
preprint

Live end-user programming
A demo/manifesto

Jonathan Edwards
CDG Labs

jonathanmedwards@gmail.com

Jodie Chen
MIT

jodiec@mit.edu

Alessandro Warth
CDG Labs

alexwarth@gmail.com

Abstract
How will live programming get from our current aspira-
tional demos to use in the real world? Modern professional
programming will not change easily: our technology stack
is a vast edifice built up over decades to optimize perfor-
mance and compatibility, not ease of use. It is unlikely we
can retrofit live programming into this edifice without sub-
stantial redesign and reengineering, which would face im-
mense technical, economic, and cultural challenges. The one
way forward we see is to retrace the steps of the original
live programming environment: spreadsheets. Spreadsheets
help non-programmers solve small-scale problems. If we do
likewise, we can offer a fully live and radically simplified
programming experience that is actually useful in practice,
albeit to non-programmers. Perhaps that could be a launch-
ing pad to subsequently address professional programming.
As a case in point we demonstrate the Chorus project (pre-
viously named Transcript), which focuses on do-it-yourself
mobile social apps. By restricting ourselves to small prob-
lems and non-professional programmers we can provide a
highly integrated programming experience that for the first
time incorporates live database programming. We demon-
strate our initial progress in order to spark a discussion in
the live-programming community about the tradeoffs of re-
searching professional vs. end-user programming.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

Keywords end-user programming, live programming, mo-
bile applications

1. Getting real
Live programming is best known for a number of aspira-
tional demos of radically improved programming experi-

[Copyright notice will appear here once ’preprint’ option is removed.]

ences. As the authors of some of these demos we feel ob-
ligated to point out their limitations. Many of them deal
only with easy cases like numeric functions and 2D graph-
ics. What they lack is a roadmap leading to a complete
live programming environment, and often they do not even
mention the formidable obstacles in the way, issues like
side-effects, non-determinism, visualizing complex graph-
structured data, persistence, concurrency, etc. It is important
to offer inspiring visions, but eventually we have to actually
make it work. How will we get there?

We face not only technical obstacles but also even more
daunting socio-economic forces. Software is a major indus-
try with a vast capital investment in a giant pyramid of
technologies built up over decades. These technologies have
been optimized primarily for performance and compatibility
– not the programming experience. The standard response
to the difficulty of programming is not to improve the tech-
nology but to hire better programmers. Understandably, pro-
grammers are all for this. Programmers’ status and earning
power are coupled to the years and decades they have in-
vested into mastering the tech pyramid. All of these factors
are a recipe for stasis. Any attempt to fundamentally im-
prove programming will of necessity involve reducing per-
formance, breaking compatibility, depreciating investments,
and obsoleting expertise. Such change will not happen easily
nor voluntarily.

The one way forward we see is to retrace the steps of
the original live programming environment: spreadsheets.
Spreadsheets provide a simple and consistent conceptual
model that can be quickly learned by non-programmers.
A surprisingly large range of small-scale problems can be
fit into the formula-grid metaphor, making spreadsheets far
more popular than all other programming technologies com-
bined. The lesson we take from spreadsheets is that there
is great value in enabling non-experts to solve small-scale
problems relevant to their needs. HyperCard (Goodman
1987) was another much-loved product with a similar moral.

We propose that live programming could make much
progress by emulating these successes. By focusing on
small-scale problems we are freed from performance con-
straints, which are not only a technical problem but also the
knee-jerk excuse for dismissing new programming ideas.

1 2016/4/24



By building a standalone environment we are freed from the
compatibility constraints that inexorably pull us back into
the well-worn ruts. Non-programmers have no investment
in the status quo and so are open to experimentation with
fresh approaches. Most importantly, by delivering real value
to real users we have a much better chance of getting people
to actually use our new programming technology. Perhaps
from that base we could then attack mainstream program-
ming. This strategy and vision has motivated the Chorus
project (previously named Transcript).

2. Chorus: do-it-yourself mobile social apps
Say you have started a book club. You need to coordinate
with the members to choose books to read, schedule meet-
ings, decide who is bringing the wine and cheese, etc. You
probably use some spreadsheets, some web services like
message forums and polls, and make it all work with a flood
of email. You watch your life passing by as you robotically
copy and paste between email and spreadsheets and all these
services. What you wish you had is a custom application that
automates all this clerical work and runs on modern com-
puters (i.e., phones). But you aren’t willing or able to invest
much more effort than that required by a spreadsheet.

Chorus allows non-programmers to build simple social
applications mediated by shared cloud documents. Like
other cloud document systems, users subscribe to a set of
documents, with changes bidirectionally synchronized be-
tween their phones and the cloud. But unlike a typical tex-
tual document, Chorus documents are statically typed tree
structures that contain specialized components implement-
ing common conversational patterns like comment threads,
polls, calendars, and todo lists. We call these components
social datatypes. Notifications, task tracking, and off-line
operation are all built in. Chorus could be thought of as Hy-
perCard reimagined for the era of smart-phones and social
apps. We have built a working prototype of the end-user ex-
perience, demonstrated in this video: (Edwards 2015). Fig-
ure 1 shows a screenshot of our browser-based prototype
environment.

To bootstrap the system, we started with conventional tex-
tual syntax in a text editor, which we are currently replac-
ing with a live non-textual programming environment. It is
based on the idea of a meta-document: a document that rep-
resents the design (i.e. schema/type) of a family of other doc-
uments. Meta-documents allow the system to host its own
programming environment and maintain a uniform UI so
that, like spreadsheets, there need not be a sharp distinction
between users and programmers. As an added benefit, edit-
ing a meta-document captures higher-level intentions than
textual editing does – for example editing a field name im-
plicitly causes a rename refactoring and database migration.
Our goal is that the programming experience should be so
simple and immediate that, like a spreadsheet, it isn’t con-
sidered “real” programming. Nevertheless Chorus is in fact

Figure 1. Bootstrap programming environment. Two users
are simulated collaborating through the Chorus document
defined by the textual syntax on the right.

a Turing-complete programming language, just one that is
tailored for simple programs of a certain social flavor.

3. Live database programming
Typical applications are built from at least three distinct tech-
nology stacks: a database, a programming language, and a
UI framework. Each of these technologies has its own se-
mantics, and much of the complexity of application pro-
gramming stems from the need to glue them together. Cho-
rus instead provides a single unified model built upon our
prior work on Subtext (Edwards 2004-2014). Our statically
typed tree structures are effectively databases: the types are
schemas, collections serve as tables, and references serve
as relationships. All data is persistent, and all execution is
performed in concurrent transactions. Program logic is em-
bedded into the document, specifying both imperative event
triggers as well as declarative updatable views. The UI is
automatically generated from the document’s tree structure
and the datatypes involved. This integration greatly simpli-
fies application programming, but also gives us the opportu-
nity to extend live programming to live database program-
ming.

We will demonstrate the following key features of live
database programming in Chorus (which are still under de-
velopment at the time of submission):

1. Editing the schema (type) of a document performs a co-
ordinated code refactoring, schema change, and database
migration, all done live. We believe this is novel.

2. Transactional concurrent live programming. Edits to code
and schema are done in long-running transactions con-
current with ongoing activities by other users who are
unaware of the pending refactorings until they are atomi-
cally committed. We believe this is novel.

3. Code and schema changes can be applied to the current
state of a document or retroactively from the beginning
of the document’s history (which is fully retained). The
latter capability allows us to use documents as testing

2 2016/4/24



scenarios that are continually replayed to visualize and
validate execution histories.

4. A key problem of live programming is how to visual-
ize execution histories. History can be visualized linearly
as with the timeline of video editors, but it is problem-
atic to visualize state in general programming languages.
We will demonstrate how our tree-structured document
model provides a simple linear visualization (using the
obvious pre-order traversal) that enables us to fully vi-
sualize execution history using just the two dimensions
available on screen.

4. Commencement
We find it highly unlikely that live programming can be eas-
ily retrofitted into our current technology pyramid, which
after all was never designed for it. Substantial redesign
and reengineering will be necessary, and therefore will face
immense technical, economic, and cultural challenges. To
make progress, Chorus focuses on the needs of end-users
rather than current professional programmers. In this way
we hope to build a fully live and radically simplified pro-
gramming environment that is actually useful in practice.
We will demonstrate our initial progress in order to spark
a discussion in the live-programming community about the
tradeoffs of researching professional vs. end-user program-
ming. We look forward to a vigorous exchange of ideas at
the workshop.

References
Jonathan Edwards. Subtext project website. 2004-2014 http:

//subtext-lang.org

Jonathan Edwards. Transcript: End-user programming of mobile
social apps. YOW! December 2015 https://www.youtube.

com/watch?v=XBpwysZtkkQ

Danny Goodman. The complete HyperCard handbook.
1987. https://archive.org/details/The_Complete_
HyperCard_Handbook

3 2016/4/24

http://subtext-lang.org
http://subtext-lang.org
https://www.youtube.com/watch?v=XBpwysZtkkQ
https://www.youtube.com/watch?v=XBpwysZtkkQ
https://archive.org/details/The_Complete_HyperCard_Handbook
https://archive.org/details/The_Complete_HyperCard_Handbook

	Getting real
	Chorus: do-it-yourself mobile social apps
	Live database programming
	Commencement

