
Energy Efficient Matrix Computations
through Homomorphic Compression

Matthieu Martel
LAMPS Laboratory

Université de Perpignan, France
ORCID: 0000-0002-6238-9651

Célia Picard
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France
ORCID: 0000-0002-8715-4365

Abdelmouhaimen Sarhane
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, France

Abstract—Scientific computing is one of the most energy-
intensive areas of computer science. Petabytes of data are
processed and stored for a single experiment while super-
computers consume tens of megawatts. These last years, new
lossy compression techniques dedicated to scientific data have
been introduced, such as zfp and sz. They allow one to dras-
tically reduce the size of the data but they require additional
computations for compression and decompression. Recently, a
new homomorphic compressor, named blaz, has been developed
which makes it possible to perform matrix operations directly
among the compression data. Important gains are obtained
since decompression and re-compression operations are avoided
and since less operations are needed to compute among the
compressed data. In this article, we show that using blazfor
linear algebra operations among matrices may reduce the energy
consumption by a factor 10 compared to standard operations
(without any compression) and by a factor 100 compared to the
zfp. Beside measures on sequences of matrix operations, a case
study in data analysis in presented.

Index Terms—green computing, frugal computing, numerical
computations, compression, scientific data, linear algebra

I. INTRODUCTION

It is well known that today, over 10% of the world’s elec-
tricity production is consumed by information technology (IT)
systems [9], [16]. These include personal computers, servers
storing data in the cloud and the supercomputers used for
climate simulations or for training artificial intelligence. These
systems consume a lot of energy. According to ADEME1 [8],
it is estimated that 13% of the world’s electricity will be
consumed by data centers in 2030, and 51% for the entire IT
sector, i.e. the equivalent of 1130 and 4400 nuclear reactors
respectively.

In this article, we aim to reduce the resources required
in the specific case of large-scale numerical simulations in
fields as varied as climatology and astrophysics. This focus
is motivated by the fact that these numerical simulations use
a significant proportion of global computing resources. As a
result, scientific data represent a large part of the data stored
worldwide. For example, the Square Kilometer Telescope in
Baltimore produces 50 terabytes of data per day, and the
ITER thermonuclear reactor in Cadarache, France, plans to
produce 2 petabytes of data per day by 2035. In addition to
storage, processing these data generates substantial costs. The

1The french ecological transition agency, https://www.ademe.fr/

power consumption of the supercomputers used for numerical
simulations is colossal: for example, the two most powerful
supercomputers in the world in 2023, the Frontier (Oak-Rigde,
USA) and the Fugaku (Riken Center, Japan) have respective
outputs of 21.1 and 29.9 megawatts, equivalent to the energy
consumption of 26,000 and 37,000 households respectively 2.

It is also important to point out that the overall energy
consumption of IT systems is shared into three almost equal
parts: storage (30%), processing (30%) and telecommunica-
tions (40%) 3.

As a consequence, in order to develop frugal solutions that
reduce the energy consumption of IT systems as a whole
and avoid rebound effect, it is essential to address these
three aspects in their entirety. Indeed, techniques that make
it possible to reduce the resources consumed in one of these
areas must not significantly increase consumption in the other
areas (for example, it is not desirable to reduce storage at
the expense of computing by recalculating non-stored data on
demand).

Last but not least, reducing the size of the calculations
required for large-scale numerical simulations means that
supercomputers can be used for longer periods of time. ”Ev-
ery ten years, the computing power [of supercomputers] is
multiplied by 1000. As for the lifespan of a supercomputer,
it is only four to five years” following the head of the CEA
Bruyères-le-Châtel computing center4.

In recent work, we have developed a new lossy compressor
for scientific data, named blaz, enabling calculations to be
performed directly on compressed data, without decompres-
sion (which is impossible with other existing compressors).
Such a compressor is called homomorphic [1], [23]. This
imposes a compromise between loss of information on the
one hand, and gains in memory and computation on the
other. The proposed method is not as efficient as the best
compressors for scientific data such as sz [6] or zfp [20]
in terms of compression ratio and accuracy, but it enables
calculations to be performed directly on the compressed data,

2https://www.top500.org/
3https://lejournal.cnrs.fr/articles/numerique-le-gr

and-gachis-energetique
4https://www.latribune.fr/technos-medias/informatiq

ue/pourquoi-la-france-doit-rester-dans-la-course-
des-supercalculateurs-461372.html



which considerably reduces computations, since i) there is
no need to decompress the data and and re-compressing the
results of (matrix) operations and ii) since the compressed data
is smaller than the original, fewer operations are necessary
to calculate with them. This precision is sufficient for many
applications, especially when the results are coarsely rounded
for graphical display on a screen [4], [10].

The objective of this article is to use the PowerJoular
tool [24], [25] for energy monitoring, in order to compare the
energy consumption of our tool blaz to another well-know
compressor, zfp [20] and to the case of no compression at
all. The interest of measuring energy consumption is twofold.
First, energy consumption optimization is a goal in its own, for
ecological reasons. Second, this measure encompasses other
measures such as memory and CPU usages. It avoids rebound
effects and provides a global overview of the resources con-
sumed by some application.

The comparison is done for elementary matrix computa-
tions. By assessing the energy consumption of these methods,
we demonstrate that the energy efficiency gains achieved by
blaz are higher than a factor 10 compared to the same
computations without any compression and higher to a factor
100 compared to the same computations using zfp to store
the data. In addition, we apply the compressors to a practical
use-case in data-science, more precisely sports field scenario in
the case of soccer match analysis. Analyzing player movement
heat-maps is a crucial tool used by coaches, analysts, and
sports scientists to understand player positions, patterns, and
tactical behavior during matches. We compute the average
player movement heat-map using the blaz and zfp com-
pressors and evaluate their energy consumption.

The rest of this article is organized as follows. Background
material concerning scientific data and the zfp and blaz
compressors is introduced in Section II. Experimental results
are presented in Section III. More precisely, we start by
introducing in Section III-A PowerJoular, the tool used
for measuring the energy consumption. Next, our experimental
protocol is described in Section III-B and the results are given
in Section III-C. The case study is presented in Section III-D.
Finally, Section IV concludes.

II. BACKGROUND: COMPRESSION OF SCIENTIFIC DATA

In this section we introduce some background material
concerning the compression of scientific data. Generalities on
scientific data are introduced in Section II-A. Sections II-B and
II-C introduce the zfp and blaz compressors, respectively.
Finally, Section II-D briefly compares both compressors and
related work is discussed in Section II-E.

A. Scientific Data

Scientific data are commonly referred to as single or multi-
dimensional arrays of floating-point numbers [2] (vectors,
matrices, tensors, etc.) containing values derived from mea-
surements or resulting from calculations. A particularity of this
category of data is that there are many correlations between
adjacent elements. For example, the temperature in one area of

block
splitting

align
exponents

convert
to

fixed-point

orthogonal
transform

order coef
by

magnitude

encode
by

bit-plane

Fig. 1. Overview of zfp compression scheme.

space evolves smoothly as a function of position, with few or
no abrupt changes. These correlations can be used to compress
data efficiently, just as they are to compress sound or images
(MP3 or JPEG formats for example [11], [13]) with acceptable
losses. Lossy compression is much more effective than lossless
compression when it comes to reducing data size. It should
be noted, however, that compression techniques developed for
integers are not suitable for floating-point numbers. It should
also be noted that without loss, the compression rate is far too
low. For example, the ZIP compression scheme compresses
scientific data by an average factor of 2, which is insufficient.
A factor greater than 10 is reached by blaz and zfp can
reach factors close to 64.

Several lossy compressors have been developed in recent
years for scientific data, including zfp [20] and sz [6], [19],
[30]. While these compressors are remarkable in terms of data
size reduction, they have the major disadvantage that data must
be decompressed before computation (e.g., matrix operation)
and the result must in turn be compressed. In this sense, they
do not fulfill the objective stated in Section I to reduce storage,
processing and telecommunications as a whole.

The first approach, chosen by zfp(and formerly fpzip
[22]), consists in setting a compression rate and then obtaining
an error on the data compression/decompression depending on
the chosen compression ratio. The second approach, chosen
by sz, is symmetrical and consists in setting a certain error
threshold on the compression/decompression process. The
compression rate results from this setting. Note that recent
versions of zfp and sz enable the user to tune very finely
the compression, e.g. by controlling the error in zfp [7].

Our compressor, blaz is fixed-rate, like zfpand this moti-
vates our choice to compare both tools since it is then possible
to compare the compression times and accuracy for a same
ratio. In addition, fixed-rate compressors allow random access
to the elements of a compressed array which is note the case
with variable rate compressors such as sz. Random accesses
are needed for homomorphic computations.

B. The zfp Compressor

In this section, we introduce zfp, a fixed-rate compressor
for floating-point data that aims at providing lossy compres-
sion with random access to the compressed data. zfp maps
small blocks of 4d values in d dimensions to a fixed, user-
specified number of bits per block. This enables read and write
random access to compressed floating-point data at the gran-
ularity of blocks. The compression process in zfp involves
i) aligning the values in a block to a common exponent and
ii) converting them to a fixed-point representation. Then iii)
an orthogonal block transform is then applied to decorrelate
the values, and iv) the resulting coefficients are ordered by



block
splitting normalize predict transform quantize

64 binary64

4096 bits

64 binary64

4224 bits
+ 2 binary64

64 int8
+ 2 binary64

640 bits

65 int8
+ 2 binary64

648 bits

29 int8
+ 2 binary64

360 bits

Fig. 2. Overview of blaz compression scheme.

expected magnitude. Finally, v), the coefficients are encoded
one ”bit plane” at a time [3]. The bit stream may be cut at
any point, enabling a flexible compression rate at bit-level. An
overview of the compression scheme is given in Figure 1.
zfp uses a software write-back cache of uncompressed

blocks to enhance random access capabilities. This cache
reduces the frequency of compression and decompression op-
erations, and by consequence reduces the need for compression
or decompression. However, for the purpose of comparing
compressors, we will disable this feature.

The performances and applicability of zfp have been
demonstrated in various domains, such as visualization, quan-
titative data analysis and numerical simulation [21].

C. The blaz Compressor

We introduce below blaz, a recently proposed lossy com-
pressor for scientific data [23] enabling calculations to be
performed directly on compressed data, without decompress-
sion (which is impossible with other compressors such as
zfp). Such a compressor is called homomorphic [12]. This
imposes a compromise between loss of information on the
one hand, and gains in memory and computation on the
other. blaz is fixed-rate, as random access to the compressed
data is mandatory to compute among the compressed data.
blaz is also lossy and operates on IEEE754 binary32 or
binary64 floating-point number 8 × 8 blocks. blaz uses
steps of normalization, prediction, transformation and finally
quantization as summarized in Figure 2.

Normalization is used to reduce data variations within the
block. As in other compressors [8], [9], normalization is
based on the assumption that the elements are correlated.
Normalization then consists of replacing the elements of the
block with the differences between adjacent values. Next,
block element prediction allows floating-point values to be
replaced by integers (coded on 8 bits). The range of values
in the block is divided by 255 (we call this quantity a step)
and prediction consists of storing how many steps are needed
to best predict the exact element in the block. As in many
other compressors (e.g. JPEG- 2000 [7]), we use a discrete
cosine transform (DCT, [22]) of the block resulting from the
prediction step. DCTs are used to aggregate large coefficients
in the first rows and columns of a matrix and columns of
a matrix, with small values appearing in the other elements
after transformation. After the DCT, the large coefficients of
the block are in the first lines and columns, which contain
the bulk of the information. Quantification then consists in
considering the small coefficients present in the other rows

and columns are negligible and set them to 0 to avoid storing
them in the compressed matrix. In practice, blaz keeps the
first two lines and columns of the block.
blaz has been designed in such a way that it is possible to

define algorithms for various matrix operations on compressed
arrays (addition, multiplication by a constant, scalar product,
etc.). These operations are designed for elementary blocks
and, readily, for larger larger matrices or 3D arrays, they
are repeated for each elementary block. Compressed blocks
are stored in a suitable data structure containing, the first
exact value of the block, the average slope of the prediction
and the remaining coefficients after block transformation and
quantization.

For example, for the addition B = B1 + B2 of two
compressed blocks, the first element f of B is the addition
of the first elements f1 and f2 of the two compressed blocks
B1 and B2. Similarly, the average slope of B is defined by
s = s1 + s2 where s1 and s2 are the average slopes of B1

and B2. Let D1 and D2 denote the blocks obtained after the
DCT by passing B1 and B2. Intuitively, if no re-scaling were
done in our scheme, we could simply add D1 and D2 to
obtain the block D corresponding to B. But two re-scalings
are done in our scheme, during the normalization stage and
among the values resulting from the DCT. It is then possible
to re-scale and add the coefficients of the DCT contained in
D1 and D2. Note that adding the coefficients is possible since
the DCT defines a linear map among our blocks. Formally,
for a 8× 8 block B, the two-dimensional DCT of B, denoted
DCT(B) = D is defined, for 0 ≤ i, j < 8, by

Dij = αiαj

7∑
u=0

7∑
v=0

Bij cos

[
(2u+ 1)iπ

16

]
cos

[
(2v + 1)jπ

16

]
and it follows that for two blocks B = B1 +B2,

Other operations are handled in a similar way (subtraction,
multiplication by a constant, Hadamard product). Particular
attention must be paid to the scalar product which currently
necessitates to compute the inverse of the DCT (we do believe
that this can be improved in the future).

As shown in Figure 2, a compressed block is stored using
29 8-bits integers and 2 binary64 floating-point numbers.
The 29 8-bits integers correspond to the 28 values that we
keep after quantization plus one 8-bits integer corresponding
to the re-scaling factor φ. A block is then stored into 360 bits
instead of the original 4096 bits needed to store 64 binary64
numbers, yielding a compression rate of 11.37.

D. Brief Comparison of blaz and zfp

In this section, we briefly compare blaz and zfp in
terms of speed and accuracy. Let us mention that more
comprehensive results concerning the speed and accuracy of
blaz and zfp have been introduced in [1], [23].

Table I displays execution times and relative errors for
operations among two 1040× 1040 matrices A and B corre-
sponding to the discretization of the functions f(x, y) = x2−y
and g(x, y) = x2 × y2 between −2 and 2. The relative errors



represent the mean of the relative errors on the elements of
the matrices.

We can observe that blaz is approximately 100 times
faster than zfp for addition and multiplication by a constant
and approximately 10 times faster for matrix multiplication.
Conversely, zfp is more accurate by a factor up to 100, which
represents two decimal digits on the result. The additional error
introduced by blaz to save CPU and, as we will see in the
next section, energy, remains interesting for many application
domains.

E. Related Work

In this section, we discuss related work about compression
techniques for scientific data. A first related topic is about the
use of GPUs to accelerate the compression and decompression
of scientific data [15], [18], [27]–[29].

Recently, special attention has been paid to the compression
of the parameters of deep neural networks [14], [26]. However,
this case is slightly different since the parameters of neural
networks generally do not exhibit the same correlations than
adjacent values in numerical simulations. In this domain, a
related technique, called pruning, consists of removing the less
significant weights in order to lighten the network [5], [17].

Finally, many work has focused on applications and bench-
marks in various fields of science [3], [4], [19], [31].

III. POWER CONSUMPTION EVALUATION

In this section, we introduce our comparison concerning
the energy consumed by blaz with respect to other solu-
tions for matrix computations. Hereafter, energy measurements
are carried out using the PowerJoular tool introduced in
Section III-A. The methodology is described in Section III-B
and the results are presented in Section III-C. A case study
concerning data analysis is reported in Section III-D.

A. Energy Consumption Measurement with PowerJoular

In this section, we briefly introduce PowerJoular [24],
[25], a power monitoring tool designed to help software
developers, system administrators, etc. to understand and ana-
lyze the power consumption of their programs and devices.
Let us mention that PowerJoular is written in Ada, a
language well-known for its energy efficiency, which ensures

Matrix Accu. blaz Accu. zfp Time blaz Time zfp

A 0.53% 0.02% 2.0E−5 −

B 0.44% 0.002% 1.8E−5 −

A + B 2.27% 0.27% 2.2E−3 2.8E−1

k · A 0.53% 0.03% 2.0E−3 2.1E−1

A × B 0.0009% 0.0002% 1.1E0 1.2E1

TABLE I
COMPARISON OF THE PERFORMANCES OF BLAZ AND ZFPFOR

1040× 1040 MATRICES. THE ACCURACY IS GIVEN IN RELATIVE ERROR.
TIME IS GIVEN IN SECONDS.

that PowerJoular has a low fingerprint and contributes to
energy efficiency efforts [5]. PowerJoular is designed to
automatically detect the hardware configuration and supported
modules of a system, allowing it to provide accurate power
data. It utilizes the Intel RAPL power data through the Linux
Powercap interface to monitor the CPU power consumption.
By aggregating power readings from various components such
as CPU cores, integrated graphics, memory controller, and last
level caches, PowerJoular can compute the power con-
sumption of the system. The tool can also monitor GPU power
consumption for NVIDIA’s devices. Finally, PowerJoular
can also monitor the power consumption of individual pro-
cesses. This feature enables one to track power data for specific
applications or software components.

B. Energy Measurements

We introduce hereafter our experimental protocol. We have
developed several C codes to implement various elementary
matrix computations, including dot products, additions of
matrices, multiplications by a matrix and multiplications of
a matrix by a constant. These computations are performed
on matrices compressed with blaz and zfp as well as
without any compression, for the sake of comparison. In
addition to unitary matrix operations, we have also compared
the energy consumption when combining sequences of opera-
tions before re-compressing the data. This reflects real-world
scenarii where matrices undergo sequential computations. We
have focus on combining multiple additions or combining
addition and multiplication by a matrix, as these operations
are frequently encountered in matrix computations and can
significantly affect energy consumption.

The specific methods employed to measure energy con-
sumption as well as a detailed explanation of what is being
measured are outlined in Section III-C. blaz compress data
with a fixed rate of 11.37, so for comparison, we have adjusted
zfp to match the same rate. We have also considered matrices
whose size ranges from 16 × 16 to 8192 × 8192 to capture
diverse computational scenarii.

The experiments have been repeated multiple times to
account for variations and ensure reliable results. The
PowerJoular tool has been used to measure the energy
consumption of each computation scenario. This tool provides
energy consumption measurements, enabling evaluation of the
energy consumed during the execution of matrix computations.
We have performed our experiments on a PC equipped with
an Intel Xeon CPU E5-2603 v3 and 16GB of RAM. The PC
was running Ubuntu 22.04.2 LTS desktop with kernel version
5.19.0-46 and gcc version 11.3. In order to focus solely on
measuring the energy consumption of the CPU, we disabled
the GPU to prevent parallel execution during the experiment.
By doing so, we ensured that the process in running in the CPU
only and the energy measurements were specifically attributed
to the CPU’s power usage.



Fig 3.a. Addition Fig 3.b. Multiplication by a constant

Fig 3.c. Dot product Fig 3.d. Matrix multiplication

Fig. 3. Energy consumption of operations in function of the size N (x-axis) of the matrices (energy given in 10−logarithmic scale and N in 2−logarithmic
scale).

C. Experimental Results

The obtained energy consumption measurements of each
operation for a N ×N matrix of double numbers are shown
in Figure 3 (N ranging from 16 to 8192). The results of the
experiments demonstrate that blaz obtains energy savings in
matrix computations compared to both zfp and the program
which does not use compression, with the exception of the
dot product operation. In addition and multiplication by a
constant, blaz shows a more significant reduction in energy
consumption. However, in the case of matrix multiplication,
especially for large matrices, the advantage of blaz compres-
sion vanishes slightly, particularly for very large matrices. This
is due to the fact that the current implementation of blaz dot
product is not optimized and performs a partial decompression
of the data (the inverse DCT).

Nevertheless, as shown in Figure 3, blaz does not outper-
form the uncompressed program in terms of energy consump-
tion for the dot product. This can be attributed to the additional
operations involved in the dot product algorithm when using

blaz compression.
Figure 4 presents the results of the energy measurements for

a sequence of operations. The experiment has been conducted
using matrix sizes of 512×512 for the additions-only sequence
and a matrix size of 128× 128 for the combined addition and
multiplication sequence.

This new experiment shows that blaz consistently demon-
strates the lowest energy consumption across the various
operations, indicating its superior energy efficiency compared
to zfp and the uncompressed approach. This suggests that
blaz ability to directly compute on compressed data without
the need for decompression and re-compression significantly
reduces the energy requirements for matrix computations.

On the other hand, zfp shows higher energy consump-
tion compared to blaz, due to the additional computations
involved in compressing and decompressing the data. The
compression and decompression processes in zfp introduce
overhead, resulting in increased energy consumption. These
results support the potential of blaz as an energy-efficient



Fig. 4. Energy consumption of a sequence of operations (energy given in 10−logarithmic scale and number of operations in 2−logarithmic scale). Left:
Addition operations only. Right: Sequence of additions followed by multiplications.

compression technique for matrix computations.

D. Use Case in Data Analysis

In the context of sports analysis, especially in soccer, gain-
ing insights into player movements and positioning is crucial
for enhancing team performance, devising effective strategies,
and making data-driven decisions. Analyzing player movement
heat-maps is a valuable tool used by coaches, analysts, and
sports scientists to understand player positions, patterns, and
tactical behavior during matches.

A typical player movement heat-map consists of a 2D array
of floating-point numbers, where each value represents the
player’s presence or activity level in a specific region of the
soccer pitch. For instance, we can create a heat-map where
each value corresponds to the average number of times a
player has been present within a 10 cm² region of the pitch
across the last 10 matches. Considering a standard soccer pitch
size of 105 × 68 meters, the resulting heat-map array would
approximately have dimensions of 1048× 680.

To evaluate the energy efficiency of the blaz and zfp
compressors in computing the average player movement heat-
map, we will generate random heat-maps simulating player
positions for comparison. These random heat-maps will serve
as a benchmark to assess the energy consumption of blaz
and zfp when processing player movement data from the last
10 games. The energy consumption measurements obtained
from computing the average of ten floating-point arrays of
size 1050× 680 are shown in Table II.

Since blaz enables direct computations on the compressed
data, it reduces the computational overhead and storage re-
quirements, thereby leading to potential energy savings.

Assume that there are approximately 100, 000 soccer
matches played worldwide every year, each involving at least
10 players whose movement needs to be analyzed using player
movement heat-maps. For simplicity, let us assume that the
average energy consumption difference between blaz and

blaz zfp No Compression

Energy (mJ) 528± 53 5700± 530 2360± 162

Time (ms) 37± 0.08 420± 4 175± 1

TABLE II
ENERGY CONSUMPTION MEASUREMENTS

TO COMPUTE THE AVERAGE OF TEN HEAT-MAPS.

zfp is 5 joules, as shown in Table II. This means that by using
blaz in soccer match analysis for all matches worldwide,
the soccer community can potentially save approximately 5
megajoules of energy annually. To put this into perspective,
5 MJ is about 0.16% of the average US household energy
consumption in a month. These numbers demonstrate the
impact that adopting energy-efficient techniques like blaz
can have, not only in soccer match analysis but in various
more important data-intensive fields.

IV. CONCLUSION AND PERSPECTIVES

In this article, we have evaluated the energy consumption of
matrix computations using compressed data, comparing blaz,
zfp and no compression scenarii. The results consistently
showed that blaz is significantly more energy efficient, reduc-
ing energy consumption for addition, multiplication by a con-
stant, dot product and matrix multiplication compared to zfp
and the programs without any compression. This demonstrates
the potential of blaz for sustainable scientific computing.
these gains come at the price of a more important relative
error introduced by blaz with respect to zfp. However this
error (two decimals in general) may remain acceptable in
many situations (especially when the computed data are sent
to visualization tools.) An improvement of this work would be
to to evaluate the energy consumption of operations in RAM
modules.



The application of blaz and zfp to the data analysis of
soccer games also highlights the energy-saving advantage of
blaz. By computing average player movement heat-maps,
blaz outperforms zfp in terms of energy efficiency when
processing data from the last ten games.

These findings are significant for promoting green com-
puting and reducing the environmental impact of scientific
computing. To generalize these results to other, larger, appli-
cations, blaz needs to be extended to more homomorphic
operations. Indeed, in future work, we aim at improving
blaz in several ways. Firstly, the compressor is currently
limited to two-dimensional arrays. We plan to treat at least
three-dimensional arrays or general tensors. Secondly, we aim
at adding new matrix operations to blaz such as stencil
operations (e.g. B[i,j]=A[i-1,j]+B[i,j-1]), reduc-
tions (e.g. summing the elements of line or column), etc.
Matrix multiplication also requires partial data decompression
currently and we want to improve this point. Finally, blaz
compression ratio is fix (11.37). We plan to improve it (we are
aiming for a rate of at least 20) and make it parameterizable.

In summary, this study emphasizes the importance of
energy-efficient approaches for scientific computing. We
strongly believe that the approach proposed by blaz can be
improved and generalized to contribute to the development
of more sustainable numerical computations which represent
an important part of the whole energy consumption of the IT
sector.

REFERENCES

[1] Tripti Agarwal, Harvey Dam, Ponnuswamy Sadayappan, Ganesh
Gopalakrishnan, Dorra Ben Khalifa, and Matthieu Martel. What op-
erations can be performed directly on compressed arrays, and with what
error? In Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, SC-W, pages 252–262. ACM, 2023.

[2] ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic, 2008.
[3] A. H. Baker, D. M. Hammerling, S. A. Mickelson, H. Xu, M. B.

Stolpe, P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe,
F. De Simone, F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E. Kay,
and P. Lindstrom. Evaluating lossy data compression on climate simu-
lation data within a large ensemble. Geoscientific Model Development,
9(12):4381–4403, 2016.

[4] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok,
Dingwen Tao, Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and
Frederic T. Chong. Use cases of lossy compression for floating-point
data in scientific data sets. J. High Perform. Comput. Appl., 33(6), 2019.

[5] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey
on deep neural network pruning-taxonomy, comparison, analysis, and
recommendations. CoRR, abs/2308.06767, 2023.

[6] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data
compression with SZ. In IEEE Int. Parallel and Distributed Processing
Symposium, IPDPS, pages 730–739. IEEE Computer Society, 2016.

[7] James Diffenderfer, Alyson Fox, Jeffrey A. F. Hittinger, Geoffrey
Sanders, and Peter G. Lindstrom. Error analysis of ZFP compression for
floating-point data. SIAM J. Sci. Comput., 41(3):A1867–A1898, 2019.

[8] Cécile Diguet and Fanny Lopez. Impact spatial et énergétique des data
centers sur les territoires, projet enernum, rapport et synthèse, 2019.

[9] Linda C. Harwell, Deborah N. Vivian, Michelle D. McLaughlin, and
Stephen F. Hafner. Scientific data management in the age of big data:
An approach supporting a resilience index development effort. Frontiers
in Environmental Science, 7:72, 2019.

[10] Duong Hoang, Pavol Klacansky, Harsh Bhatia, Peer-Timo Bremer, Peter
Lindstrom, and Valerio Pascucci. A study of the trade-off between reduc-
ing precision and reducing resolution for data analysis and visualization.
IEEE Trans. Vis. Comput. Graph., 25(1):1193–1203, 2019.

[11] Abir Jaafar Hussain, Ali Al-Fayadh, and Naeem Radi. Image compres-
sion techniques: A survey in lossless and lossy algorithms. Neurocom-
puting, 300:44–69, 2018.

[12] Michela Iezzi. Practical privacy-preserving data science with homomor-
phic encryption: An overview. In 2020 IEEE International Conference
on Big Data (IEEE BigData 2020), pages 3979–3988. IEEE, 2020.

[13] Uthayakumar Jayasankar, Vengattaraman Thirumal, and Dhavachelvan
Ponnurangam. A survey on data compression techniques: From the
perspective of data quality, coding schemes, data type and applications.
Journal of King Saud University - Computer and Information Sciences,
33(2):119–140, 2021.

[14] Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck
Cappello. Deepsz: A novel framework to compress deep neural networks
by using error-bounded lossy compression. In High-Performance Par-
allel and Distributed Computing, HPDC, pages 159–170. ACM, 2019.

[15] Sian Jin, Pascal Grosset, Christopher M. Biwer, Jesus Pulido, Jiannan
Tian, Dingwen Tao, and James P. Ahrens. Understanding gpu-based
lossy compression for extreme-scale cosmological simulations. In 2020
IEEE Int. Parallel and Distributed Processing Symposium (IPDPS),
pages 105–115. IEEE, 2020.

[16] Nicola Jones. How to stop data centres from gobbling up the world’s
electricity. Nature, 561:163–166, 09 2018.

[17] Vinu Joseph, Ganesh Gopalakrishnan, Saurav Muralidharan, Michael
Garland, and Animesh Garg. A programmable approach to neural
network compression. IEEE Micro, 40(5):17–25, 2020.

[18] Fabian Knorr, Peter Thoman, and Thomas Fahringer. ndzip: A high-
throughput parallel lossless compressor for scientific data. In 31st Data
Compression Conference, DCC 2021, pages 103–112. IEEE, 2021.

[19] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi
Guo, Zizhong Chen, and Franck Cappello. Error-controlled lossy
compression optimized for high compression ratios of scientific datasets.
In IEEE Int. Conference on Big Data, pages 438–447. IEEE, 2018.

[20] Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE
Trans. Vis. Comput. Graph., 20(12):2674–2683, 2014.

[21] Peter Lindstrom, Po Chen, and En-Jui Lee. Reducing disk storage
of full-3d seismic waveform tomography (F3DT) through lossy online
compression. Comput. Geosci., 93:45–54, 2016.

[22] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of
floating-point data. IEEE Trans. Vis. Comput. Graph., 12(5):1245–1250,
2006.

[23] Matthieu Martel. Compressed matrix computations. In IEEE/ACM
International Conference on Big Data Computing, Applications and
Technologies, BDCAT 2022, Vancouver, WA, USA, December 6-9, 2022,
pages 68–76. IEEE, 2022.

[24] Adel Noureddine. Powerjoular and joularjx: Multi-platform software
power monitoring tools. In 18th International Conference on Intelligent
Environments, pages 1–4. IEEE, 2022.

[25] Adel Noureddine and Olivier Le Goaër. Software energy efficiency:
New tools for developers. ERCIM News, 2022(131), 2022.

[26] James O’Neill. An overview of neural network compression. CoRR,
abs/2006.03669, 2020.

[27] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai Zhao, Sian Jin,
Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cappello. Optimizing
error-bounded lossy compression for scientific data on gpus. In Cluster
Computing, pages 283–293. IEEE, 2021.

[28] Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp,
Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao,
and Franck Cappello. Cusz: An efficient gpu-based error-bounded lossy
compression framework for scientific data. In Proceedings of the ACM
Int. Conference on Parallel Architectures and Compilation Techniques,
PACT ’20, page 3–15. Association for Computing Machinery, 2020.

[29] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng, Xin
Liang, Dingwen Tao, and Franck Cappello. FZ-GPU: A fast and high-
ratio lossy compressor for scientific computing applications on gpus. In
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC, pages 129–142. ACM, 2023.

[30] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot,
Zizhong Chen, and Franck Cappello. Optimizing error-bounded lossy
compression for scientific data by dynamic spline interpolation. In Int.
Conf. on Data Engineering, ICDE 2021, pages 1643–1654. IEEE, 2021.

[31] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Julie Bessac,
Zizhong Chen, and Franck Cappello. SDRBench: Scientific data
reduction benchmark for lossy compressors. In IEEE Int. Conference
on Big Data, pages 2716–2724. IEEE, 2020.


