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Abstract—Information asymmetry between building owners 
and suppliers of sustainable building renovations threatens to 
slow the energy transition. This study introduces the concept of 
a Digital Energy Advisor (DEA) which autonomously and 
transparently provides personalized guidance in an educational 
way about the technical, economic, and environmental aspects 
of sustainable buildings. The technical requirements of building 
a DEA are described, including model structure and input data, 
which connects to the barriers found in being able to realize such 
a tool available to the public. It is shown that while it is 
technically possible, data procurement costs, personal privacy 
via GDPR, and the intellectual property of private firms 
establish the limits for creating a non-profit, publicly accessible 
DEA. Technical and commercial pathways around the barriers 
are discussed, and the conclusion is that an open-source business 
model has the greatest potential for a public DEA. 

Keywords—Information asymmetry, urban building energy 
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I. INTRODUCTION 
The timing of the COVID-19 pandemic, shuttering of 

nuclear plants, and removal of Russian natural gas have all 
been catalysts towards a top-down reimagination of Europe’s 
energy systems. The EU’s Green Deal consists of several 
investment programs, e.g. Renovation Wave, Taxonomy for 
Sustainable Activities, and REPowerEU, that all rely on 
renovations to building energy systems [1]. The owners and 
users of these buildings are therefore key stakeholders in the 
energy transition, and the decisions they take will greatly 
influence the development of our urban, national, and 
international energy infrastructure. 

The geopolitical situation in Europe has accelerated the 
energy transition as building owners seek to increase energy 
security through local renewable sources and protect 
themselves from high energy costs. The rapid adoption of 
solar photovoltaics (PV), batteries, and electric vehicles (EV) 
is considered positive and necessary for the energy transition 
[2], however a “gold-rush” situation is forming where 
providers are selling the trendiest sustainable energy products 
as fast as they can [3]The complexity around energy systems 
and sustainability makes it difficult for consumers (and 
sometimes even experts) to make optimal decisions, 
especially given the abundance of media in everyday life that 
can send simple but conflicting messages [4], [5]. 

 Many publicly available digital tools already exist for 
planning and control of building energy systems from 
commercial and non-commercial sources. However, they tend 
to either have educational aspects or personalized aspects, but 
not both [6]. Given the potential benefits of freely available, 
educational, and personalized information about sustainable 
building energy renovations, this paper is an exploratory study 
into the potential for digital energy advisors (DEA), which are 
capable of automatically guiding building owners towards 
sustainable renovations without technological bias or sales 
pressure. It includes a state-of-the-art review of current 

simulation technologies, input data requirements, barriers to 
development, and potential pathways forward. The material is 
based on the direct experiences of the authors in constructing 
high spatial and temporal resolution urban energy simulations 
via three research projects [7], [8], [9]. There is an increased 
interest in such models and the lessons learned and 
documented in this study will be of value to others currently 
working in the field and those looking to move into it. 

The structure of the paper is as follows; following a brief 
background on information flows in building energy systems, 
a more complete description of a digital energy advisor is 
given to establish a goal for what could or should be built. 
Next is a state-of-the-art review of the digital tools for building 
a DEA at scale and their respective needs for data. 
Categorically these tools are known as building stock models 
(BSM) or urban building energy models (UBEM) depending 
on the level of influence between buildings, and explicitly do 
not include transport systems beyond the charging of EVs at a 
building. The barriers to building a DEA are described next, 
and the paper concludes with a discussion of possible 
pathways for overcoming these challenges. 

A. Background 
Under economic liberalism, the best outcomes for a 

society can be achieved if individuals make rational, self-
interested decisions with complete information within policies 
that represent the collective will of society. To have complete 
information requires two parts: first, that the information is 
available, and second, that the decision maker can make use 
of it. Information gathering is usually done through multiple 
channels which can be roughly grouped into three categories; 
non-commercial, commercial, and peers. These information 
channels are stylized in Fig.1 as part of the decision-making 
process informed by Rogers [10], and are colored yellow, 
blue, and red for non-commercial, commercial, and peer 
sources, respectively. A mixture of commercial and non-
commercial information shows as green. 

 
Fig. 1. Decision-making process with information channels. Yellow - non-
commercial. Blue – commercial. Red – peer sources. Green – mixture. 
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Non-commercial channels are those who are not 
connected to selling the technology, such as government 
advisors, academics, or non-governmental agencies. They aim 
to provide non-biased information to shape attitudes and 
norms around pro-environmental behavior, but is typically 
generalized for a broad audience. This includes reports and 
articles about technologies that both inform the public as well 
as public policy that help shape the energy system at large. 
Non-commercial information can be given on an individual 
basis, such as municipal energy advisors, who are available at 
no cost to ensure non-experts have access to quality, 
personalized information [11].  

Commercial channels are those from installers or the 
broader industry directly selling the technology, and includes 
advertisements, articles, and personal consultations. 
Personalized information is usually delivered through a 
quotation, where a representative will visit the building to 
assess the current situation, make simple calculations, and 
provide a short report that describes the expected performance 
of the system and the cost to acquire it. The level of trust in 
this information will depend on the provider’s reputation (e.g. 
recommended by trusted peer or public ratings) and the 
comparison of this information with what is already known 
generally about the technology. One risk is that if they only 
receive one offer, which is common [12], [13], then the 
decision maker may not have enough background to evaluate 
the quality of the information they’ve been given. 

One check against the trustworthiness of commercial 
information sources are peers. Peers are trusted non-experts 
within a social network that preferably have direct experience 
with a given technology. The influence of peers is well 
documented and can come at several points in the decision 
making process [14], [15]. The input of a trusted peer acts as 
a proxy for the decision maker who cannot “test” the 
technology for themselves. This applies not only for the 
technology, but also for the installer, much like many of the 
trades in the building industry. 

The gathering of information through any or all these 
channels is an educational process that typically proceeds 
from more general information towards personalized solutions 
[10], [11]. This is represented in Fig. 1 by the arrows of 
progress, moving from initial interest, to gaining knowledge, 
to forming an opinion. Due to the high effort needed to create 
personalized designs and recommendations, this information 
typically comes from commercial channels since the costs are 
recouped through a sale. This creates a natural conflict of 
interest in that the party providing the education is doing so to 
sell the technology(ies) they are educating about. If a decision 
maker arrives at this stage of the process without sufficient 
general knowledge about how the technology should work and 
cost, then an information asymmetry forms between the buyer 
and seller. 

Information asymmetry is a situation where one party in a 
transaction has more information about the product or service 
than the other. If the knowledgeable party uses this 
information to their advantage, it can lead to inefficient 
transactions which scale up to create inefficient markets, or in 
the worst case a market failure [16]. Failure occurs when trust 
in the market erodes and the quality of goods degrades [17], 
and inefficient transactions are those where the buyer does not 
get the product they want or should have [18]. For example, 
the seller of solar PV will earn more money selling a larger 
system, therefore they are incentivized to convince the buyer 

that the larger system is better and can use their superior 
knowledge about the technology and market to do so [13].  

B. Motivation for DEAs 
Energy technologies are particularly susceptible to the 

shortcomings of information asymmetry given their long 
lifetimes, meaning performance benchmarks may not be 
known until years later, if they are being followed at all [19]. 
The energy transition is already delayed, and if information 
asymmetry is left unchecked, the likelihood of a suboptimal 
societal outcome increases [20]. Digitalization (i.e. 
information and communication technologies, ICT) has 
enabled new methods for collecting, processing, and 
distributing information at scale, including energy systems. 
Combining well developed building energy systems models 
with modern data flows means it is possible to provide nearly 
every building owner with personalized energy consultations 
at the same level or better than current commercial or non-
commercial sources. If made available as part of a public 
service, free from commercial bias, such a platform would act 
as an educational tool for decision makers, help reduce 
information asymmetry, and retain trust in the marketplace. 

II. METHODOLOGY 
Scientific articles and conference papers are used to 

describe the current state-of-the-art in large-scale building 
stock and urban simulations. This is complemented by a 
review of several openly published models and used to 
describe the general structure (or structures) and pathways 
towards the construction of an open building model platform. 

This material is complemented by conversations with 
several relevant stakeholders within the field but from various 
perspectives. These are not formally structured interviews, but 
information gathering exercises of either an exploratory nature 
or as part of the direct collection of information for modeling, 
and consent has been provided by those whose direct insights 
have been documented here. The stakeholders are represented 
in Fig. 1, and include government energy advisors, private 
energy advisors, energy companies, and energy researchers 
working on UBEMs in both academia and industry. 

III. WHAT IS A DIGITAL ENERGY ADVISOR? 
A digital energy advisor (DEA) would be an information 

resource comparable to a human energy advisor; they know 
what your current needs for energy are and can provide 
personalized recommendations on what energy renovations 
can be made to reach environmental and/or economic goals. 
In more technical terms, it is a piece of software intaking 
multiple forms of data, running energy simulations, and 
returning system designs guided by multiple objectives which 
can be prioritized by the user. Since pure optimization is rarely 
desired by the target user group, the DEA must have the ability 
to alter inputs or objectives towards the goal of educating the 
user about their alternatives and which factors impact them the 
most. The DEA’s goal should be that the end user becomes 
educated about their options towards meeting sustainability 
goals in a technologically neutral way. This is distinct from 
existing commercial tools which are used as sales leads and 
non-commercial tools which lack personalization. 

A. Why Should A DEA Be Built? 
In addition to the problem of information asymmetry 

described in the introduction, conversations with energy 



advisors provide additional motivation on why a tool like this 
is useful. 

Government energy advisors are available at no cost in all 
municipalities in Sweden. This public service is meant to 
reduce the barriers for building owners to identify methods for 
saving energy and money. The advisors say that existing tools 
are inadequate for their needs; commercial software is both 
costly and time consuming, and the tool developed by the 
Swedish Energy Agency for energy advisors is too detailed 
and complicated, also requiring too much time and effort to 
use. The typical consultation includes visiting the property, 
reviewing energy meter data, and making recommendations 
based on experience. Rarely are detailed calculations made. 
When the DEA concept and ongoing development were 
described, both advisors felt this would be a very useful tool 
that would bring quantitative analysis back into their 
consultations. 

Their desire for a better tool comes in part from the stage 
of decision making many residents are in when they book a 
consultation. In 2022/23, most consultations (estimated at 
70%) are to review solar PV possibilities. Of those cases, 
about 1/3 also ask about batteries. Many have already received 
offers from installers and are only looking to confirm that their 
offers are reasonable. This is certainly a suitable and 
appropriate use of the government energy advisors but does 
indicate a trend that efficiency is not at the front of mind for 
many building owners. In appropriate cases, the advisors say 
they try to encourage efficiency renovations prior to adding 
solar supply, but few consider it suggesting that they have 
already formed most of their opinion prior to the consultation. 
There are several reasons why efficiency and demand 
reduction has not been adopted as much as desired [21], [22], 
[23], including some that a DEA could not fix, but the ability 
to directly compare efficiency and supply alternatives with 
personalized simulations could make a positive contribution. 

B. What Has Already Been Built? 
Some forms of a DEA aimed at the direct education of 

building owners have been or are under construction. Many of 
these are solar energy related due to the relative ease of 
acquiring the data needed for the calculations. Perhaps the 
most prominent example is Google Sunroof [24], which 
provides energy production calculations and, in some markets, 
rudimentary economic calculations. The Sunroof database is 
also available to developers through an API and is embedded 
is several commercial sales tools, such as Solargraf [25] and 
Aurora [26]. 

Another example based on the same concept as Sunroof is 
the solar map launched by the city of Karlstad in 2021 [27]. 
Users can find their roof, select up to three surfaces for 
installation, and they are provided with a recommended solar 
PV system design. The first graphic presented to users for their 
design is shown in Fig. 2 (translated from Swedish into 
English), which was designed to highlight self-consumption 
calculated with new machine learning models [28], [29]. 
Further down, users can change system design or other 
boundary conditions to customize the design or stress test 
economic conditions. The primary aim of the tool is to 
educate, and was tested to identify language, metrics, and 
features that were most useful to end users [30]. This 
experience was a first step towards the development of a more 
comprehensive DEA. 

 
Fig. 2. Results page (translated to English) from Karlstads Solar Map [27] 

Another tool that is closer to the DEA concept described 
above is made by the company Hemma [31]. Their tool is 
provided to consumer facing businesses (i.e. B2C) to attract 
customers and deliver energy renovations. One target 
customer are banks, where the tool helps collect information 
useful for a renovation loan. Another is installation firms 
which use it to help sell energy technologies. Hemma requires 
users to share their electricity meter data, which can be done 
digitally and automatically. Then they answer several 
questions about the building, which help feed into the building 
energy model, and the result is a list of energy renovation 
recommendations with their energy and cost savings. So in the 
model described in Fig. 1, Hemma is an energy advisor, but 
commercial rather than public. Their results currently do not 
allow users to adjust inputs or test alternatives beyond what 
they offer, leaving this instead for installers who can make a 
direct assessment. This is similar to nearly all of the 
commercial solar PV tools available as well [6]. 

  



IV. HOW CAN A DEA BE BUILT? 
The ability to make academic/professional level 

calculations on a broad scale is becoming increasingly 
possible due to the development of building stock models 
(BSM) and their successor urban building energy models 
(UBEM). These models seek to create detailed, individual 
building energy models but at a district or city scale (e.g. from 
dozens to thousands of buildings). The core building models 
are comparable to single building models, and the added value 
of a UBEM is the ability to apply boundary conditions at scale. 
Generating this information automatically can reduce the 
barriers to high quality analysis and increases society’s 
intelligence with regards to energy and sustainability. This 
chapter presents the basic structure of these tools, their data 
requirements, and the potential use cases. 

A. Urban Building Energy Models 
Building energy models have existed for decades and are 

used predominantly for single buildings. Methods for 
simulating large collections of buildings first started with 
building stock models, which are generally a large collection 
of architypes simulated independently and aggregated in a 
way that matches the building characteristics of a given region 
[32], [33]. UBEMs add a spatial component where specific 
buildings are mapped to specific locations in space. This can 
enable effects of shadowing on heating, cooling, and solar 
energy production, as well as urban heat island effects [34], 
[35]. But most relevant to this discussion is their ability to 
process large numbers of simulations and report that 
information in a spatially relevant manner. 

The UBEM workflow is very similar to typical building 
energy models, as shown in Fig. 3, with special aspects that 
make it possible to apply properties at scale. It begins with 
urban geometry, namely buildings, but can also include trees 
and other objects that cause significant shading. Each building 
is then populated with characteristics like window areas and 
thermal properties, and internal gains consisting of occupancy 
and appliance usage. Due to the model’s large scale, 
simulations are often made in stages to avoid rerunning 
aspects that are not always relevant. For example, a solar 
radiation simulation can be run to calculate incident 
irradiation on all surfaces once the geometry is set, and it does 
not need to be repeated unless geometry changes. Similarly, 
target energy usage such as thermal demand or solar supply 
potential, can all be run and visualized independently. Once 
demand profiles are generated, energy supply systems can be 
designed and simulated. At a more advanced level, district 
energy supply systems can also be designed and simulated. 

A core difference between traditional building energy 
models and UBEMs is the need for systems and automation 
[36]. This is relevant for applying boundary conditions, 
validating models, and visualizing outputs, and creates new 
challenges in simulation. For example, if simulating 10,000 
buildings, it is impossible to check the inputs of every single 
one to ensure they are correct. This places greater pressure on 
input data quality prior to model construction. It also makes 
simpler physics models more desirable, even at the sacrifice 
of accuracy, to reduce the number of failure points [37], [38], 
[39]. Likewise, the outputs of UBEMs become databases of 
their own, and create new opportunities for data visualization 
through digital twins or other GIS based tools [40], [41], [42]. 

 
Fig. 3. Physics based building energy model structure and workflow 



B. Data Requirements 
Simulating an entire city requires a large volume of data 

from diverse sources. Following the workflow described in 
Fig. 3, there are eight data input points that can either be 
collected directly or derived from multiple sources. 

Urban geometry can be generated using two main 
methods; 2.5D extrusions and 3D models. The extrusions 
come from 2D property maps which can be readily found in 
private and public domains, such as OpenStreetMap [43]. The 
maps contain building footprints which are extruded skywards 
to create the building volume. Procuring the correct height 
data can be a challenge, especially with buildings that have 
multiple heights in different parts. Full 3D data is usually 
constructed with LIDAR scans taken from low flying aircraft. 
This captures not only building geometry, but also vegetation, 
making this data type more valuable for solar shading. A 
substantial amount of post-processing is needed to convert a 
LIDAR point cloud into usable polygons, especially for 
buildings since they are simulated using one polygon per wall 
surface. There are two main formatting standards for 3D 
geometry, GeoJSON and CityGML, with the former 
becoming common in North American and the latter in 
Europe. There are already workflows established in some 
UBEMs built around both formats, and it is useful for each 
region to have a common format to converge upon [44], 
however there could be barriers to intercontinental 
collaboration. The effort needed to create a 3D dataset of high 
enough quality for use in UBEMs usually means only densely 
developed areas are generated and gaining access has a cost. 

Building characteristics refer to the construction as it 
relates to thermal energy; e.g. U-value of envelope, window 
areas, infiltration rates, and thermal mass. When developing 
new construction, these values are known (within a level of 
uncertainty) since they are chosen in the design or measured 
during construction. In existing buildings, what can be known 
about the construction is highly variable. Gathering this data 
usually requires an energy audit, which is expensive and even 
then comes with high uncertainty about specific values. The 
EU project Tabula has helped create characterized residential 
buildings by age, including original and renovated values, 
which provides representative values for these classes of 
buildings [45]. A report from the Swedish National Board of 
Housing, Building and Planning (Boverket) presents a 
detailed audit of thousands of buildings subsequently turned 
into a validated building stock model [46]. In North America, 
the U.S. Department of Energy has generated a large, open 
dataset of detailed simulations for a variety of buildings in all 
climate zones [47]. In all cases, the boundary conditions used 
in these models should be considered typical of a given 
building class, i.e. architypes, providing a useful starting point 
for simulation, but still leaves variance in the deviations many 
buildings have from the norm. 

The occupancy and activities within a building are used for 
four purposes; to apply internal heat and moisture gains that 
affect the HVAC system, to create electricity load profiles for 
equipment, to create hot and cold water use profiles, and to 
identify periods when humans are present and comfort 
requirements are needed in the HVAC controls. When 
building stocks or districts are the model target, generic 
profiles are commonly used since the nuances of individual 
homes are lost. But there are cases where capturing individual 
details are important, and several stochastic models are 
available which use total occupants as an input to create 

representative time-series profiles based on high resolution 
measurements [48]. Like the building characteristics, these 
profiles are only representative of a certain group of people 
and are usually limited to residential applications. 
Commercial buildings are too diverse to create such models 
easily and may instead require fixed profiles [49]. 

With the building models populated, the climate data is the 
final boundary condition in order to generate demand profiles. 
Weather data is often available from national weather services 
and a growing number of private sources, such as Meteonorm 
[50] and Solcast [51]. National weather data can be limited to 
specific ground stations, and is commonly unprocessed, 
meaning bad values need to be cleaned after the data is 
acquired. Private services use a combination of satellite and 
ground measurement data in proprietary models to create 
weather profiles for nearly any location on earth, free from bad 
values. A similar publicly funded tool, PVGIS [52], can offer 
the same but with only satellite data, and therefore comes with 
some additional uncertainty. Hourly timesteps have become 
the standard resolution for both weather data and simulations, 
however for electrical network studies including solar PV it 
may be necessary to use 15 or even one-minute timesteps [53]. 
For simulations meant to represent long-term behavior, a 
typical meteorological year (TMY) file is used so that only 
one year is simulated which can be extrapolated over decades. 
However, it is increasingly common to test weather under 
several climate change scenarios as part of the planning 
process. When validating, then temporally and spatially 
matched weather data is needed. 

Validation is represented in Fig. 3 by a dotted feedback 
loop between the output demand profile and the building 
properties and requires energy meter data as a baseline 
comparison. In UBEMs, this process must be automated if a 
scale beyond a single district is required, which is possible 
through several methods [36], but is not trivial due to the need 
for numerous simulations and is not a feature in any UBEM 
tool. ASHRAE standard 140 is a common method that 
validates a model if the normalized mean bias error (NMBE) 
is maximum 5% and the root mean square error (RMSE) 
within 15% at a monthly timescale. If using an hourly 
timestep, NMBE and RMSE are increased to 10% and 30%, 
respectively, to account for greater stochasticity. At scale, 
acquiring energy meter data comes with several challenges, 
particularly when high spatial resolution (i.e. individual 
buildings) is desired. Another alternative is energy 
performance certificates (EPC), which are publicly available 
for individual buildings so long as the requester registers their 
personal data and interest, but access to the full database is 
only reserved for researchers. EPCs contain individual energy 
flows, but only with annual totals, and recent studies have 
demonstrated that at a district level EPCs can be validated 
against, but for individual buildings the errors become 
excessive [54], [55]. 

With validated demand profiles, energy supply systems 
can be designed and simulated. This requires technical 
properties for each component to be defined, such as 
conversion efficiencies or storage loss rates. These parameters 
can often be found through product specification sheets, but in 
some cases the full spectrum of technical aspects is kept 
private (e.g. heat pump performance maps) and regression 
models are used in their place [56], [57]. 

If an economic analysis is sought, then market prices for 
equipment and energy are needed. Current equipment prices 



are rarely published publicly, but are also highly variable, so 
industry statistics are suitable and usually combined with a 
sensitivity analysis. Electricity, fuel, and/or heating network 
prices are typically available via local utilities for free, but 
require manual collection and processing. This task can be 
substantial particularly when dealing with multiple local 
distribution system operators (DSO) that have differing price 
models. Manual collection of hourly electricity prices is also 
time consuming and automated access via an API can come 
with a cost; for example, Nord Pool Spot charges €3200 per 
year to commercial entities with a 50% discount for academic 
use. The OpenEI utility rate database in the United States aims 
to automate the process at a large geographical scale [58], 
including data for 3829 utilities, however updates are not 
generally fast enough to maintain pace with market changes. 

C. Practical UBEM Tools 
UBEMs are complex tools that require expertise, therefore 

the majority of UBEMs are built and used by two classes of 
professional: architects/engineers (AE) and researchers (i.e. 
any professional in a research capacity). The AE class uses 
UBEMs in the design of new city districts, for example to 
calculate daylighting or ensure compliance with energy 
regulations. Here the building geometry and characteristics 
are known (or are a result of the simulations) which means 
there is more control over the modeling process and in some 
sense simplifies the workflow. Simulating existing cities are 
largely performed by researchers towards the goal of greater 
understanding about the built environment or informing 
public policy. 

The majority of UBEMs have been produced by 
researchers and tend to be open-source software. Two popular 
versions are the Ladybug suite of tools [59], [60], and City 
Energy Analyst (CEA) that comes from ETH Zurich [61]. The 
Ladybug tools are built using open-source models from the 
U.S. Department of Energy, such as the venerable EnergyPlus 
[62]. Their integration with 3D modeling tools popular with 
architects (e.g. Rhinoceros and Grasshopper) make them 
easily accessible by the AE class. CEA has Open Street Map 
integration for importing building footprints and urban 
infrastructure (e.g. roads) and therefore aims more at 
simulating existing cities. Like Ladybug, CEA is open-source 
and free to use, and the group supporting the tool was awarded 
funding in 2023 to boost support and further development. 

There are many other UBEMs found in the literature, such 
as SimStadt [63], CitySim [64], and PyCity [65]. They are 
commonly born from a university or national lab research 
group and have variable levels of maturity or adoption. 
Sweden has two such tools developed within the past five 
years, one from KTH [66] and one from Uppsala University 
[67]. Both are wrappers which build a network of EnergyPlus 
models. Many are text-only, which further limits accessibility, 
and well-formed graphical interfaces are one reason why 
Ladybug and CEA have garnered larger user bases.  

Another access point to UBEMs is through digital twins, a 
virtual representation of the city where sensor data is gathered 
to gain real-time insights and inform simulations. The 
simulation portion of an urban digital twin would be via 
UBEM. Largely a topic of research, digital twins have mostly 
been constrained to single buildings, or at least single owners 
of a building portfolio (including public entities), due to data 
access. An energy utility, such as the DSO or district heating 
operator, would be well positioned to generate an urban digital 
twin using energy meter data, however much like the raw 

meter data, this representation would be restricted to internal 
use only to protect privacy. 

V. BARRIERS TO BUILDING A DEA 
The design and renovation of energy utilization in 

buildings and cities is supported by computer simulation tools 
developed by researchers and utilized by commercial firms to 
inform individual customers. With the simulation framework 
provided by UBEMs and the large volumes of data now being 
systematically collected throughout society, it is technically 
possible to generate information with the detail of a 
commercial firm at the scale previously reserved for generic 
rules-of-thumb. However, access to all the datasets listed in 
Fig. 3 for the purpose of building a DEA is challenging, in 
particular high-resolution urban geometry and model 
validation data. 

A. Building and Urban Geometry 
Building geometry is categorized with a level of detail 

(LoD) system from ranging from 0 to 3, and includes 
subcategories at each level as shown in Fig. 4. Most building 
stock models and UBEMs are simulated using LoD 1.x 
geometry, or essentially boxes, which are generated using the 
2.5D extrusion method. For thermal-only simulations, LoD 
1.3 is the acceptable minimum resolution and commonly 
applied in building stock or UBEM models. However, solar 
energy potential requires greater detail in the roof, for pre-
feasibility 2.2 is acceptable, but for final design, LoD 3.2 is 
necessary as it captures smaller roof objects like ventilation 
pipes, chimneys, or ladders, and not only roof geometry [68]. 
The state-of-the-art tools use a combination of LIDAR and 
visual datasets, combined with machine learning image 
recognition, to identify smaller objects [69], [70]. 

 

 
Fig. 4. Building model Level of Detail (LoD) classifications [71] 

Access to geometry for building an energy model varies 
by scale and location. At a Swedish and European scale, 
building footprints (LoD 0.1) are readily available. Extruding 
these footprints into volumes requires data from other sources 
since building heights are not always included in the footprint 
data. In Sweden, the National Land Survey has building height 
data within GIS shapefiles, and the EPC database includes 
number of floors, which can be used to reach LoD 1.2. 



However, this misses buildings where different portions have 
differing heights, making it impossible to automate geometry 
creation at LoD 1.3 without manual review. For districts this 
is time-consuming but manageable; at city or national scales 
it is not practically possible. When considering the energy 
demands for an entire district (e.g. for district energy supply), 
LoD 1.0 can be sufficient, however when targeting individual 
buildings for use in a DEA, then the errors generated by the 
incorrect heights become too great [54], [55]. 

A key point with any building geometry is that while data 
may be publicly available, it comes with a cost. Researchers 
working in a non-profit capacity have access to Swedish Land 
Survey data, but it is a municipality-by-municipality basis on 
whether 3D CityGML data is available at no cost or not. These 
datasets are mostly used by real estate developers which 
municipalities charge for, so it is likely that building a publicly 
open UBEM with this data would also come with a cost. One 
way to avoid this cost is for the municipalities to own or 
operate the DEA themselves, which is a model followed by 
many of the solar maps developed over the past decade. This 
approach helps to overcome the access to quality geometry 
barrier but requires that a UBEM is easy to implement within 
a municipality’s existing data infrastructure. 

Another geometry set that can be difficult or impossible to 
acquire is energy infrastructure. In the design of new or 
additional energy networks, the placement of current 
infrastructure becomes critical. Stockholm Exergi, the district 
heating network owner and operator in Stockholm, cannot 
share the location of the underground heating pipes 
throughout the city, making high spatial resolution studies 
about the economic feasibility of distributed heat sources 
nearly impossible. It is possible that not all cities have this 
restriction, as a capital city Stockholm may be unique, 
however the criticality of electricity and heating infrastructure 
to society and the threat of terrorist attacks suggests that 
keeping this information private may be a higher priority than 
a digital energy advisor. 

B. Energy Performance Certificates 
Energy performance certificates (EPC) are energy audit 

reports mandated by the EU. All public and commercial 
buildings must have them performed once per decade, and 
single-family homes must do them when changing ownership. 
They contain the most detailed set of information about a 
particular building at scale, including aspects about the 
building geometry, installed energy supply equipment, and 
metered energy consumption data. This information is useful 
for establishing boundary conditions as well as model 
validation, even if this was not their original intent [72]. The 
main limitation with EPCs is that the annual values fall short 
of commonly accepted validation methods which require at a 
minimum monthly values. 

The Swedish National Board of Housing, Building and 
Planning (Boverket) is responsible for the dataset and sells 
limited access to the real estate industry through an API. The 
only energy data available in the API is primary energy per 
square meter (kWh/m2) which obfuscates the ways in which 
energy is used in the building and insufficient for UBEM 
usage. However, the full dataset is available, free of charge, to 
non-profit researchers under the condition that none of the 
raw, original data is shared; only new insights generated from 
the research can be published. This condition is not a 
limitation for the construction of a UBEM. However, it does 
limit the transparency in that a user would not be able to know 

the boundary conditions used to create the model if they came 
directly from the EPC. This may also be a uniquely Swedish 
case since the city government in Helsinki, Finland publishes 
an energy map with EPC details [73], [74]. 

In addition to the low temporal resolution of the energy 
data, EPCs can also be unreliable in representing the current 
state of a building. The original aim of the EU directive for 
creating EPCs was to encourage energy efficient renovations, 
which could certainly be enacted within the 10-year gap 
between EPCs. Given that building renovations occur at a low 
1-2% rate within the Swedish building stock [75], the risk for 
error is low, but for any given user/building the error could be 
dramatic. EPCs are also not available for every single 
building, meaning that educated assumptions would be needed 
to fill in gaps, either through statistical techniques or broader 
categorization taken from other sources like Tabula. In either 
case, the potential for error increases, and ideally higher 
spatiotemporal resolution energy usage data would be 
available for validation. 

C. Energy Meters 
Energy meters are possibly the most valuable data source 

for generating energy retrofit recommendations to decision 
makers. Electricity and gas meter data in its raw form can be 
and often is the basis for designing energy supply systems. But 
more crucially for UBEMs is the opportunity to validate the 
building energy demand model and improve boundary 
condition assumptions. Without matching a specific set of 
meter data to a specific building, validation becomes weaker. 
When combined with EPC data and/or other data processing 
techniques, it is possible to extract the energy usage of specific 
devices (e.g. heat pumps) and improve internal gain inputs to 
the UBEM. Even better is if the building uses district heating, 
in which heat and electricity demand data would already be 
separated with high temporal resolution. In Sweden most 
electricity meters have a one-hour time resolution, with the 
rollout of 15-minute resolution already under way. 

Energy usage data is generated by end users and collected 
and stored by energy utilities, making researchers an outside 
third party. With the introduction of the general data 
protection regulation (GDPR) in Europe, a considerable 
barrier was placed against third parties gaining access to this 
data. The energy utilities are allowed to share the data without 
permission, but it must be anonymized and unlabeled such that 
no specific piece of data can be traced back to the one who 
generated it. The challenge is in a UBEM, where every single 
building can be simulated, the occupant(s) of that building can 
be identified and therefore must give their explicit permission 
for their meter data to be used for the purpose of simulation. 

For researchers, individual permissions are a high barrier 
to overcome. The company Hemma collects permissions by 
using the BankID digital signature service, and then 
automatically connects to the user’s smart meter. It should be 
technically possible for researchers to do the same, however 
most research projects are funded through individual project 
grants lasting 2-3 years and therefore practically challenging 
to establish the infrastructure to collect permissions and data 
for such a short duration. It is more practical and encouraged 
for researchers to work with energy companies, meaning that 
the researcher must have a trusted working relationship with 
the relevant company(s).  

There are still many legal and ICT requirements for using 
industry data and complying with GDPR, which if not planned 



for in the project’s administration can lead to long delays. A 
shift from physics based to data-driven models means energy 
researchers have seen an increase in time spent on data 
procurement and processing in recent years [76]. Any project 
aiming to use energy meter data must budget administrative 
time for multiple contracts and legal review, and the more 
standardized a department or university can be in these cases, 
the lower the burden is on researchers. 

It is also possible that as the amount of data grows, along 
with the value of extracting insights of that data, the 
willingness for companies to share it for public publication or 
the public good could decline in favor of maintaining the value 
for themselves. With this or in cases where data must be kept 
private, research must then be conducted within the company, 
ensuring that the intellectual property remains under their 
control. A prominent parallel here are social media and 
internet gaming companies, which have been criticized in 
popular media for designing damaging features into their 
products [77], but are difficult to study by researchers outside 
the company [78]. 

VI. DISCUSSION AND PATHWAYS FORWARD 
The energy transition is under way, but most experts agree 

it is not happening fast enough to meet the most ambitious 
climate goals, or even the mediocre goals [79]. There are 
many who wish to take action, but do not always realize that 
the greatest impact they can make with a single decision is 
related to energy use in buildings due to both the scale of 
impact and durability of the decision. Other high-impact 
actions like diet and travel, require changes in habits, i.e. 
multiple decisions over time. This report works under the 
premise that an informed populous with access to true and 
transparent information is critical to maintain the acceleration 
of energy sustainability in buildings and cities. Information 
asymmetry is known to harm or even collapse markets [16], 
[17], and the time pressure on climate action does not allow 
for further setbacks. 

In 2023, information about building energy retrofits in 
Sweden is dominated by the popularity of solar PV, which for 
the past decade has had a steady growth in annual installations 
rate of about 50% per year [80]. This demand was further 
pushed by the European energy crisis starting in 2022 when 
energy supply was in doubt and prices skyrocketed. Installers 
used the opportunity to highlight how much savings could 
come with PVs, sometimes using exaggerated assumptions [6] 
or selling larger systems than they may have otherwise [30]. 
While certainly a special situation, it highlights how low-
quality information in the marketplace can lead to sub-optimal 
outcomes for those acquiring it. Even those who consult a 
neutral party, like the energy advisors consulted for this 
project, were often looking for confirmation that they were 
making a good decision, rather than a critical review. 

The solar trend is frequently coupled with electric vehicles 
and stationary batteries; the former is indeed highly impactful 
towards environmental goals given the low emissions of 
Nordic electricity. The net benefits of stationary batteries are 
less clear [81], however there is a rapid development in 
building participation in ancillary markets due to strong 
economic incentives [82]. It has become less and less likely 
that building owners look to thermal efficiency, which is 
arguably more challenging than updating energy supply 
equipment [21], [22], [23]; replacing an older heat pump with 
a new, more efficient model is much easier than adding 

insulation or replacing windows. But given how much 
importance has been placed on the energy efficiency of society 
in meeting environmental goals [2], the prioritization of 
prosumer technologies over efficiency presents a challenge. 

Urban building energy models, which include demand and 
supply, have the potential of providing every building owner 
with detailed information and holistic recommendations about 
how they can invest in their property towards their technical, 
economic, and environmental goals. The rise and popularity 
of solar maps demonstrates the impact this approach can have, 
however there needs to be a version curated by non-
commercial stakeholders to avoid the continued generation of 
misinformation for the purpose of sales [6]. To be certain, 
rooftop solar is a good thing, but if the limited investment 
potential of the building owner is used to buy solar when it 
could have been used more effectively to solve sustainability 
challenges on another efficiency measure, then this is a lost 
opportunity that slows the energy transition’s progress. 

The ability for non-commercial actors to generate such an 
information source is hindered by several barriers to data, 
through the data not being in existence, or more prescient is 
the inability to gain access to critical validation data due to a 
need to protect privacy. Commercial actors in the digital 
property technology (i.e. “prop tech”) space are beginning to 
realize the potential of such a tool and several examples have 
been covered here. Time will tell if these tools can provide 
sober, neutral advice about the range of renovation options 
available, or if the need to finance them through sales referrals 
will nudge results in a positive direction for one or several 
particular technologies. This not to say that commercial actors 
are not capable of providing the information decisions makers 
seek. But the message of non-commercial actors, which are 
already considered a valuable counterweight against 
information asymmetry, could be given greater reach with a 
transparent urban energy model deployed at a national level. 
Such a tool would be an asset for municipal energy advisors, 
or anyone looking to help another make an informed decision. 

The laws surrounding ownership and protection of 
personal data are not being challenged here. Data protection 
and ownership laws in the EU are particularly well positioned 
to give more rights to individuals as compared to other large 
economies. It is simply documented here that these laws create 
barriers to generating new and useful information that those 
same individuals could benefit from. But there are potential 
pathways around these barriers towards successful creation of 
a digital energy advisor. 

The barriers to building geometry are centered around cost 
and access. High resolution 3D mapping towards levels of 
detail suitable for rooftop solar planning require expensive 
input data and substantial post processing. Giving this 
information away for free is not possible without public 
support. Since many municipalities are already funding the 
generation of these datasets, it can be the case that they are 
also the natural host for a future DEA. This model follows the 
already established solar maps, and the investment can be 
motivated by the need for new tools to support municipal 
energy advisors. There remain issues around coverage, as 
buildings which are not located close to dense urban areas are 
unlikely to have a high LoD. Here improvements in machine 
learning techniques with aerial photography have great 
potential. While still not free from cost, they can use existing 
datasets and avoid expensive LIDAR data capture. There is 
ongoing work in this space, both in research [69], [70] and in 



the private sector, most notable by Google who released an 
updated version of their Sunroof product in late 2023 that 
leverages image recognition techniques [24]. 

Developing work-arounds for energy meter data can be 
found in data driven models. One alternative is a clustering 
analysis, which could map energy signatures to specific 
parameters on the public EPC. A major limitation of this 
approach is the aforementioned coverage that EPCs have 
amongst buildings, and the possibility that renovations could 
have occurred following the most recent EPC. It also 
continues reliance on access to the original dataset, which will 
not be available after the completion of a project. Here a black-
box model could be developed to create representative energy 
demand profiles. Since the outputs from the model are not 
exact meter data, they are not violating privacy laws. The 
validity of such a model will not be as strong as one where 
specific meter data can be mapped to specific buildings. 
However, if the target building is not an outlier, it is likely that 
a suitably representative demand profile can be generated. 
Work on this pathway is ongoing with results expected in late 
2024 [8]. 

In addition to technical aspects, more work is needed to 
understand how end users would utilize such a tool, to help 
frame and present information in the best possible way that is 
not strictly seeking to make sale. A notable limitation for non-
expert users is their inability to understand which inputs they 
may wish to change and how to learn from the tool [30], [83]. 
Therefore, design for guided use with human energy advisors 
should be considered in the short term, and fully automated 
guided use in the longer term. Generative AI tools like 
ChatGPT, once trained how to extract useful insights, would 
then become a fully digital energy advisor. Since the 
underlying physical models are based on UBEMs, with 
hundreds or thousands of building models, it would also be 
possible to build a DEA for professional energy planners, 
extracting novel insights for district, city, or national scales. 
All of this relies on the ability to circumvent data barriers and 
build useful and validated models. 

Given the potential demand for a DEA and the number of 
corporate interests participating in the field, it could be that an 
open-source business model is the ideal pathway to overcome 
the barriers described throughout the paper. A commercial 
entity would be able to handle infrastructure and legal matters 
regarding data and would be in a strategic partnership with 
researchers to develop and validate new models. This is the 
approach used by Hugging Face [84] and caused an 
acceleration in the development of natural language 
processing models. The scale and scope of a DEA could 
greatly benefit from the same acceleration. 

VII. CONCLUSION 
In this paper, we have explored what would be required to 

implement a Digital Energy Advisor (DEA), which would be 
capable of automatically guiding building owners towards 
sustainable renovations. We conclude that a DEA would be 
utilized by municipalities and that such a tool in principle 
could be possible soon with dedicated development efforts. 
Moreover, a DEA could have great potential to support 
households with unbiased advice on energy investments, and 
that this could be highly relevant from a societal perspective. 

We also conclude that existing tools are insufficient in 
producing the high-spatial and temporal analysis required of a 
DEA due to a number of obstacles to the implementation, 

mainly in terms of data. The obstacles are more related 
towards the accessibility of data than about availability of 
data, which act as a barrier to model creation and validation. 

The main obstacles in terms of data availability can be 
referred to either legal or commercial interests. The former are 
related to safeguarding individuals’ integrity and corporate 
intellectual property; the latter relates to the competition for 
researchers to access private company data or cases where 
data kept for self-serving future opportunities. While both 
those reasons may be understandable and justifiable, the 
benefits of a DEA are great enough that further investigations 
are needed to identify how the data and models to create a 
DEA can be made available without jeopardizing integrity. An 
open-source business model that encourages private-public 
partnership in the creation and execution of a DEA is the 
recommended pathway forward. 

ACKNOWLEDGMENT 
The authors are grateful for the many conversations with 

colleagues and their extended network that informed many of 
the insights and perspectives in this study. This exploratory 
information gathering was not part of a typical research 
framework, but provided invaluable practical guidance. 

REFERENCES 
[1] European Commission, “The European Green Deal.” Accessed: Jan. 

29, 2024. [Online]. Available: https://commission.europa.eu/strategy-
and-policy/priorities-2019-2024/european-green-deal_en 

[2] IEA, “Net Zero by 2050,” Paris, 2021. [Online]. Available: 
https://www.iea.org/reports/net-zero-by-2050 

[3] J. Palm, “Household installation of solar panels – Motives and 
barriers in a 10-year perspective,” Energy Policy, vol. 113, no. June 
2017, pp. 1–8, 2018, doi: 10.1016/j.enpol.2017.10.047. 

[4] N. Hrovatin and J. Zorić, “Determinants of energy-efficient home 
retrofits in Slovenia: The role of information sources,” Energy Build, 
vol. 180, pp. 42–50, 2018, doi: 10.1016/j.enbuild.2018.09.029. 

[5] Digitalization for Sustainability (D4S), “Digital Reset: Redirecting 
Technologies for the Deep Sustainability Transformation,” Munich, 
2023. doi: 10.14512/9783987262463. 

[6] N. Sommerfeldt, I. Lemoine, and H. Madani, “Hide and seek: The 
supply and demand of information for household solar photovoltaic 
investment,” Energy Policy, vol. 161, no. November 2021, p. 
112726, 2021, doi: 10.1016/j.enpol.2021.112726. 

[7] digital futures, “Towards a Smart Society – the role of Digital 
Futures.” Accessed: Jan. 29, 2024. [Online]. Available: 
https://www.digitalfutures.kth.se/research/seed-projects/completed-
seed-projects/towards-a-smart-society-the-role-of-digital-futures/ 

[8] N. Sommerfeldt, “Open-source models for holistic building energy 
system design at scale.” Accessed: Jan. 29, 2024. [Online]. 
Available: https://www.energy.kth.se/applied-
thermodynamics/projects/open-source-models-for-holistic-building-
energy-system-design-at-scale-1.1223591 

[9] C. Su, “High-Resolution GIS District Heating Source-Load 
Mapping.” Accessed: Jan. 29, 2024. [Online]. Available: 
https://www.energy.kth.se/applied-thermodynamics/projects/high-
resolution-gis-district-heating-source-load-mapping-1.1094422 

[10] E. M. Rogers, Diffusion of Innovations, 5th ed. Free Press, 2003. 
[11] W. M. H. Broers, V. Vasseur, R. Kemp, N. Abujidi, and Z. A. E. P. 

Vroon, “Decided or divided? An empirical analysis of the decision-
making process of Dutch homeowners for energy renovation 
measures,” Energy Res Soc Sci, vol. 58, no. August, p. 101284, 2019, 
doi: 10.1016/j.erss.2019.101284. 

[12] J. Falkenström and K. Johansen, “Köpprocessen vid köp av solceller 
i Sverige (The Purchasing Process of PV Systems in Sweden),” 
M.Sc. Thesis, Luleå tekniska universitet, 2020. 

[13] P. Kovacs, “Besiktningar av mindre solcellsanläggningar i drift 
(Examination of small PV installations in operation),” 2019. 

[14] Y. Liu, Z. Hong, J. Zhu, J. Yan, J. Qi, and P. Liu, “Promoting green 
residential buildings: Residents’ environmental attitude, subjective 
knowledge, and social trust matter,” Energy Policy, vol. 112, no. 
October 2017, pp. 152–161, 2018, doi: 10.1016/j.enpol.2017.10.020. 



[15] B. Bollinger and K. Gillingham, “Peer Effects in the Diffusion of 
Solar,” Marketing Science, vol. 31, no. 6, pp. 900–912, 2012, doi: 
10.1287/mksc.1120.0727. 

[16] G. A. Akerlof, “The Market for ‘Lemons’: Quality Uncertainty and 
the Market Mechanism,” Q J Econ, vol. 84, no. 3, pp. 488–500, 
1970, doi: 10.2307/1879431. 

[17] J. Rommel, J. Sagebiel, and J. R. Müller, “Quality uncertainty and 
the market for renewable energy: Evidence from German 
consumers,” Renew Energy, vol. 94, pp. 106–113, 2016, doi: 
10.1016/j.renene.2016.03.049. 

[18] J. Mauritzen, “Are solar panels commodities? A Bayesian 
hierarchical approach to detecting quality differences and asymmetric 
information,” Eur J Oper Res, vol. 280, no. 1, pp. 365–382, 2020, 
doi: 10.1016/j.ejor.2019.07.001. 

[19] F. Monthan, “Performance evaluation of domestic solar power 
installations in Sweden,” MSc. Thesis, KTH Royal Institute of 
Technology, 2022. 

[20] M. Collins and J. Curtis, “Identification of the information gap in 
residential energy efficiency: How information asymmetry can be 
mitigated to induce energy efficiency renovations,” 558, 2017. 
[Online]. Available: http://www.esri.ie/pubs/WP558.pdf 

[21] Mata and F. Johnsson, “Cost-Effectiveness of Retrofitting Swedish 
Buildings,” in Cost-Effective Energy Efficient Building Retrofitting: 
Materials, Technologies, Optimization and Case Studies, Elsevier 
Inc., 2017, pp. 343–362. doi: 10.1016/B978-0-08-101128-7.00012-5. 

[22] S. Cozza, J. Chambers, A. Brambilla, and M. K. Patel, “In search of 
optimal consumption: A review of causes and solutions to the Energy 
Performance Gap in residential buildings,” Energy and Buildings, 
vol. 249. Elsevier Ltd, Oct. 15, 2021. doi: 
10.1016/j.enbuild.2021.111253. 

[23] É. Mata, J. Wanemark, M. Österbring, and F. Shadram, “Ambition 
meets reality – Modeling renovations of the stock of apartments in 
Gothenburg by 2050,” Energy Build, vol. 223, Sep. 2020, doi: 
10.1016/j.enbuild.2020.110098. 

[24] Google, “Maps - Solar API.” Accessed: Jan. 30, 2024. [Online]. 
Available: https://mapsplatform.google.com/maps-products/solar/ 

[25] Solargraf, “Solargraf.” Accessed: Jan. 30, 2024. [Online]. Available: 
https://www.solargraf.com/ 

[26] Aurora Solar, “Aurora Solar.” Accessed: Jan. 30, 2024. [Online]. 
Available: https://aurorasolar.com/ 

[27] Karlstads Kommun, “Solkartan.” Accessed: Jun. 14, 2022. [Online]. 
Available: https://gi.karlstad.se/solkartan/ 

[28] F. Galli and N. Sommerfeldt, “Predicting PV self-consumption in 
villas with machine learning,” in 38th European Photovoltaic Solar 
Energy Conference and Exhibition, Lisbon, Portugal, 2021, pp. 993–
997. 

[29] M. Tóth and N. Sommerfeldt, “PV self-consumption prediction 
methods using supervised machine learning,” in E3S Web of 
Conferences, EDP Sciences, Dec. 2022. doi: 
10.1051/e3sconf/202236202003. 

[30] L. Hjort, “Evaluation of a Solar Map Investing in Household PV 
from a Prosumer Standpoint,” MSc. Thesis, KTH Royal Institute of 
Technology, 2022. 

[31] Hemma, “Hemma – Powering home energy transition at scale.” 
Accessed: Jan. 30, 2024. [Online]. Available: 
https://www.hemma.energy/ 

[32] É. Mata, A. Sasic Kalagasidis, and F. Johnsson, “Energy usage and 
technical potential for energy saving measures in the Swedish 
residential building stock,” Energy Policy, vol. 55, pp. 404–414, Apr. 
2013, doi: 10.1016/j.enpol.2012.12.023. 

[33] É. Mata, A. S. Kalagasidis, and F. Johnsson, “A modelling strategy 
for energy, carbon, and cost assessments of building stocks,” Energy 
Build, vol. 56, pp. 100–108, Jan. 2013, doi: 
10.1016/j.enbuild.2012.09.037. 

[34] C. F. Reinhart and C. Cerezo Davila, “Urban building energy 
modeling - A review of a nascent field,” Build Environ, vol. 97, pp. 
196–202, 2016, doi: 10.1016/j.buildenv.2015.12.001. 

[35] F. Johari, G. Peronato, P. Sadeghian, X. Zhao, and J. Widén, “Urban 
building energy modeling: State of the art and future prospects,” 
Renewable and Sustainable Energy Reviews, vol. 128, no. May, p. 
109902, Aug. 2020, doi: 10.1016/j.rser.2020.109902. 

[36] T. Hong, Y. Chen, X. Luo, N. Luo, and S. H. Lee, “Ten questions on 
urban building energy modeling,” Build Environ, vol. 168, no. 
August 2019, p. 106508, 2020, doi: 10.1016/j.buildenv.2019.106508. 

[37] M. Ferrando, F. Causone, T. Hong, and Y. Chen, “Urban building 
energy modeling (UBEM) tools: A state-of-the-art review of bottom-

up physics-based approaches,” Sustain Cities Soc, vol. 62, no. June, 
p. 102408, 2020, doi: 10.1016/j.scs.2020.102408. 

[38] F. Johari, J. Munkhammar, F. Shadram, and J. Widén, “Evaluation of 
simplified building energy models for urban-scale energy analysis of 
buildings,” Build Environ, vol. 211, no. October 2021, p. 108684, 
2022, doi: 10.1016/j.buildenv.2021.108684. 

[39] M. Heidarinejad et al., “Demonstration of reduced-order urban scale 
building energy models,” Energy Build, vol. 156, pp. 17–28, Dec. 
2017, doi: 10.1016/j.enbuild.2017.08.086. 

[40] T. Johansson, T. Olofsson, and M. Mangold, “Development of an 
energy atlas for renovation of the multifamily building stock in 
Sweden,” Appl Energy, vol. 203, pp. 723–736, 2017, doi: 
10.1016/j.apenergy.2017.06.027. 

[41] M. Österbring, L. Thuvander, É. Mata, and H. Wallbaum, 
“Stakeholder specific multi-scale spatial representation of urban 
building-stocks,” ISPRS Int J Geoinf, vol. 7, no. 5, May 2018, doi: 
10.3390/ijgi7050173. 

[42] X. Zhang et al., “Digital Twin for Accelerating Sustainability in 
Positive Energy District: A Review of Simulation Tools and 
Applications,” Frontiers in Sustainable Cities, vol. 3, no. June, 2021, 
doi: 10.3389/frsc.2021.663269. 

[43] OSM, “Open Street Map.” [Online]. Available: 
https://www.openstreetmap.org/ 

[44] A. Malhotra, M. Shamovich, J. Frisch, and C. van Treeck, “Urban 
energy simulations using open CityGML models: A comparative 
analysis,” Energy Build, vol. 255, p. 111658, 2022, doi: 
10.1016/j.enbuild.2021.111658. 

[45] K. Spets, “TABULA Webtool.” Accessed: May 31, 2015. [Online]. 
Available: http://webtool.building-typology.eu 

[46] E. Mata and A. S. Kalagasidis, “Description of the building energy 
simulation model EABS: Energy Assessment of Building Stocks,” 
2009. 

[47] National Renewable Energy Laboratory, “Commercial and 
Residential Hourly Load Profiles for all TMY3 Locations in the 
United States [data set].” [Online]. Available: 
https://dx.doi.org/10.25984/1788456 

[48] J. Widén and E. Wäckelgård, “A high-resolution stochastic model of 
domestic activity patterns and electricity demand,” Appl Energy, vol. 
87, no. 6, pp. 1880–1892, Jun. 2010, doi: 
10.1016/j.apenergy.2009.11.006. 

[49] C. Hjortling, F. Björk, M. Berg, and T. af Klintberg, “Energy 
mapping of existing building stock in Sweden – Analysis of data 
from Energy Performance Certificates,” Energy Build, vol. 153, pp. 
341–355, Oct. 2017, doi: 10.1016/j.enbuild.2017.06.073. 

[50] J. Remund, S. Müller, M. Schmutz, and P. Graf, “Meteonorm 
Version 8,” no. August 2020, pp. 1–3, 2020, [Online]. Available: 
https://meteonorm.com 

[51] Solcast, “Solar API and Weather Forecasting Tool.” Accessed: Jan. 
30, 2024. [Online]. Available: https://solcast.com/ 

[52] PVGIS, “PV potential estimation utility.” Accessed: Jan. 30, 2015. 
[Online]. Available: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php# 

[53] R. Luthander, J. Widén, D. Nilsson, and J. Palm, “Photovoltaic self-
consumption in buildings : A review,” Appl Energy, vol. 142, pp. 80–
94, 2015, doi: 10.1016/j.apenergy.2014.12.028. 

[54] F. Johari and J. Widén, “A simplified urban building energy model to 
support early-stage energy plans,” in E3S Web of Conferences, EDP 
Sciences, Dec. 2022. doi: 10.1051/e3sconf/202236209002. 

[55] M. Österbring, É. Mata, L. Thuvander, M. Mangold, F. Johnsson, 
and H. Wallbaum, “A differentiated description of building-stocks 
for a georeferenced urban bottom-up building-stock model,” Energy 
Build, vol. 120, pp. 78–84, May 2016, doi: 
10.1016/j.enbuild.2016.03.060. 

[56] M. Blonsky, J. Maguire, K. McKenna, D. Cutler, S. P. Balamurugan, 
and X. Jin, “OCHRE: The Object-oriented, Controllable, High-
resolution Residential Energy Model for Dynamic Integration 
Studies,” Appl Energy, vol. 290, no. March, p. 116732, 2021, doi: 
10.1016/j.apenergy.2021.116732. 

[57] F. Padovani, N. Sommerfeldt, F. Longobardi, and J. M. Pearce, 
“Decarbonizing rural residential buildings in cold climates: A techno-
economic analysis of heating electrification,” Energy Build, vol. 250, 
p. 111284, 2021, doi: 10.1016/j.enbuild.2021.111284. 

[58] National Renewable Energy Laboratory (NREL), “Utility Rate 
Database.” Accessed: Jan. 30, 2024. [Online]. Available: 
https://openei.org/wiki/Utility_Rate_Database 

[59] M. S. Roudsari and M. Pak, “Ladybug: A parametric environmental 
plugin for grasshopper to help designers create an environmentally-
conscious design,” in 13th International conference of Building 



Performance Simulation Association, Chambéry, France, Aug. 2013, 
pp. 3218–3135. [Online]. Available: 
https://www.researchgate.net/publication/287778694 

[60] Ladybug Tools, “Ladybug Tools.” Accessed: Jan. 30, 2024. [Online]. 
Available: https://www.ladybug.tools/ 

[61] J. A. Fonseca, T. A. Nguyen, A. Schlueter, and F. Marechal, “City 
Energy Analyst (CEA): Integrated framework for analysis and 
optimization of building energy systems in neighborhoods and city 
districts,” Energy Build, vol. 113, pp. 202–226, 2016, doi: 
10.1016/j.enbuild.2015.11.055. 

[62] U.S. DOE, “EnergyPlus.” Accessed: Jun. 13, 2022. [Online]. 
Available: https://energyplus.net/ 

[63] P. Monsalvete, D. Robinson, and U. Eicker, “Dynamic simulation 
methodologies for urban energy demand,” in Energy Procedia, 
Elsevier Ltd, Nov. 2015, pp. 3360–3365. doi: 
10.1016/j.egypro.2015.11.751. 

[64] T. Vermeulen, J. H. Kämpf, and B. Beckers, “Urban from 
optimization for the energy performance of buildings using 
CitySim,” in CISBAT International conference, Lausanne, 
Switzerland, 2013, pp. 4–6. 

[65] S. Schwarz, S. A. Uerlich, and A. Monti, “pycity_scheduling—A 
Python framework for the development and assessment of 
optimisation-based power scheduling algorithms for multi-energy 
systems in city districts,” SoftwareX, vol. 16, p. 100839, 2021, doi: 
10.1016/j.softx.2021.100839. 

[66] X. Faure, T. Johansson, and O. Pasichnyi, “The Impact of Detail, 
Shadowing and Thermal Zoning Levels on Urban Building Energy 
Modelling (UBEM) on a District Scale,” Energies (Basel), vol. 15, 
no. 4, p. 1525, 2022, doi: 10.3390/en15041525. 

[67] F. Johari, “Urban Building Energy Modeling for Retrofit Scenarios,” 
PhD Thesis, Uppsala University, 2023. [Online]. Available: 
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-508080 

[68] Y. Zhou, M. Verkou, M. Zeman, H. Ziar, and O. Isabella, “A 
Comprehensive Workflow for High Resolution 3D Solar 
Photovoltaic Potential Mapping in Dense Urban Environment: A 
Case Study on Campus of Delft University of Technology,” Solar 
RRL, vol. 2100478, p. 2100478, 2021, doi: 10.1002/solr.202100478. 

[69] M. Aslani and S. Seipel, “Automatic identification of utilizable 
rooftop areas in digital surface models for photovoltaics potential 
assessment,” Appl Energy, vol. 306, Jan. 2022, doi: 
10.1016/j.apenergy.2021.118033. 

[70] M. Aslani and S. Seipel, “Rooftop segmentation and optimization of 
photovoltaic panel layouts in digital surface models,” Comput 
Environ Urban Syst, vol. 105, Oct. 2023, doi: 
10.1016/j.compenvurbsys.2023.102026. 

[71] F. Biljecki, H. Ledoux, and J. Stoter, “An improved LOD 
specification for 3D building models,” Comput Environ Urban Syst, 
vol. 59, pp. 25–37, Sep. 2016, doi: 
10.1016/j.compenvurbsys.2016.04.005. 

[72] O. Pasichnyi, J. Wallin, F. Levihn, H. Shahrokni, and O. Kordas, 
“Energy performance certificates — New opportunities for data-
enabled urban energy policy instruments?,” Energy Policy, vol. 127, 
pp. 486–499, Apr. 2019, doi: 10.1016/j.enpol.2018.11.051. 

[73] M. Rossknecht and E. Airaksinen, “Concept and evaluation of 
heating demand prediction based on 3D city models and the 
CityGML energy ADE-case study Helsinki,” ISPRS Int J Geoinf, vol. 
9, no. 10, pp. 1–19, 2020, doi: 10.3390/ijgi9100602. 

[74] City of Helsinki, “Energy and Climate Atlas.” Accessed: Jan. 28, 
2024. [Online]. Available: https://kartta.hel.fi/3d/atlas/#/ 

[75] P. Zangheri et al., “Progress of the Member States in implementing 
the Energy Performance of Building Directive,” 2021. doi: 
10.2760/914310. 

[76] G. Schweiger et al., “Data shortage for urban energy simulations? An 
empirical survey on data availability and enrichment methods using 
machine learning,” in EG-ICE 2021 Proceedings: Workshop on 
Intelligent Computing in Engineering, 2021. doi: 
10.14279/depositonce-12021. 

[77] V. Curtis, D. Coombe, and J. Orlowski, The Social Dilemma, (2020). 
Accessed: Apr. 25, 2024. [Online Video]. Available: 
https://www.thesocialdilemma.com/ 

[78] C. Montag, B. Lachmann, M. Herrlich, and K. Zweig, “Addictive 
features of social media/messenger platforms and freemium games 
against the background of psychological and economic theories,” 
International Journal of Environmental Research and Public Health, 
vol. 16, no. 14. MDPI AG, Jul. 02, 2019. doi: 
10.3390/ijerph16142612. 

[79] IPCC, “Climate Change 2023: Synthesis Report,” Jul. 2023. doi: 
10.59327/IPCC/AR6-9789291691647. 

[80] A. O. Westerberg and J. Lindahl, “National Survey Report of PV 
Power Applications in Sweden 2022,” 2023. [Online]. Available: 
www.iea-pvps.org 

[81] S. Lundholm, “Techno-Economic Analysis of Solar and Battery 
Systems: A Comprehensive Analysis of Key Parameters,” MSc. 
Thesis, KTH Royal Institute of Technology, 2023. 

[82] Z. Sköld, “Solar PV and Lithium-ion BESS for Commercial 
buildings in Sweden,” MSc. Thesis, KTH Royal Institute of 
Technology, 2023. 

[83] J. Blasch, N. Boogen, C. Daminato, and M. Filippini, “Empower the 
consumer! energy-related financial literacy and its implications for 
economic decision making,” Economics of Energy and 
Environmental Policy, vol. 10, no. 2, 2021, doi: 10.5547/2160-
5890.10.2.JBLA. 

[84] Hugging Face, “Hugging Face – The AI community building the 
future.” Accessed: Jan. 30, 2024. [Online]. Available: 
https://huggingface.co/ 

  
 


	I. Introduction
	A. Background
	B. Motivation for DEAs

	II. Methodology
	III. What is a digital energy advisor?
	A. Why Should A DEA Be Built?
	B. What Has Already Been Built?

	IV. How can a DEA be built?
	A. Urban Building Energy Models
	B. Data Requirements
	C. Practical UBEM Tools

	V. Barriers to building a DEA
	A. Building and Urban Geometry
	B. Energy Performance Certificates
	C. Energy Meters

	VI. Discussion and Pathways Forward
	VII. Conclusion
	Acknowledgment
	References


