulation middleware integrates these DTs
with our AI planner to provide HVAC schedules.

1) Building DT: To create the Building DT, Co-zyBench
integrates EnergyPlus2 for simulating the HVAC system. We
use the DT to represent an office space from The Office, a
popular US sitcom. The space comprises three office rooms, a
conference room, a restroom, a breakroom and a kitchen, with
a gross area of 268m2 (see Figure 2). The office rooms are
shared by people who are assigned to work in specific rooms,

2https://energyplus.net/



Fig. 2: Runtime scheduling via Co-zyBench co-simulations.

while common rooms are shared among all occupants. For
the HVAC system, we implement a variable air volume (VAV)
system model, a widely used system in commercial buildings,
which can effectively provide thermal comfort while consum-
ing less energy than other systems. VAV mainly consists of an
outdoor air (OA) system, an air handling unit (AHU), sensors,
and VAV boxes for each room. The OA system blends return
air and outdoor air, which is then conditioned by the AHU
before being distributed to the rooms. The temperature of the
supply air is monitored to adjust the coils and VAV fan of
the AHU. Finally, the supply air blows to each room through
VAV boxes that are equipped with dampers for air column
control and a reheat coil to precisely control the supply air
temperature.

2) Occupant DT: To accurately simulate natural and dy-
namic human movement within the space, we create the
Occupant DT component using SmartSPEC [34], a tool for
generating realistic people trajectories in a smart space. This
is achieved by employing a semantic model that encompasses
the space, its occupants, and various events. The core concept
involves simulating occupants’ movements as they navigate
to different events occurring within the building. We create
profiles for 18 individuals representing various job roles such
as director, seller, accountant, etc. Each person is assigned
a unique personality, influencing their behavior in attending
events, and thus their trajectories. This is done by varying
the probabilities for each individual of being early, late, or
absent for each event. We categorize possible events into
two types: static events with time-fixed schedules such as
meetings, and dynamic events that can occur at spontaneously
such as going to the break room or to the restroom. Figure 2
contains the meeting schedules that we created for guiding
people’s trajectories in the office building. The work day starts
at around 9:00 and ends after 18:00, people spend most of
their working time attending a “working event” that occurs
in their assigned offices. Their weekly schedule involves two
types of meetings happening in the conference room: small
meetings, held by some members of one or two teams mainly
in the morning lasting 30 to 60 minutes; and large meetings,

TIME Monday Tuesday Wednesday Thursday Friday
9:00

Boss, Sellers9:30
Boss, Accountants,
Supplier Manager

10:00
Sellers Sellers

10:30 Sellers, Marketing,
Sales Representative

Sellers, Marketing,
Sales Representative,11:00

11:30
12:00 - 14:00 Lunch Time

14:00

All
14:30

Accounts
Sellers, Marketing,

Sales Representative,15:00
15:30
16:00

TABLE I: Weekly schedule for the office occupants.

held by some members of two or more teams lasting around
90 minutes. For example, sellers and marketers have a small
meeting every two days for at most one hour in the morning,
all the staff have a large meeting at 14:00 for at most two hours
every Friday. Besides, we model a lunchtime event from 12:00
to 14:00 and limit the amount of time spent for lunch to around
one hour in the kitchen, the break room, or the outside.

3) Climate zone setup: The location for the office space
is set in Paris, France, categorized under Climate Zone 4A-
Mixed Humid by the American Society of Heating, Refriger-
ating and Air-Conditioning Engineers (ASHRAE). To evaluate
our approach, our experiments focus on the months with
the highest cooling demand (June, July, August). For the
whole year’s climate data, we use the latest available Typical
Meteorological Year (TMY) weather reports derived from the
recent 15 years (2007-2021) from [35] (with a minimum and
maximum temperature of -5.0-34.5◦C). Accordingly, the office
building’s construction is modeled to meet the specifications
for the climate of Paris, adhering to ASHRAE standards such
as 6.8 cm of insulation in the walls and 21 cm of insulation
in the roof. Additionally, we include the heat generated by
indoor equipment and people located in a particular space of
the building in the computation. Note that we only evaluate
the approach for cooling over a period of 3 summer months
because of the growing need for cooling, especially with
temperatures rising due to climate change.

4) Scheduling scenarios: To generate HVAC control sched-
ules, we use PDDL to create a domain file that contains
possible actions that could be applied to the HVAC system
(e.g., turning it ON/OFF, changing the temperature). We
then receive inputs from the building and occupant simulator
about the current indoor and outdoor temperatures, as well
as the number of occupants, and use them to model the
building properties in the problem file. The AI Planner then
crafts an HVAC control schedule with the primary goal of
minimizing energy consumption, while maintaining indoor
temperatures within the comfortable range of 21–24◦C. The
HVAC operating schedules include operation from 8:00 to
20:00 daily, and actions may be performed every 30 minutes.
To accommodate potential inaccuracies in predicting future
conditions, we update the schedules at 8:00, 14:00, and 16:00
every day. Moreover, we continually monitor deviations in the
simulation environment. If there’s a change exceeding 3◦C



in temperature or a fluctuation of more than 3 people in
occupancy, we trigger re-planning to generate a new schedule.

B. Evaluating the Generated Schedules

We first assess our approach’s effectiveness in reducing
energy consumption compared to control algorithms that
maintain a fixed temperature of 22◦C throughout the day
(Fixed-22). We also monitor the temperature deviation from
the optimal comfort range of 21-24◦C to ensure that our
approach does not cause thermal discomfort for occupants.
Figure 3 shows the energy consumption per month when using
schedules generated by the AI planner to regulate the HVAC
system, compared to a fixed setpoint of 22◦C. Our approach
manages to achieve a reduction of energy consumption of
up to 35% per month. In July, the hottest month in Paris,
AI planning manages to reduce energy consumption from
531 kWh to 337 kWh, while keeping an average temperature
deviation under 1◦C per day. To have a better understanding
of how this is achieved, we plot in Figure 4 the variation in the
inside and outside temperatures for one day. We can see that
as opposed to having a constant temperature throughout the
day, schedules generated with AI planning lead to fluctuations
in inside temperature. These are the results of the actions
taken every 30 minutes by the AI planner (turning on/off
the HVAC, changing temperature setpoints, etc.). However,
the planner ensures that the temperature does not go outside
the thermal comfort bounds defined in the problem file, as
mentioned in Section IV. The frequency at which actions
are executed is determined by observing the time interval it
generally takes for the indoor temperature to naturally rise
beyond the comfort range (for cooling settings). This time
interval varies from building to building due to factors such
as local climate, fenestration, and building materials’ thermal
mass. This information can be obtained through historical
temperature data of a building. In our scenario, historical data
demonstrated that this time interval is over 30 minutes. The
duration of each action can be specified in the AI domain file
(Listing 1).

Figure 5 shows the carbon emissions of both approaches
throughout one day, with each data point representing the
emissions during a simulation time step of two minutes. We
also plot the carbon intensity during that day. This is a measure
of how much CO2 emissions are produced per kilowatt hour
of electricity consumed, for one single day. For this purpose,
we rely on electricity data3 to set the carbon intensity values
for one day in France. Note that carbon emissions = energy
consumption × carbon intensity. Therefore, we can see that
the AI Planner is capable of reducing carbon emissions by
33.7%. This decrease demonstrates the system’s efficiency in
energy use but also highlights its contribution to environmental
sustainability by mitigating the carbon footprint. Carbon inten-
sity can be incorporated in the domain model and problem
representations as an additional metric to optimize for. As
different countries rely on different methods for electricity

3https://www.electricitymaps.com/
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Fig. 4: Inside temperature variations in a single office.

generation, the planner can take such metrics into account
while trying to generate a schedule for more efficient energy
systems.

C. Enabling Adaptation in Dynamic Situations

In the wake of the global pandemic, the trend of working
from home has gained significant momentum. This shift to-
wards remote work has led to lower occupancy in spaces like
office rooms and substantial energy waste. Simply turning OFF
the HVAC in these areas is not a viable solution as it negatively
impacts thermal comfort for individuals entering these rooms.
For example, turning off the HVAC in seldom-used break
rooms can lead to discomfort for people wishing to stay in
the room, and they will not stay long enough, waiting until
the temperature is adjusted to a comfortable level, resulting in
failure to achieve desired thermal comfort.

To address this issue, our approach enables generating
schedules on a day-to-day basis, depending on the number
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of occupants in each space4. We conduct a set of experiments
to evaluate the ability of our AI Planner to generate plans that
adapt to the number of occupants present in rooms. We use
the same experimental setup described in Section V-A, but we
consider different levels of presence of employees, ranging
from 50%, to 100%. The occupants present in the building
are randomly selected at the beginning of each day.

Figure 6 shows the energy consumption in kWh across the
scenarios. Once again, we can see that AI planning manages to
adapt to the changing circumstances and achieve energy sav-
ings of more than 30% compared to setting a fixed temperature
of 22◦C. However, energy savings are not significant when
fewer people are present in the building, compared to having
full occupancy levels. This happens because of the enforced
constraints related to the temperature comfort bounds.

4Note that in order to keep the temperature in the room within the range
of thermal comfort, one strategy includes not turning off the HVAC system
completely, even when there are no occupants in the room.

Fig. 7: Energy consumption with HVAC ON & HVAC OFF
for vacant rooms.

D. Improving Efficiency in Energy-Constrained Settings

We now consider the case where the building administrator
wishes to turn off the HVAC system when rooms are vacant.
This could happen for various reasons, e.g., achieving more
reduction of energy consumption, or reducing the load on the
electric system of the building during peak demand periods.
For this purpose, we only need to add one action which con-
sists of turning OFF the HVAC when there are no occupants
in rooms. The planner will then be able to include this action
in the generated schedule when the needed conditions are met.

Figure 7 shows the energy consumption across the scenarios
of turning the HVAC ON or OFF in empty rooms, as well
as Fixed-22 which doesn’t consider occupant numbers. As
expected, turning off the HVAC in vacant rooms results in a
77% decrease in energy consumption compared to not turning
off the HVAC in vacant rooms. To see this strategy’s impact
on the inside temperature, we plot in Figure 8 the variations of
the inside temperature throughout one day. The figure reveals
that the temperature exceeds 24◦C, especially in the afternoon.
For example, at 17:30 when people enter a room, the indoor
temperature reaches 24.5◦C after an unoccupied period of 2
hours and the occupants have to experience discomfort and
wait till the temperature decreases. This happens as a result
of turning OFF the HVAC system when rooms are vacant;
as a consequence, it takes more time for the HVAC system
to regulate the temperature when employees occupy the room
again. Hence, in such cases, there is a trade-off between energy
consumption and occupants’ thermal comfort.

VI. CONCLUSION

This paper presents an approach for efficiently scheduling
energy systems in smart buildings using AI planning. This
is achieved by leveraging PDDL to represent domain models
as building types (e.g., office building), incorporating actions
for controlling energy systems, and problem instances for
describing specific situations and properties of smart buildings.
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An AI planner then generates a schedule aiming to optimize
metrics such as energy consumption and carbon footprints. We
evaluate our approach in a realistic smart office setting and
manage to reduce energy consumption by 30% compared to
current practices, which fix a temperature setpoint for HVAC
systems throughout the day.

In our future work, we aim to expand our approach to
include optimization for various needs of building adminis-
trators and compliance with country regulations. These in-
clude carbon footprints and occupants’ thermal preferences.
In addition, we plan to validate our approach using diverse
scenarios at different climate zones including beyond HVAC
systems, other smart energy systems such as lighting control,
plug loads and more. We also aim to apply our solution
in real-life settings for hydropower plants in the context
of the Di-Hydro EU project5. Finally, we shall investigate
more powerful model representations, such as PDDL+, for
enabling precise modeling and control of energy systems.
These modifications would further enhance the effectiveness
of the proposed approach and contribute to a more energy-
efficient future.
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