Instruction tables will have to be made up by mathematicians with
computing experience and perhaps a certain puzzle-solving ability...

This process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a drudge,
for any processes that are quite mechanical may be turned over to the

machine itself.

Alan Turing, 1945



Advances and Challenges
iIn Program Synthesis

Armando Solar-Lezama

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY {r—w /J’%




The promise of

automation

The FORTRAN A'Uto'm'al::ic Coding' System

J. W. BACKUSt, R

J. BEEBERY, S. BESTY, R. GOLDBERGY, L. M. HATBTY, |

H. L. HERRICKT, R. A. NILL.‘:DNT, D, SAYREf, P. B. SHERIDANY, .

H. STERNT, 1. ZILLhRT,

INTRODUCTION

MAHE FORTRAN project was begun i-r;'the. sum-
mer of 1954, Its purpose was to reduce by a large
factor the task of preparing scientific problems for

IBM’s next large computer, the 704, If it were possible

for the 704 to code problems for itself and produce as

good pmgrams as human coders (but without the
hi

Tor it was_k_nown that about two-thirds of the cost uf
solving most scientific and engineering problems on
large computers was that of problem preparation,
Furthermore, more than 90 pér cent of the elapsed time
for a problem was usually devoted to planning, writing,

HUGHE'S§, Am R. NUTT|

system is now complete, It has two components: the
FORTRAN language, in which programs are written,
and the translator or cxecutive rcmﬁﬂe for the 704
which effects the translation of FORTRAN language

programs into 704 programs. Descriptions of the FOR-

TRAN language and the translator form the principal
sections of this paper,

The expetience of the FORT RAN group in using the '
system has confirmed the original expectations con-

‘cerning teduction of the task of problem preparation

and the efficieney of output prdgrams A br1cf Ldﬁﬂ
history of one job done with ‘a systcm seldom gives a
good measure of 1ts usefulnesa part:culariy When the



The promise of

automation

The FORTRAN A'Uto'm'al::ic Coding' System v

J. W. BACKUSt, R. J. BEEBERY, S. BEST}, R. GOLDBERGY, L. M. HATBTT
 H. L. HERRICK}, R. A, NELSONY, D. SAYRE{, P. B. SHERTDANT, .
H. STERNT 1. ZILLhRT R. A HUGHE'S§ Am R. NUTT|

|BM's next largc camputcr thr: 'ﬂ]‘l If' 1t were possilile

for the 704 (o code problems for itzelf and produce as
good programs as human coders (but without the
CIro rs) it was clear that large benelils could be hwwrl

ALALAE L LALGAL Ll et AA N Tk UE L WAL

for a nroblem wis UEUdHV devﬂted tD phnnmg writing, good AHEASULS Df

1ts usefulnesa partlculaﬂy When the




Automation Today

High-level
Domain Specific general

Languages purpose

languages




Some day we won't even need
coders any more, We'll be able
to just write the specification and
the program will write itselt

7~ Ohwow, you're right! We'll be

able to write a comprehensive and
precise spec and bam, we won't
need programmers any more!

And do you know the industry
term for a project specification that is
comprehensive and precise encugh
~__ [0 generate a program?

CommitStrip.com
© CommitStrip http://www.commitstrip.com/en/2016/08/25/a-very-comprehensive-and-precise-spec/



Program Synthesis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 4, JULY 1979

Synthesis: Dreams —> Programs

ZOHAR MANNA AND RICHARD WALDINGER

- techniques are presented for deriving programs 'INTRODUCTION

iven specifications. The specifications express the g . P
g without giving any hint of the algo- N RECENT years there has been increasing activity in the

. The basic approach is to transform the specifi- field of program verification. The goal of these efforts is
cording to certain rules, until a satisfactory pro- to construct computer systems for determining whether a

" . = J '
W B, - \
"|; 'l._. \\" y '||L 1

Zohar Manna

Richard Waldinger



Synthesis: modern view

R = {po - Pi}




Example

Sketch Spec

bit[W] avgSpec (bit[W] x, bit[W] y) {
bit[W] avg(bit[W] x, bit[W] y)
implements avgSpec{ bit[2*W] xx = extend@signed(x, 2*W);
bit[2*W] yy = extend@signed(y, 2*W);
return expr@signed({x,y}, 4);
} bit[2*W] r = rshift@signed (xx+yy, 1);
return (r[0::W]);

expr ::= const
| var
| expr>>?7?
| ~expr
| expr + expr
| expr ” expr
| expr & expr




And 8 seconds later...

After considering 212 possibilities

(X&y)+(xAy)>>1

Cool!

Now can you synthesize programs
with more than 1 line of code?



Early successes



Concurrent

data-structures

Small but high-impact code
* Herlihy calls them the “ball bearings” of concurrent software

Difficult for humans to reason about

Well defined space of possible synchronization and coordination
approaches



Paraglide[ ]

Synthesis of concurrent code

Program Code

1 int take() {
2 long b = bottom - 1;
3 item t * g = wsqg; L. . .
4 bottom = b Minimal Synchronization
5 1 t =t
6 mong °F 1 int take() {
. 2 long b = bottom - 1;
Paraglide 3 I&em_t o = wsqs
Architecture Description Tool ;1 liottortn = 1t>
ong = top
6 .

SAT solvers

Model Checking
Abstraction Directed
Testing

Semantic Search

Highly impactful work by Yahav, Vechev and Yorsh at IBM

Domain specific system



Lessons

Focus on high-impact domains
* Leverage domain specific structure

Engineer for interaction with experts



Reverse engineering

Oracle-guided component-based program synthesis
* |CSE 2010 paper by Jha, Gulwani, Seshia and Tiwari

Pioneered a number of new ideas at the algorithmic level

Synthesis for reverse engineering



Reverse engineering

Implementation

-




Reverse engineering

Implementation

i IR




FlashFill

Quick Fill Auto Fill Quick Layout
Apply  Hitight Currencywidget |
Undo Commit AddressWidget

Table11e - & | Ana Trujillo 357 21th Place SE,Redmond,WA,(757) 555-1634,140-37-6064,27171 '—v
A . e . . | B 0 e =
.1 O ot O . O - Ol 4 - O - Ol D - B
2 Ana Trujillo 357 21th Place SE,Redmond,WA (757) 555-1634,140-37-6064,27171 Redmond WA (757) 555-1634 140-37-6064 27171
3 Antonio Moreno 515 93th Lane ,Renton,WA,(411) 555-2786,562-87-3127,28581
4 Thomas Hardy 742 17th Street NE,Seattle, WA (412) 555-5719,921-29-4931,24607
5 |Christina Berglund 475 22th Lane ,Redmond, WA (443) 555-6774,844-35-6764,30146
6 Hanna Moos 785 45th Street NE, Puyallup,WA,(376) 555-2462,515-68-1285,29284
7 Fréderique Citeaux 308 66th Place ,Redmond,WA,(689) 555-2770,552-23-2508,21415
g Martin Sommer 887 86th Place ,Kent, WA, (715) 555-5450,870-91-9824,21536 '
9 Laurence Lebihan 944 13th Street NE,Redmond, WA, (620) 555-2361,649-25-5312,25252
10 Elizabeth Lincoln 452 73th Lane NE,Renton,WA,(851) 555-4561,425-97-6344,22279
11 Victoria Ashworth 463 16th Street ,Renton,WA,(696) 555-6044,690-29-7926,22832
12 Patricio Simpson 630 20th Street ,Redmond,WA (179) 555-3265,389-78-3236,24525 i
13 Francisco Chang 683 49th Lane ,Seattle, WA, (272) 555-7434,665-18-6435,29453
14 Yang Wang 944 28th Lane ,Redmond, WA (151) 555-2272,846-78-8452,24388
15 Pedro Afonso 411 70th Place ,Kent,WA,(170) 555-2964,774-35-2298,29485
16 Elizabeth Brown 971 20th Lane ,Puyallup, WA, (373) 555-4134,476-53-7164,26417
17 Sven Ottlieb 676 17th Lane NE,Redmond, WA, (828) 555-1593,548-73-8633,27440
18 Janine Labrune 267 95th Place SE,Seattle, WA, (949) 555-1316,350-27-8300,28074
19 Ann Devon 694 53th Place ,Kent,WA,(194) 555-8124,559-74-4016,22367
20 Roland Mendel 581 12th Street NW,Kent, WA (103) 555-2146,303-79-1328,20518
21 |Aria Cruz 594 85th Lane ,Renton,WA,(431) 555-1376,329-93-9992,21498
22 DiegoRoel 550 22th Lane ,Renton,WA,(639) 555-6238,918-34-5172,25931
23 Martine Rancé 688 93th Place NW,Kent,WA,(573) 555-3571,695-94-3479,22424
24 L
26 r

M 4 » M| ssn “FixTrunc2  FixTrunc3 . bighets | CustomerData ~Dates? layout - Currency - Dates ~ Abbreviaf] 4 | ; il 2 | i S ﬂ




FlashFill

Program spaces through DSLs

“<<hello>>" — “hello”

JavaScript:
in.substring(in.search(“<<")+2,in.search(“>>"));

Pos(w1, w2)

FlashFill: koo

SubString(in, Pos(“<<“,””), Pos(“”, |
ll>>”)); p



Exciting Directions:
Reverse Engineering



Framework Models for

Symbolic Execution

Pasket system by J. Jeon, X. Qiu, J. Fetter-Degges, J. S. Foster,
and A. Solar-Lezama

Application Event-Driven

Framework [Environment]
Timer
GPS
User

API Calls

GPS

Screen




Pasket

API (classes,
methods, types)

Framework

Tutorial Design
Program FEELE Patterns

M Framework B
Model



JPF w(/0) Synthesized

Model

================== gearch started: ... == = == = gearch started: ...
button_demo button_demo

————————— >property violated

================== arror 1 ======== ========== results
gov.nasa.jpf.vm.NoUncaughtExceptionsProperty no errors detected

java.lang.NoSuchMethodError:
javax.swing.JButton.setVerticalTextPosition(I)V
at ButtonDemo.<init>(ButtonDemo. java:63)
at ButtonDemo.createAndShowGUI (ButtonDemo. java:131)

(a) With JPF’s Swing model. (b) With PASKET’s merged model.

JPF along with our synthesized model can run tutorials.

JPF’'s own hand-written models are insufficient.
 lack of methods: setVerticalTextPosition,
etc.

An automated process (via Pasket) can avoid simple but
nonetheless frustrating problems, like missing methods.



Verified Lifting

Synthesis based reverse engineering can help with optimization

Recent work with by Alvin Cheung and Shoaib Kamil




Optimization

then and now

Naive source code Domain specific problem description

&
e KE

R ATLAS POChOir
Halide

)

Close to optimal implementation

Kind-of-OK executable



Java to SQL

[ r———

. e Methods SQL Queries

{"m; -i=-?-!l"
print] i::'"r ' (] ORM
libraries

Objects Relations

et Lo

erintf ([a] [ "%
dardl

primtf [*[-g what] [-r]
{-u e [oal]T:
#iidef LOAE

primt ° [-= boen] [

werid] [-3 ¥ioe] T
L

Application Database



Java to SQL

[ r———

. e Methods SQL Queries

i
e
i ORM
libraries

Objects Relations

et Lo
erintf ([a] [ "%
#ordi
primtf [*[-g what] [-r]
il [tall®d:

primt {7 [= bl

- -
werid] [-3 ¥ioe] T
i

Application Database



Java to SQL

List getUsersWithRoles () { SELECT * FROM user
List users = User.getAllUsers|(); >
List roles = Role.getAllRoles(); >

SELECT * FROM role

List results = new ArrayList();

for (User u : users) {
for (Role r : roles) {
if (u.rolelId == r.id)
results.add(u); }}
return results; }
List getUsersWithRoles () {
‘ return executeQuery(
convert to “SELECT u FROM user u, roler WHERE u.roleld == r.id

ORDER BY u.roleld, r.id”; }




Join Query

1000K R
+original  *inferred |

100K

? . . . .

E Nested-loop join — Hash join!

v

E10K O(n?) O(n)

o

s

Q

o 1

YUK - %

a 7

100 . . . . .
0 20K 40K 60K 80K 100K

Number of roles / users in DB

6/17/2013 PLDI 2013 29



MultiGrid

DOi3=2,n3-1
DOi2=2,n2-1

DOil=1,nl

r1(i1) = r(i1,i2 - 1,i3) + r(i1,i2 + 1,i3) + r(i1,i2,i3 - 1) + r(i1,i2,i3 + 1)

r2(i1) = r(i1,i2 - 1,i3 - 1) + r(i1,i2 + 1,i3 - 1) + r(i1,i2 - 1,i3 + 1) + r(i1,i2 + 1,i3 + 1)

END DO

DOi1=2,nl-1

u(i1,i2,i3) = u(i1,i2,i3) + c(0) * r(i1,i2,i3) + c(1) * (r(i1 - 1,i2,i3) + r(i1 + 1,i2,i3) + ri(i1)) + c(2) * (r2(i1) + ri(il - 1) + ri(i1 + 1))
END DO

END DO

END DO



Example: MultiGrid

/*Range declarations go here */

rl_out(nl)=r(n1,n2-2,n3-1) + r(n1,n2,n3-1) + r(n1,n2-1,n3-2) + r(n1,n2-1,n3)
r2_out(nl) =r(n1,n2-2,n3-2) + r(n1,n2,n3-2) + r(n1,n2-2,n3) + r(n1,n2,n3)
u_out(i1,i2,i3) = u(i1,i2,i3) + c(0) * r(i1,i2,i3)
+ c(1) * (r(i1 - 1,i2,i3) + r(i1 + 1,i2,i3) + r(i1,i2 - 1,i3) + r(i1,i2 + 1,i3) + r(i1,i2,i3 - 1) + r(i1,i2,i3 + 1))
+ o(2) * ((r(i1,i2- 1,i3 - 1) + r(i1,i2 + 1,i3 - 1) + r(i1,i2 - 1,i3 + 1) + r(i1,i2 + 1,i3 + 1))
+(r(i1- 1,i2 - 1,i3) + r(il - 1,i2 + 1,i3) + r(il - 1,i2,i3 - 1) + r(i1 - 1,i2,i3 + 1))
#(r(i1+1,i2 - 1,i3) + r(il + 1,i2 + 1,i3) + r(i1 + 1,i2,i3 - 1) + r(i1 + 1,i2,i3 + 1)))

Tuple my_output(rl_out, r2_out, u_out);



Speedups

Speedup

25

20

15

10

Kernel Speedup Relative to Original Serial Code

RN N N N NN NN NN NN EEE
openmp EEEEE halide ——

Speedups on 24 cores




Exciting Directions:
Synthesis for Synthesis



Solvers are hard to write

Tradeoff between performance and maintainability

No single best approach
* NP complete problems after all

Clean formalizations

Good target for synthesis!



Sketch Simplifier

if (nfather->type == LT && nmother->type == LT) {
// (ate<x) & (b+e<x) ---> a+e<x when b<a
if (nfather->mother->type == PLUS && nmother->mother->type == PLUS) {
bool node* nfm = nfather->mother;
nmother->mother;

bool node* nmm

bool node* nmmConst = nmm->mother;
bool node* nmmExp = nmm->father;
if (isConst(nmmExp) ) {

b<a bool node* tmp = nmmExp;
nmmExp = nmmConst;

ate<x & e+th<x — ate<x nConst -t
}
bool node* nfmConst = nfm->mother;
bool node* nfmExp = nfm->father;
if (isConst(nfmExp)) {
bool node* tmp = nfmExp;
nfmExp = nfmConst;
nfmConst = tmp;
}
if (isConst(nfmConst) && isConst(nmmConst) && nfmExp== nmmExp) {
if(val (nfmConst) < val (nmmConst)) {
return nmother
lelse(
return nfather;

P



Performance

Impact on times

AutoGrader: 27.5s5,20s,18s average times

Sygus: 22s,21s5,10s average times



Bit-vector encoding

Boolean predicate P —> CNF clauses C
tl = true
t2 = true
fori from N to 1:
0= ITEN((GTN,m,y),m,y) # t3 = newVar

td = newVar
clause({ali], (] o]}
msb b clause({zli], 1,13}
] [ clause( {z{i], 2,00, 14)
X clause({z[i], o[4], t3})
(=l ol ol
clause({z[i], 2, o[i]})
clause({z[i], 12,t4})
clause%{y[i], t2,td})
(
(
(
(
(
(

y

[

clause

clause({y[i], o[t],£3})
clause({y[i], t1,¢3})
clause {y[i‘]so[i]aﬁ})
clause({t1,¢3})
clause({t1, o[i], t3})
clause({t2,t4})
clause({t3,t4})

tl =13

t2 =14



Solve more problems

Log-slicing (79) 33 - 62
ASP (365) 240 - 288
Mcm (61) 40 - 43
Brummayerbiere2 (33) 28 - 29
Float (62) 59 . 60
Brummayerbiere3 (40) 23 - 24
Bruttomesso (676) 623 - 623
TOTAL 1046 - 1129

83 more problems
in total



Cross domain
performance

log-slicing

asp 227 288 55 227 236 253 240
mcm 39 38 43 40 39 39 41
brumma2 29 28 28 29 2 29 29
float 57 57 59 5 60 <{0] 59
brumma3 22 22 25 22 23 24 23
brutto 607 606 623 609 623 623 623

Best Worst



Exciting Directions:
Quantitative Synthesis



STOKE

Project by Schkufza, Sharma, Heule, Aiken

Leverages Stochastic Search (MCMC) to incorporate quantitative
parameters such as precision and performance

Focus on optimization



Prophet/Genesis

Project by Fan Long, Stelios Sidiroglou and Martin Rinard

Patch Generation

—— System .

——%- ( Prophet \ ,El?gl;?/\(/jh:fﬁ (;))];zztfehsissuite

Test % x x x):rr -

- Cir— — “adEiR

Developer chooses correct patch
Goal: rank correct patch first

000O00O
oo0o000

Inputs  Correct
Outputs



Visual Concept
Learning

D |-

Ellis, Tenenbaum and Solar-Lezama, NIPS 2015

/.\

N,




Visual Concept
Learning

D |-

teleport(position[0], 0)
draw(shape[0], scale=1.0)
draw(shape[0], scale=0.5)

/.\

N,




Synthesis vs. ML

Quantitative synthesis is at the intersection of synthesis and ML



Synthesis > ML

Big data vs. Small data
* Sometimes generating examples is expensive

| know what | want
* ML is heavily concerned with noise
* By design, it won’t give you what you ask for

| know what | want (2)
e Difficult to incorporate hard constraints



ML > Synthesis

Big data vs. Small data
* Sometimes you really do have a lot of data, why waste it?

| know what | want
* Do you really?



You can do this too!



Synthesis Infrastructure

Sketch
*Just released v. 1.7.4
* Mature infrastructure with an expressive frontend language

SyGuS
* Family of solvers supporting emerging SYNT-LIB standard
* Less expressive than sketch, but higher performance
* Strong community support

Prose

* Infrastructure by Sumit Gulwani’s team for DSL-based
synthesis



Conclusion

The drive for automation continues

Synthesis provides a new set of tools to attack complex
problems

We are just beginning to understand how to use this technology
to improve productivity



