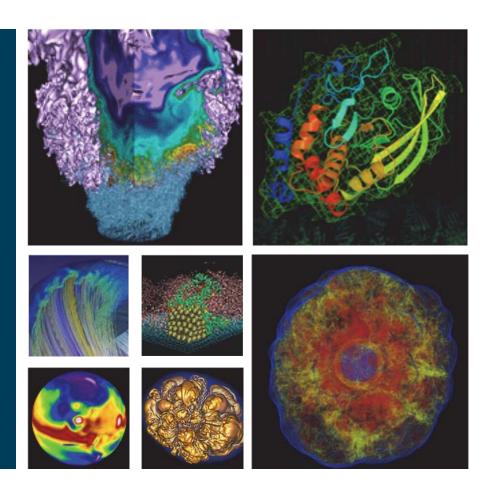
On Scaling Deep Learning



Prabhat

11/6/2018

Outline

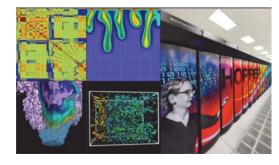
- Introduction to NERSC
 - Why Scale Deep Learning?
- Case Studies
 - Deep Learning @15 PF
 - CosmoFlow @3.5 PF
 - Deep Learning @1 EF
- Open Challenges
- Conclusions

NERSC: the Mission HPC Facility for DOE Office of Science Research

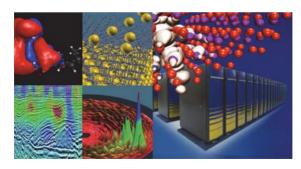
Office of Science

Largest funder of physical science research in the U.S.

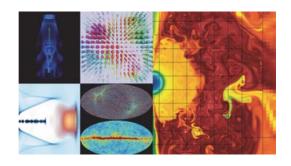
Bio Energy, Environment



Computing



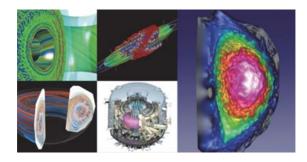
Materials, Chemistry, Geophysics



Particle Physics, Astrophysics



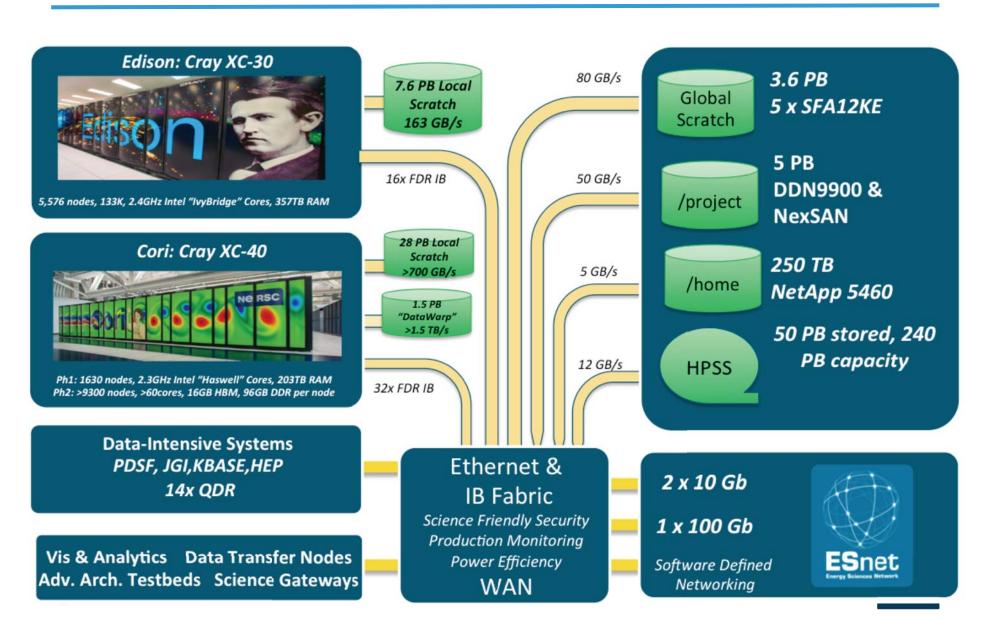
Nuclear Physics



Fusion Energy, Plasma Physics

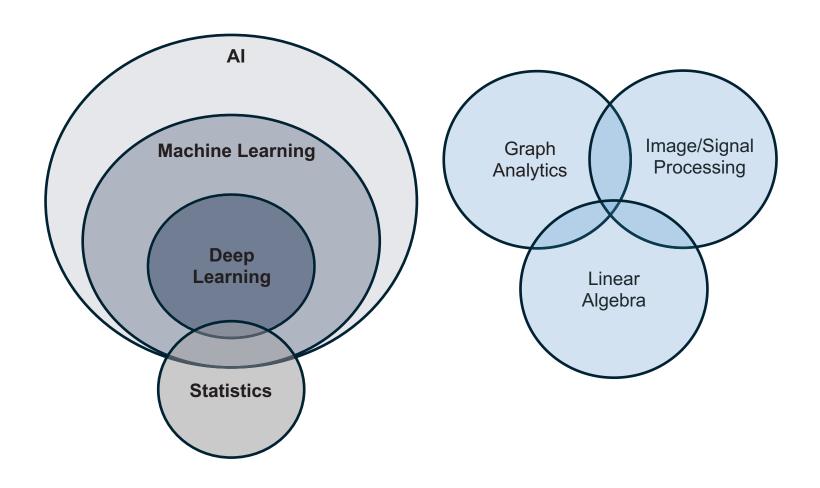
7,000 users, 800 projects, 700 codes, 48 states, 40 countries, universities & national labs

NERSC Hardware



	HEP			BER		BES		NP	FES
	Astronomy	Cosmology	Particle Physics	Climate	Genomics	Light Sources	Materials	Heavy Ion Colliders	Plasma Physics
Classification	X		X	X	X	X	X	X	Х
Regression	X	X	X	X	X	X	X	X	X
Clustering	X	X	X	X	X	X	X	X	X
Dimensionality Reduction				X				X	
Surrogate Models	X	X	X	X			X	X	X
Design of Experiments		X		X		X	X		X
Feature Learning	X	X	X	X	X	X	X	X	X
Anomaly Detection	X		X	X		X		X	

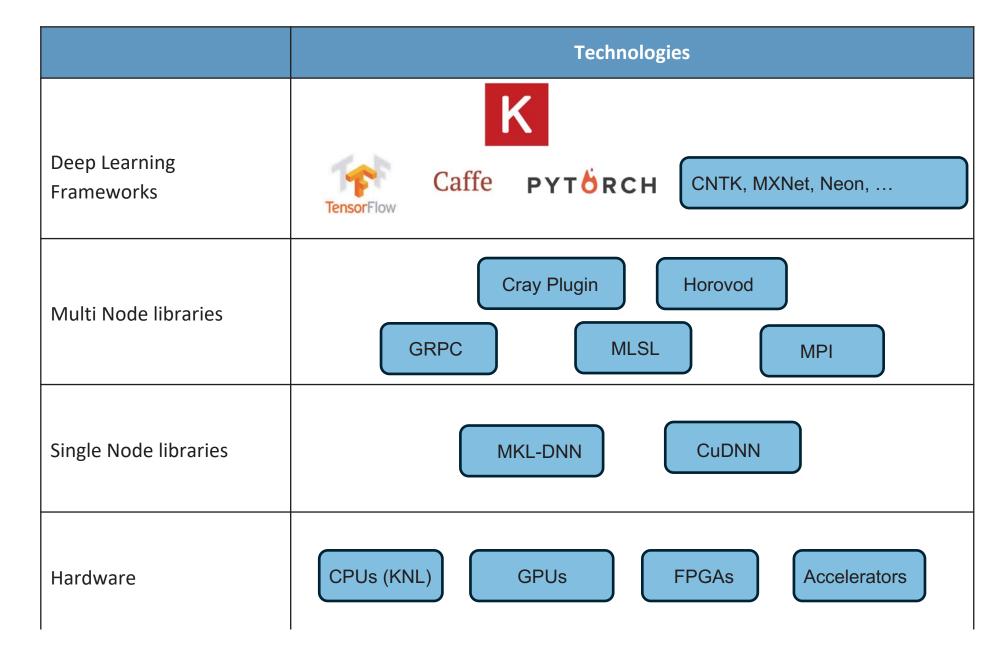
Data Analytics Methods



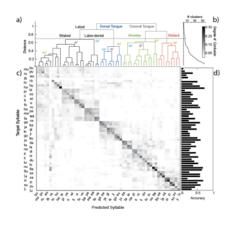
NERSC Big Data Stack

Capabilities	Technologies					
Data Transfer + Access	GridFTP Jupyter Jupyter django					
Workflows	FireWorks taskfarmer					
Data Management	mongoDB MySQL PostgreSQL					
Data Analytics	Spork Intersor PYTÖRCH Caffe Caffe					
Data Visualization	VISIT ParaView					

Deep Learning Stack



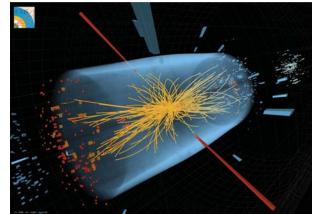
Deep Learning for Science

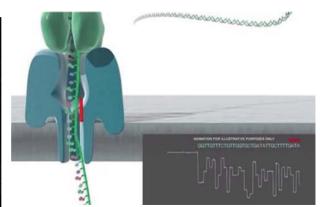


Modeling galaxy shapes

Generating cosmology mass maps

Decoding speech from ECoG





Clustering Daya Bay events

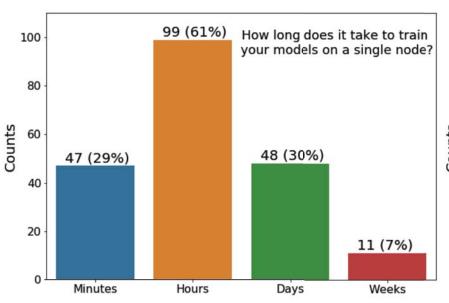
LHC Signal/Background classification

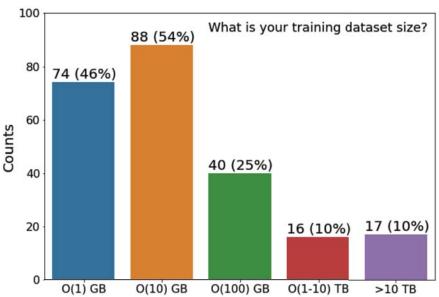
Oxford Nanopore sequencing

	HEP			BER		BES		NP	FES
	Astronomy	Cosmology	Particle Physics	Climate	Genomics	Light Sources	Materials	Particle Colliders	Plasma Physics
Classification	X		X	CNII	XIC [X	X	X
Regression				CIVI	Vs, F	ZIVI	N5		Х
Clustering		X	Х	\uto	-end	odo)rc	X	X
Dimensionality Reduction				Auto	-6110	Jour	513		
Surrogate Models	X	X	Х	VAI	Ξs, (GAN	Is	X	X
Design of Experiments		X		X	RL		X		X
Feature Learning					V				
Anomaly Detection	X		X	X	?	X		X	

DL adoption by **NERSC** user community

- 150-200 users exercising the DL stack
- 160 respondents to recent 'ML@NERSC' survey





Why Scale Deep Learning?

- Day/Week-long runtimes for O(100) GB O(1) TB sized datasets
 - 'Classical' convolutional architectures
 - More advanced architectures (Hybrid CNN + LSTM, spacetime convolutions)
- Hyper-Parameter optimization is important
- Large computational demands
- Problem is well suited for HPC systems

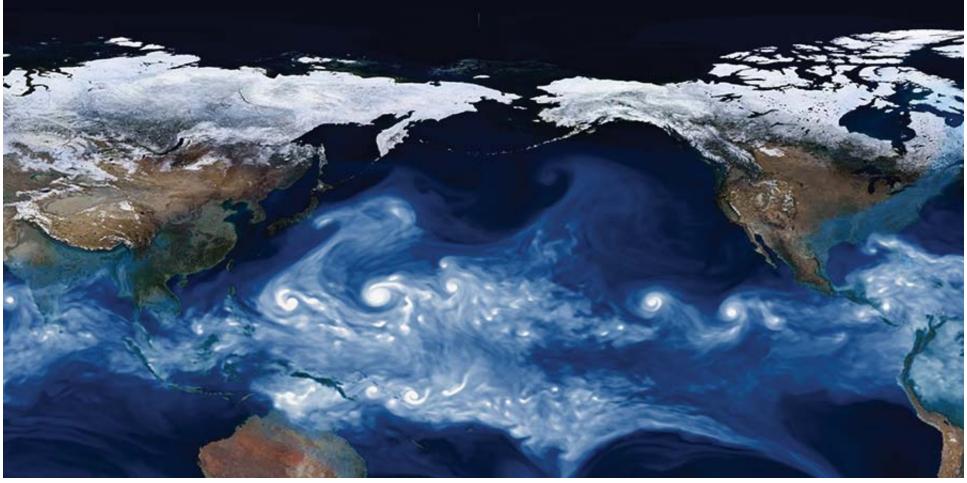
Outline

- Introduction to NERSC
 - Why Scale Deep Learning?
- Case Studies
 - Deep Learning @15 PF
 - CosmoFlow @3.5 PF
 - Deep Learning @1 EF
- Open Challenges
- Conclusions

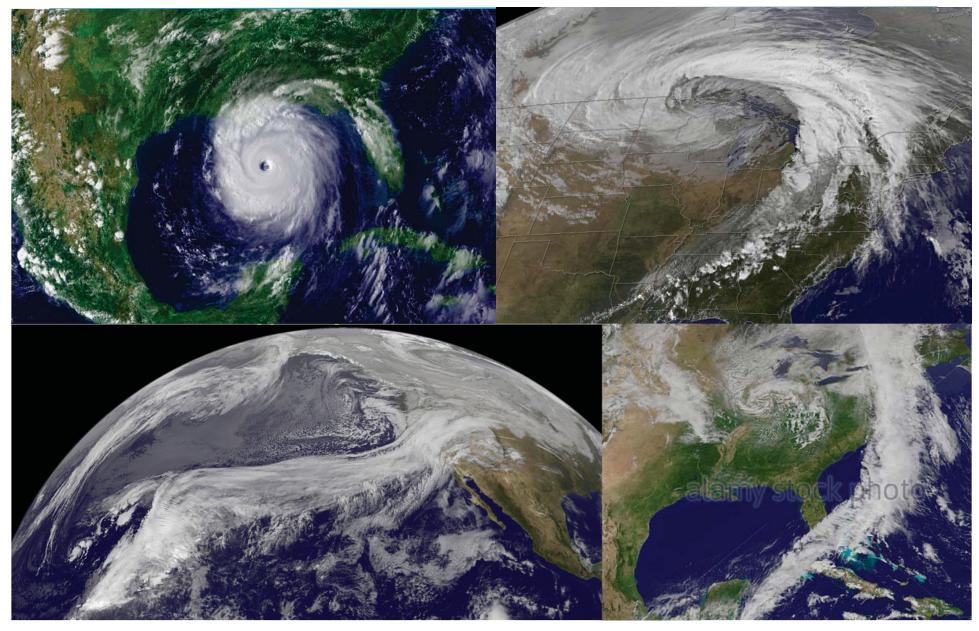
Deep Learning @15 PF

- ACM/IEEE Supercomputing 2017 Paper
- Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas, Md. Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail Smorkalov, Jack Deslippe, Mikhail Shiryaev, Srinivas Sridharan, Prabhat, Pradeep Dubey

Characterizing Extreme Weather in a Changing Climate



Extreme Weather



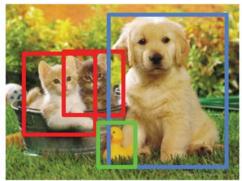
Climate Science Tasks

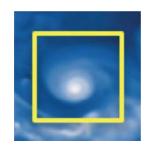
Classification

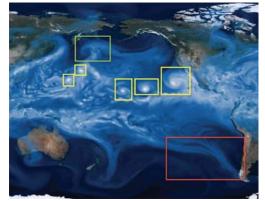
Classification + Localization

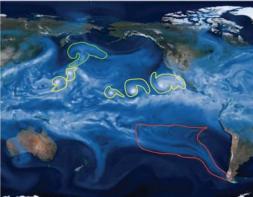
Object Detection

Instance Segmentation



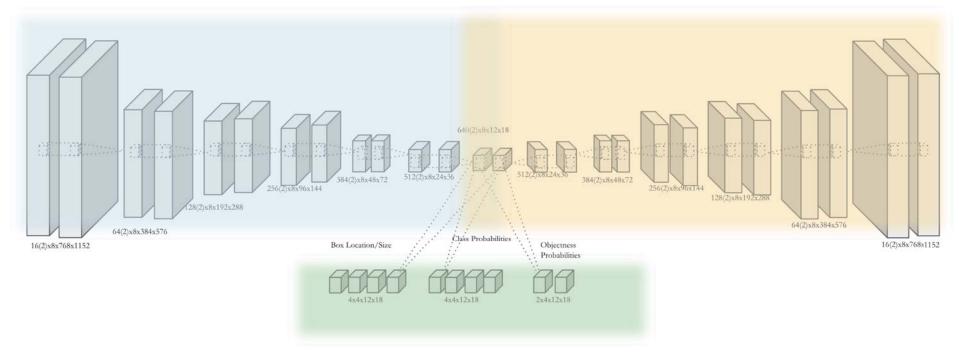






Semi-Supervised Convolutional Architecture

Encoder Decoder

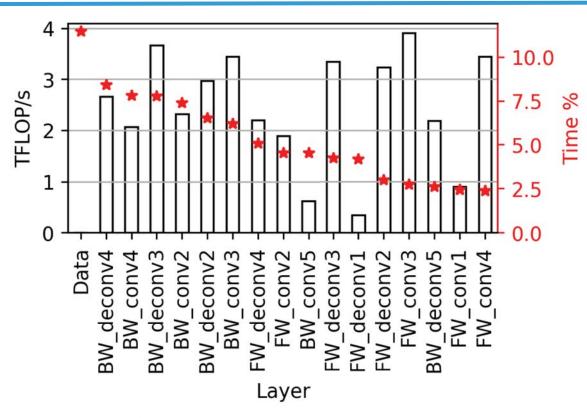


Classification + Bounding Box Regression

DL Software

	Technologies						
Deep Learning Frameworks	Caffe PYTÖRCH CNTK, MXNet, Neon,						
Multi Node libraries	Cray Plugin Horovod GRPC MLSL MPI						
Single Node libraries	MKL-DNN CuDNN						
Hardware	CPUs (KNL) GPUs FPGAs Accelerators						

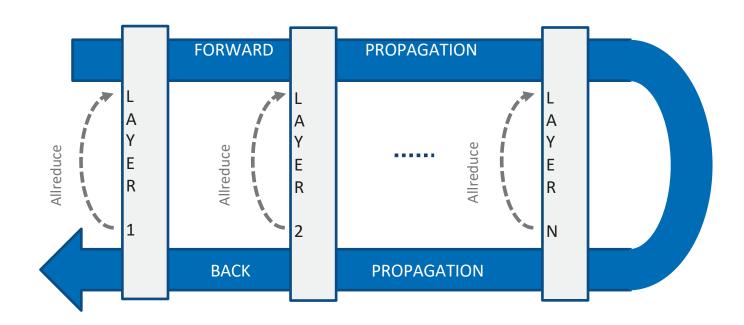
Single Node Performance



- Optimizations for conv and deconv layers in MKL-DNN
- Obtained 2.09 TF; Theoretical max ~6 TF

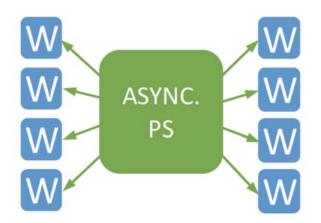
Multi-Node Strategy

Data/Batch Parallelism



From Pradeep Dubey, "Scaling to Meet the Growing Needs of Artificial Intelligence (Al), IDF 2016 https://software.intel.com/en-us/articles/scaling-to-meet-the-growing-needs-of-ai

Multi-Node Strategy



SYNCHRONOUS

ASYNCHRONOUS

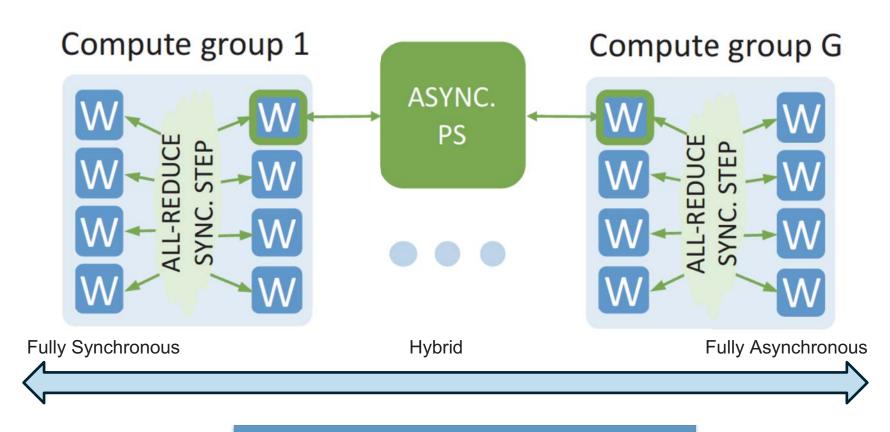
Pros

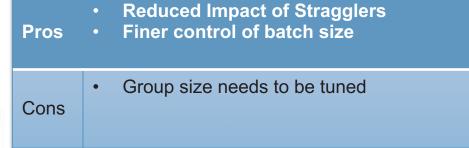
- Stable convergence
- Same # iterations to converge as serial implementation
- Faster Iterations
- Robustness to node failures
- Better control of batch size

Cons

- Straggler effect
- Susceptible to node failure
- Effective Batch size grows with # nodes
- Parameter Server can be bottleneck
- Stale gradients can negatively impact convergence rate

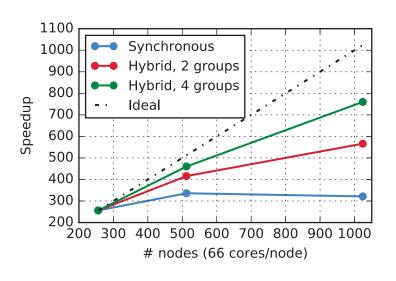
Hybrid Synchronization



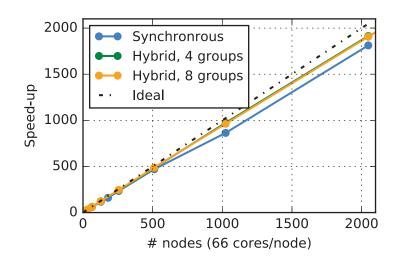


Scaling Results

Strong Scaling

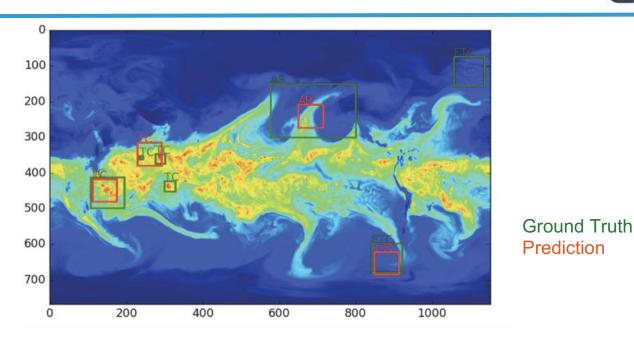


Weak Scaling



- Batch size = 2048 per group
- Batch size = 8 per node

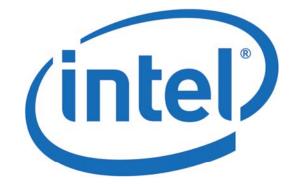
Final Results



- Reasonable detection results for Climate App
- Largest Caffe run on CPU-based HPC system
 - -13.3 PF sustained, 15.1 PF peak on 9600 nodes
- Performance enhancements to MLSL, Intel Caffe and MKL-DNN released to the broader community

CosmoFlow @3.5 PF

ACM/IEEE Supercomputing 2018 Paper



CosmoFlow Team

Amrita Mathuriya Intel

Debbie Bard NERSC

Pete Mendygral Cray

Lawrence Meadows Intel

James Arnemann **UC** Berkeley

Lei Shao Intel

Siyu He LBNL/CMU

Tuomas Karna Intel

Diana Moise Cray

Intel

Simon Pennycook Kristyn Maschhoff Cray

Nalini Kumar Intel

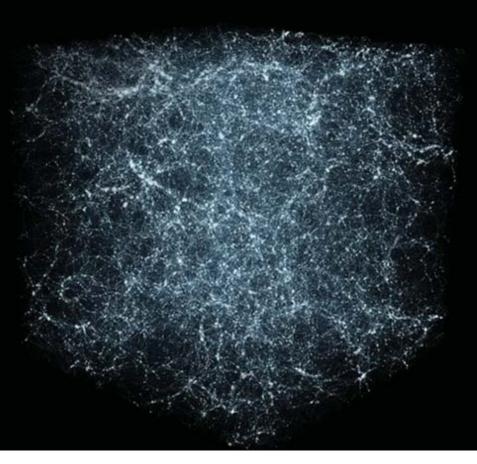
Shirley Ho LBNL/CMU

Mike Ringenburg Cray

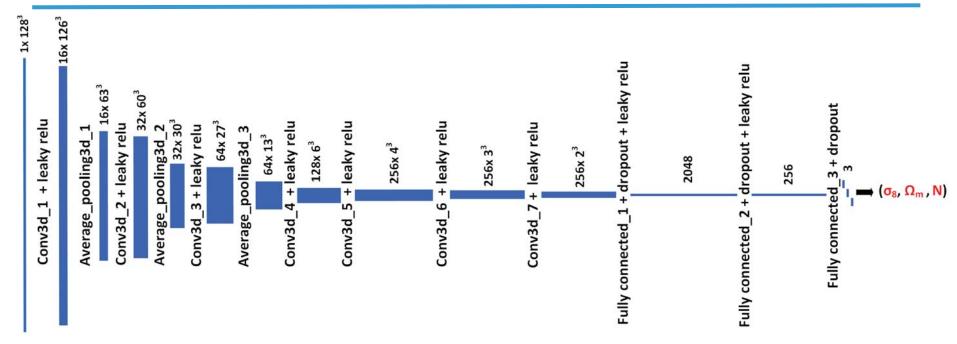
Prabhat NERSC

Victor Lee Intel

Determining the Fundamental Constants of Cosmology

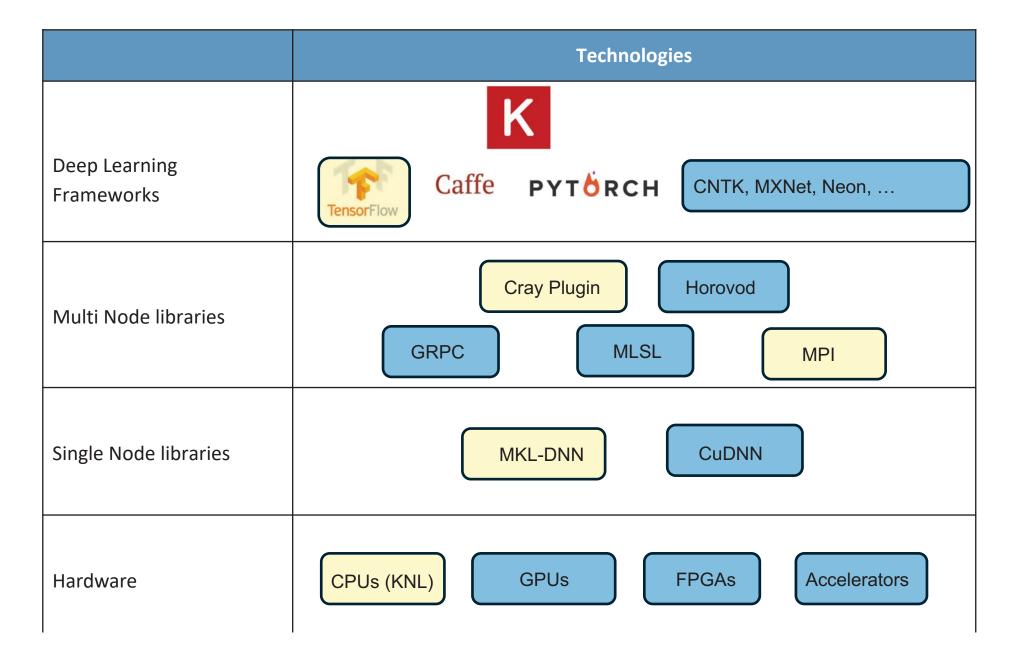


3D Convolutional Network



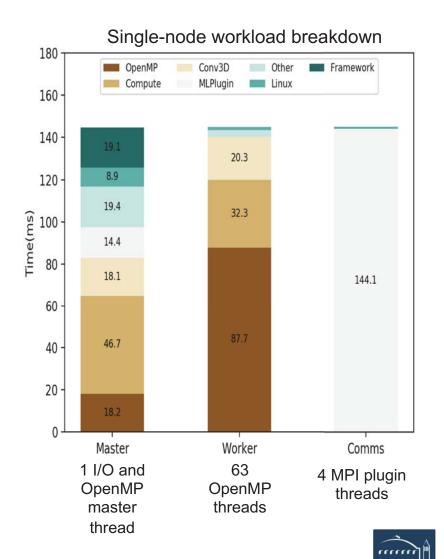
- Based on design in Ravanbaksh et al. (PMLR'16)
- 7 convolution layers followed by pooling layers
- 3 fully-connected layers
- All layers use leaky Relu as activation function

DL Software

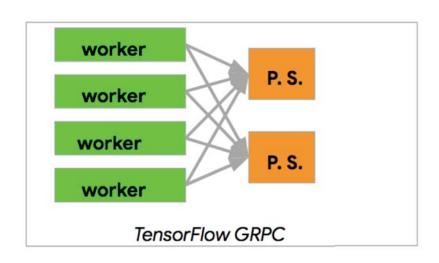


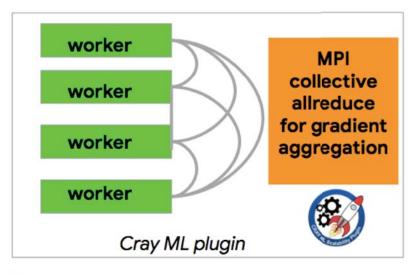
Single-node Performance

- Optimized 3D convolutions and pooling in MKL-DNN
 - Larger convolutions achieve>1 TF
- Overall 535 GF performance on a single KNL node
 - Includes I/O and the Cray Plugin overhead



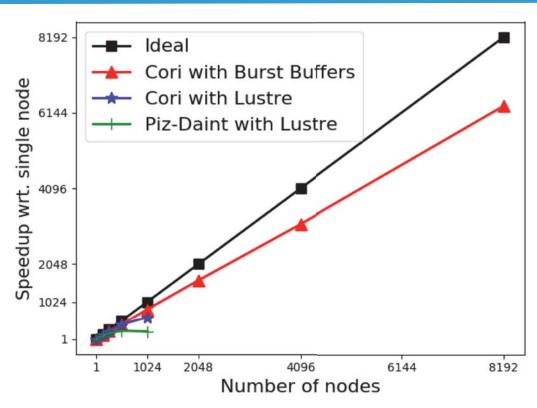
Multi-node Optimizations





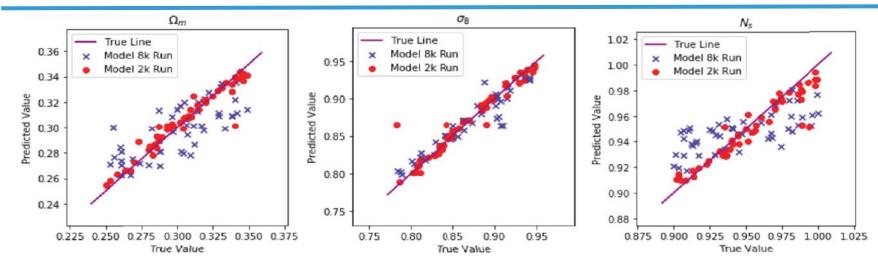
- Data Parallel, synchronous updates
- Skip parameter servers, update worker nodes directly
- Cray CPE ML Plugin
 - MPI-based, frameworkindependent plugin
 - No modification to Tensorflow, python loopback calls
 - Dedicated thread pool and custom reduction algorithm

Scaling Performance



- Measure overall walltime per epoch (throughput)
- Achieve 77% scaling efficiency at 8192 nodes
 - Global batch size = 8192, weak scaling

Final Results



- Parameter estimation comparable to best experimental uncertainty for $\Omega_{\rm m}$ and $\sigma_{\rm 8}$, almost 5x smaller for $N_{\rm s}$
- CosmoFlow scaled out to 8192 nodes; 77% scaling efficiency,
 3.5PF sustained performance
- Largest application of TensorFlow on CPU-based system with fully-synchronous updates
- Cray plugin and MKL-DNN enhancements deployed in production

Deep Learning @ 1EF

ACM/IEEE Supercomputing 2018 Gordon Bell Finalist

DL@1EF Team

Sean Treichler

Joshua Romero

Mayur Mudigonda

Nathan Luehr

Everett Phillips

Ankur Mahesh

Michael Matheson

Jack Deslippe

Massimiliano Fatica

Prabhat

Michael Houston

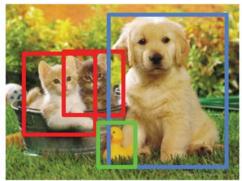
Climate Science Tasks

Classification

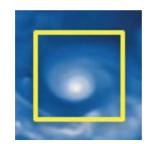
Classification + Localization

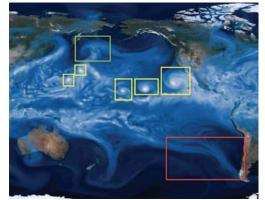
Object Detection

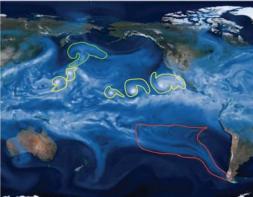
Instance Segmentation



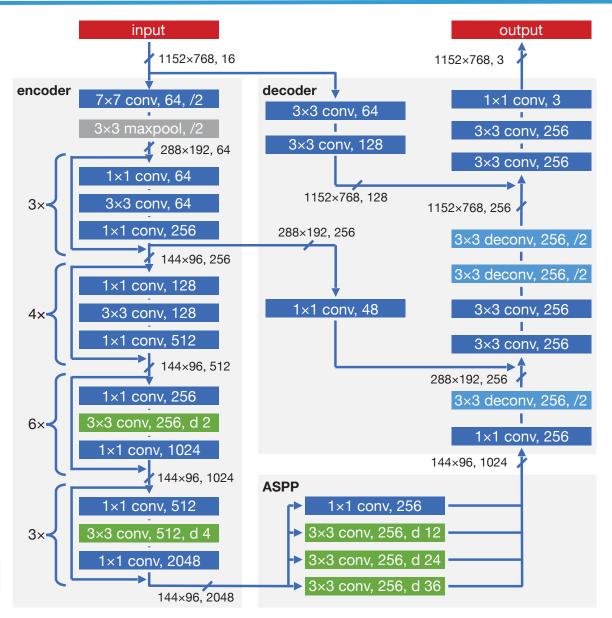








DeepLabv3+ Segmentation Architecture



DL Software

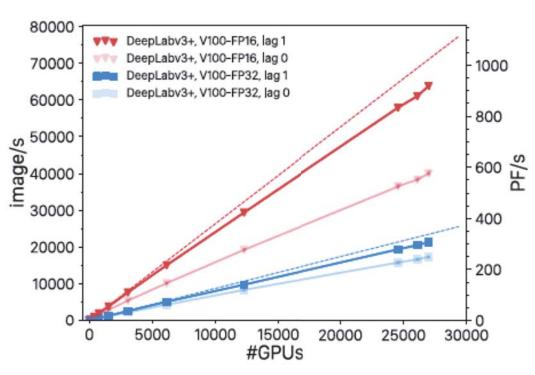
	Technologies											
Deep Learning Frameworks	Caffe PYTÖRCH CNTK, MXNet, Neon,											
Multi Node libraries	Cray Plugin Horovod GRPC MLSL MPI NCCL											
Single Node libraries	MKL-DNN CuDNN											
Hardware	CPUs (KNL) GPUs FPGAs Accelerators											

Single Node Performance

		FP32 Training							FP16 Training							
Category		#	Time	Math	Mem	%	%	%	#	Time	Math	Mem	%	%	%	
Category		Kern	(ms)	(TF)	(GB)	Time	Math	Mem	Kern	(ms)	(TF)	(GB)	Time	Math	Mem	
Forward	Convolutions	71	172.4	1.40	100.0	31.4	51.7	64.4	95	105.5	2.79	96.1	25.3	21.2	101.2	
	Point-wise	563	43.6	< 0.1	32.2	7.9		82.1	564	51.1	< 0.1	35.3	12.2		76.8	
Backward	Convolutions	95	270.5	2.79	153.2	49.2	65.7	62.9	113	159.7	5.58	95.8	38.3	28.0	66.7	
	Point-wise	113	4.1	< 0.1	2.2	0.7		59.6	123	11.6	< 0.1	5.0	2.8		47.9	
Optimizer		1056	3.0	< 0.1	0.7	0.5		25.9	1056	3.0	< 0.1	0.9	0.7		33.3	
Copies / Transpose	S	388	30.5	12	19.8	5.5		78.0	530	51.5	_	28.2	12.3		60.8	
Allreduce (NCCL)		25	28.2	< 0.1	0.4	5.1		1.6	30	22.4	< 0.1	0.7	5.4		3.5	
Type Conversions									143	0.5	-	0.1	0.1		22.2	
GPU Idle										12.0			2.9			
Total		2311	549.9	4.19	308.5		48.5	62.3	2654	417.3	8.38	262.1		16.1	69.8	

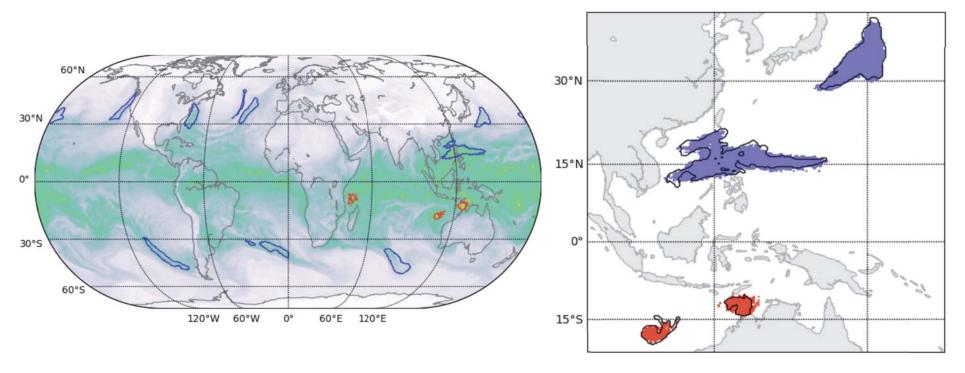
- 16-bit and 32-bit implementations
- Obtained 39 TF in 16-bit; Theoretical Max: 125 TF

Multi-Node Optimization



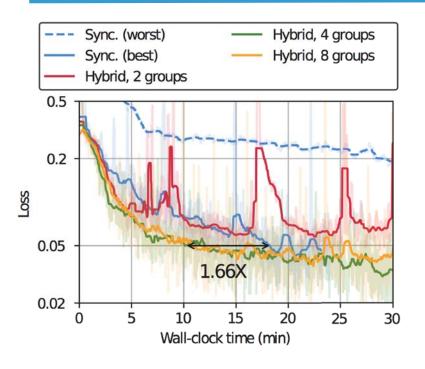
- Data Parallel, synchronous and lagged updates
- Hierarchical scheme for local updates (over NCCL/NVLink) and global updates (over MPI/Infiniband)

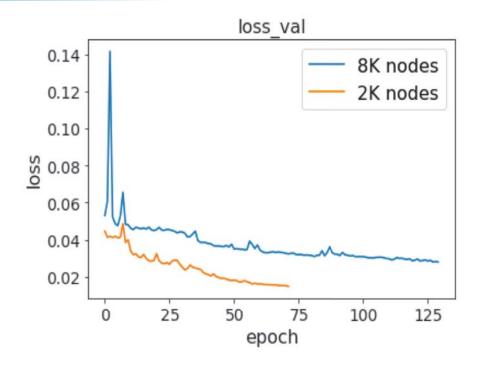
Final Results



- High quality segmentation results obtained for climate data
- Network scaled out to 4560 Summit nodes (27,360 Volta GPUs)
- 1.13 EF peak, 0.999 EF sustained performance in 16-bit precision
- Largest application of TensorFlow on GPU-based system, first exascale Deep Learning application
- TensorFlow and Horovod enhancements deployed in production

Convergence...

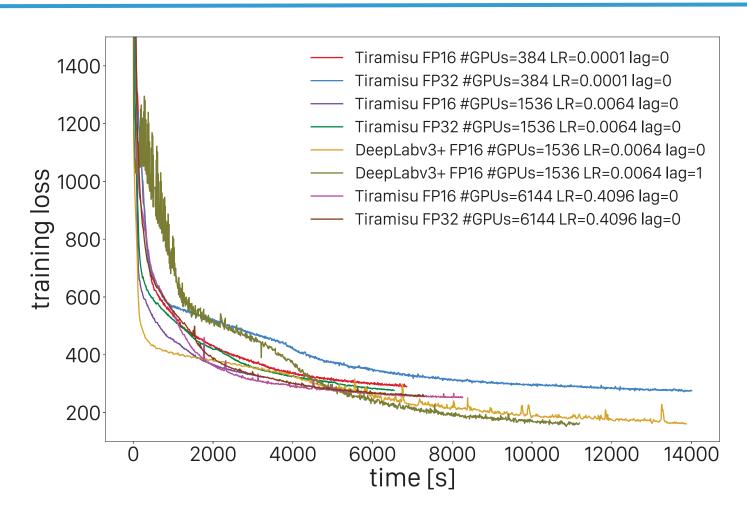




DL @ 15PF

CosmoFlow

Convergence...



DL @ 1EF

Outline

- Introduction to NERSC
 - Why Scale Deep Learning?
- Case Studies
- Open Challenges
 - Data Management
 - Hyper-Parameter Tuning
 - Convergence
- Conclusions

Data Management at Scale

- DL workloads are extremely demanding (Data and Metadata)
 - Read-only, Random shuffles vs. Contiguous reads/writes
 - O(10) of TBs spread across O(100,000) files
- Lustre and GPFS typically can't keep up
 - Burst Buffer and node-local NVMe storage was critical
- Ingest pipelines for loading scientific data (HDF5, NetCDF, ROOT) into DL frameworks are not optimized
 - multi-threaded support
- I/O middleware for modern DL workloads might need to be redesigned

https://www.nextplatform.com/2018/10/09/hpc-file-systems-fail-for-deep-learning-at-scale/

Hyper-Parameter Tuning at Scale

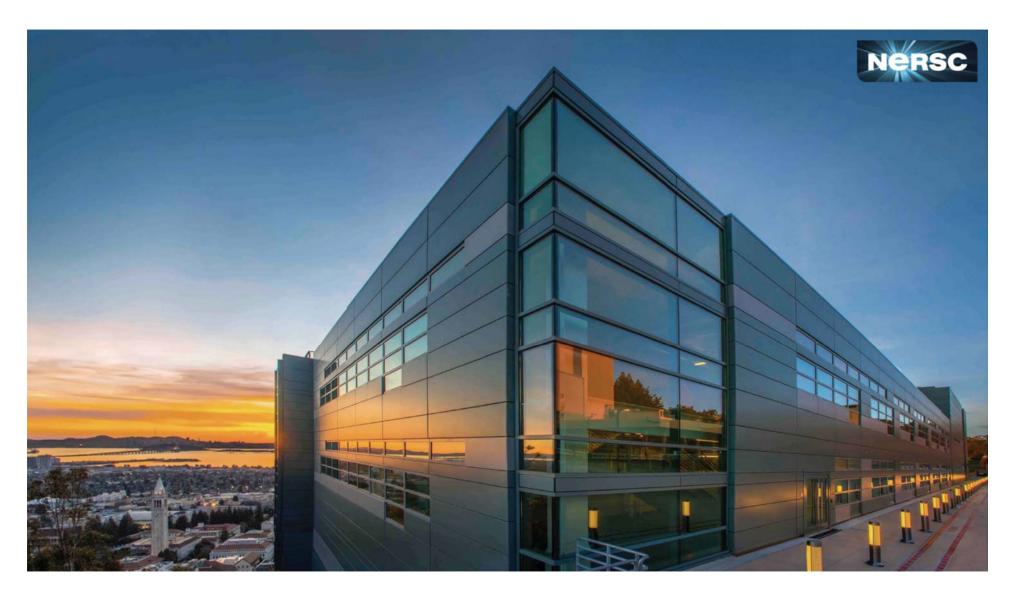
- Tuning learning rate + curriculum at scale is an empirical exercise
 - smaller scale experiments need to inform large scale runs, need theory
 - linear / square-root scaling for learning rate followed by decay
- Choice of optimizer (SGD + Momentum, ADAM, LARS/LARC) is important

Convergence at Scale

- Computational Efficiency vs. Statistical Convergence
 - Time to Solution will depend on both
- Parameter update schemes: Sync vs. Async, Lagged
- Effect of Batch Size on convergence
 - Start with low batch size and ramp up
- Higher-order optimization schemes

Conclusions

- Deep Learning is applicable for scientific problems
- Large datasets and complex architectures require performance and scaling
 - HPC systems are a good match
- Success in scaling DL to largest CPU and GPU-based HPC systems (15PF, 3.5PF, 1EF) with productive frameworks
- Open Challenges
 - Data Management, Hyper-Parameter Tuning, Statistical Convergence
- Exciting area, open to collaboration!



Questions? prabhat@lbl.gov