Building Up Green Software Life Cycle Model

Lauri Kivimiki*, Laura Partanen®, Jari Porras, Kimmo Tarkkanen?,
Anne-Marie Tuikka®, Jari-Matti Mikeld*, Tuomas Makild*
* University of Turku
Turku, Finland
Emails: {lvkivi,jmjmak,tusuma}@utu.fi
t Lur University
Lahti & Lappeenranta, Finland
Emails: {laura.partanen,jari.porras} @lut.fi
Y Turku University of Applied Sciences
Turku, Finland
Emails: {kimmo.tarkkanen,anne-marie.tuikka} @turkuamk.fi

Abstract—With the increased focus and importance placed on
the twin green and digital transition, also the development of
digital products and software systems must take environmental
sustainability into account. At present, the environmental impact
of software systems has gained more and more attention from
both the software development and the software procurement
side. Researchers have provided many conceptual models of green
software, but there is a lack of comprehensive, contemporary
models to cover the overall picture, the whole life cycle of
software. Aim of this study is to present the Green Software Life
Cycle (GSLC) model that incorporates sustainable practices and
metrics. The model is formed by gathering promising practices
and metrics from the existing body of knowledge and mapping
them to the software life cycle phases. The theoretical model
is then validated by interviewing software practitioners. The
model encompasses the whole software life cycle, and should
provide inspiration for not only to the software developers, but
to all stakeholders who are participating the software life cycle
and aim for more environmentally sustainable digital products.
Although the GSLC model provides a starting point towards
making the software life cycle greener, further refinement and
empirical validation is necessary in the future.

Index Terms—software engineering, green software, software
lifecycle, green software lifecycle model, green ICT

I. INTRODUCTION

With sustainability concerns becoming increasingly relevant
in the era of digitalization, also the role of Green ICT
has come into focus. Historically, the role of software in
contributing towards environmental sustainability concerns has
received less attention than hardware [23], [45]. As demand
for green digitalization and IT has increased and with the
resource consumption of hardware being ultimately reliant
on the executed software, it seems imperative that software,
and alongside that processes in software engineering, is made
greener.

The field of software engineering has not been restricted
by hardware performance in modern times [50]. In the early
days of software, computers were so limited in memory
and processing power that everything down to lines of code
had to be optimized. With the rapid development described
by Moore’s law, these restrictions fell off. For 50 years,

software engineering has enjoyed exponential performance
improvements, allowing software to increase massively in size
and complexity [29].

In 1997, the CTO of Microsoft, Nathan Myhrvold, proposed
four laws of software which essentially state that software
demands will always expand to meet hardware supply and
that better hardware is bought and developed because software
demands it [32]. What this means is that no matter how much
computers advance, it will not be enough. The only way to
restrain this expansion is by focusing on the efficiency of the
software, and limiting its hardware requirements.

Software is always an outcome of a software development
process. One viewpoint to efficiency, and environmental sus-
tainability in general, is that they can be seen as quality
attributes of the software and as such they could be consid-
ered as a part of the software development life-cycle [35].
There’s a need for a model that gives both an overview of
the environmental sustainable software development life-cycle
process, and concrete suggestions of methods and metrics to
improve sustainability of the end product.

The research question of this study is “how can environ-
mental sustainability aspects be incorporated into the software
development life-cycle?”. The research question is answered
by building a software development life-cycle model that
incorporates green concerns whilst suggesting metrics and
criteria that can be used to work towards greenness. In
addition, this model is validated through interviews of software
practitioners. The goal is to build a holistic model covering
all the essential phases of software life cycle independently of
used methodologies (e.g. SCRUM, Kanban, DevOps). At the
same time the model concentrates on addressing environmental
sustainability concerns and not all facets of sustainability.

II. RELATED WORK

Efficiency of the software can be looked at from many
different perspectives. Calero & Piattini [9] use both software
sustainability and green software terms to mean low power
consumption and waste free software. They do not mean only
the final product, i.e. production-level software system, but

also consider the software development process. Thus it is
important to consider efficiency of both the product (software
system) as well as the development process of the product
(software engineering).

The existing research on green software engineering is
multifaceted but not at all comprehensive. Since it is necessary
to measure things that we want to objectively investigate,
research of sustainability metrics has been a subject of some
focus. Secondly, attention has also been given to theoretical
models introducing relevant sustainability concerns of soft-
ware and ways to address them in software engineering activ-
ities. The third main type of research focuses on optimizing
the sustainability of specific aspects of software systems like
the choice of programming languages or architectures.

When considering the greenness of a software product, it is
important to consider the whole life cycle as shown by Taina
[46] already more than decade ago. Kern et al. [33] have pre-
sented a more holistic model, GREENSOFT, that emphasizes
sustainability metrics and measurements in different phases of
the software product life cycle. They also show that measuring
the efficiency of the code is rather challenging. In addition to
the GREENSOFT model, other authors have also presented
models [30] [43] where they map sustainability activities and
metrics into the software life cycle phases, but most of these
are already from early 2010’s. Various authors have tackled the
measuring challenge from different perspectives. Bozzelli et al.
[26] presented in their SLR a comprehensive list of proposed
metrics and classification of them. Ahmad et al. [2] compared
hardware and software based approaches for energy profiling.
Procaccianti et al. [40] showed that measuring software energy
efficiency is rather complex and has almost chaotic behavior.

interaction design (HCI) in environmental sustainability of
the software. The recent studies have focused on the practical
energy efficiency of the software. Pereira et al. [38], Georgiou
[14], and Abdulsalam et al. [1] have studied the energy
efficiency of various programming languages. Another line
of research studies the impact of algorithms to the energy
efficiency of the programme, e.g Rashid et al. [41] and
Meissner et al. [31]. Capra et al. [10] showed that the use of
application development environments has a detrimental effect
on software energy efficiency. This is partly due to the use of
external libraries as shown by Pinto et al. [39].

While energy efficiency is just one characteristics, the work
on the sustainable software engineering processes typically
consider also other sustainability dimensions, e.g. social and
economic, as shown by the work of Jagroep et al. [19], Lago
et al. [27] and Karita et al. [21]. In addition to focusing on the
holistic software development life cycle, studies have focused
on specific parts of the process. Lots of work has been done on
integrating sustainability into the requirements phase, e.g. the
work of Becker et al. [4] and Condori-Fernandez & Lago [12].
Jagroep et al. [19] links the energy efficiency of the software
and Venters et al. [48] the general software sustainability to
the architecture design. Finally the work of Blevis [7] focuses
on the role of

Sustainability debt [5], i.e. the difference between a solution

and its sustainability ideal, is one option to evaluate sustain-
ability of software. It can be used to follow the sustainability of
the software in relation to changing conditions. It is especially
important to evaluate in the planning phase if the software is
built by choosing the right components.

III. RESEARCH METHODS

The Green Software Life Cycle (GSLC) model aims at
describing key methods and metrics that could be applied in
each software engineering and development life cycle (SDLC)
phase to make the software development more environmentally
sustainable. In methodological terms, the Green Software Life
Cycle model presented in this paper has been built based on
1) existing body of knowledge on the SDLC models 2) review
of research literature around the environmental sustainability
factors, indicators and practices in software development, and
3) interviews of software developer companies and software
users who apply sustainable and environmentally responsible
methods in their daily development and business activities. The
model development and interviews were coordinated in the
meetings and the workshops of a R&D project, which aimed
at developing a green criteria for public software procurement.
The approach is illustrated in Figure 1.

LIFE CYCLE MODEL FROM
SWEBOK AND IS0 12207

l

SUSTAINABILITY
FACTORS AND METRICS
FROM LITERATURE

l

GREEN SOFTWARE
LIFE CYCLE MODEL

!

INTERVIEWS
A A

PROJECT MEETINGS PROJECT WORKSHOPS

Figure 1. Approach for conducting the research and the model development.

The review of existing research literature aimed at finding
the most promising methods and metrics related to sustainabil-
ity of software development. Although sustainability has mul-
tiple dimensions, the literature review and the model primarily
focus on the environmental and economical dimensions. The
literature review was conducted by reading 164 research

publications about sustainable SDLCs, software sustainability
indicators, metrics and factors, and green ICT in general.
The key findings of each publication were collected into a
summary table and the most promising publications for the
Green Software Life Cycle model were selected in the review
sessions which most of the authors participated.

We supplemented the green practices found from the aca-
demic literature with views from software development and
procurement practitioners. Therefore, we performed inter-
views, which involved both software developers and pro-
curement experts. The total number of interviews was 18,
with 6 public and private sector procurement units and 11
software development companies (one was interviewed twice).
Software development companies were SMEs as well as large
companies delivering software products and services both in
domestic and in international markets.

Interviews were conducted in 2022-2023 during the R&D
project. Depending on the participating organization, inter-
views might be conducted as group interviews (n=9) or
individual interviews (n=9). Altogether 15 procurement ex-
perts were interviewed. Participants from software companies
included representatives of upper management (n=4), middle
management (n=2), sustainability management (n=2), software
development (n=4) and IT consultancy (n=4).

Each interview lasted about an hour and had several in-
terview themes, such as a) sustainability in organizational
strategy and business, b) sustainability of software products,
c) sustainable software development practices, d) sustain-
ability during the software operation phase, and e) specific
organizational measures and criteria for sustainability. The
focus of the interviews was mainly on the environmental
sustainability. With the procurement units (n=6), the themes
were the same yet focusing on the used and potential criteria
and measurements in their requests-for-proposals (RFPs). First
part of the software developer interviews (n=9) followed the
same structure as the procurement expers interviews. Later
interviews (n=3) with the software development companies
had the focus on the criteria developed. The interviews were
transcribed for the analysis of creating new criteria and for
collecting existing practices of green software procurement.

For the study presented in this paper, the interviews serve
as empirical examples of how green software development
practices and metrics divide into the SDLC phases in real-
life. The interview results are therefore mapped onto the
SDLC phases and discussed as examples of green development
practices and metrics currently in use in software development
companies and user organizations.

IV. GREEN SOFTWARE DEVELOPMENT LIFE CYCLE
MODEL

The Green Software Life Cycle (GSLC) model presented
in this paper has been built around the generally recognized
phases of the software engineering and development life
cycle (SDLC). The Software Engineering Body of Knowledge
(SWEBOK) [8] and the ISO/IEC/IEEE 12207:2017 Software
Life Cycle Processes standard [18] were used as the main

references to define the exact phases for the underlying SDLC
model. From the SWEBOK five knowledge areas defining
the established SDLC phases were selected. These phases are
requirements, design, construction, testing and maintenance.
These traditional SDLC phases were supplemented by acquisi-
tion and disposal phases from the ISO/IEC/IEEE 12207:2017
standard to take the whole software life cycle into account.
Although the phases are presented sequentially in the GSLC
model, it also allows iterative or parallel execution and thus
targets to be methodology agnostic.

Disposal has an integral role in such systems because most
of the energy and materials can be returned to production,
distribution or use phases. Hence, the disposal is added as a
phase to our software life cycle model. In addition, acquisition
is added at the start of our software life cycle model. This
is important because sustainability does not reset for each
separate software product, and is instead a continuous process.

Adopting these phases beyond the traditional SDLC scope
was inspired by the concept of circular economy which aims at
sustainable coexistence of the economy and the environment
by adapting the idea of closed loops to different fields of
business. In its ideal form, closed loops enable circular flow of
materials and other resources through the whole life cycle of a
product or a service without generating any waste. In practice,
completely closed loop-systems are not possible, thus circular
economy can be understood as dynamic economic systems
“in which resource input and waste, emission, and energy
leakages are minimized by cycling, extending, intensifying,
and dematerializing material and energy loops” [13].

In this Section, it is described how the environmental
sustainability is taken into account in each phase of the GSLC
model. In addition, the GSLC model is illustrated in Figure 2.
In the illustration, the key environmental sustainability factors
and the most important environmental sustainability indicators
and metrics identified in the literature review are mapped into
the software life cycles phases. Therefore the illustration also
acts as a reference guide for the existing research related to
each life cycle phase.

A. Acquisition Phase

The idea of sustainability debt has been one of the guid-
ing principles in developing this model and should guide
all software life cycle phases from acquisition to disposal.
Sustainability debt is essentially the difference between a pro-
posed solution and the ideal scenario where all sustainability
requirements have been met [5]. It is the hidden effect of
past decisions about software-intensive systems that negatively
affect economic, technical, environmental, social, and individ-
ual sustainability of the system under design. Effects in these
dimensions can manifest themselves on three different levels:
(1) the direct effects of the software system production and
use; (2) enabling effects that arise from the ongoing use of
the software system, and (3) systemic changes caused by the
use of the software system on a larger scale over time. The
GSLC model address mainly level 1 effects.

GREEN SOFTWARE
LIFE CYCLE 7

PISPOSAL

*Cleanly
removable [24]

Example criteria,
indicators, and
metrics

MAINTENANCE
& OPERATION
[18]

 Sustainable usage
[29], strict change
control [24]

7 No unnecessary leftover data,
usable data must be simple to
transfer

Maintaining environmental
criteria, metrics of usage
[30], qualitative indicators of
user experience [22], energy
efficiency of other services
required for software to
function, avoidance of feature
creep and requirements bloat
[24]

9 testine

« Efficient testing
incorporating
environmental
requirements
[30][43]

Lines of code, technical

debt, code smells, found and
fixed defects, defect density,
project estimates vs reality,
validating environmental
criteria [11][26]

GSLC
MODEL

R~

CONSTRUCTION

* Optimization of
sustainability during
development [3][11]

4

2 General environmental
criteria, energy consumption,
hardware requirements [26],
environmentally friendly

REQUIREMENTS

* Demands of
sustainability
stakeholders [4][37]

functionalities [24]

Modular and lasting software,
supports sustainable use

by default, software and

its data are portable and
transparent [24], effective
GUI design [11]

msieN 3

* Simplicity and

clarity [43] Energy efficiency [22],

readability of documentation
and code, efficiency of
algorithms and architecture
[31[30], maintaining
sustainability requirements in
practice, sustainable
development practices,
minimal waste during
development [47]

Figure 2. Illustration of Green Software Life Cycle model. The environmental sustainability factors are presented in the middle of the illustration. The factors
define the key methodological approaches for achieving environmental sustainability in each life cycle phase. Detailed environmental sustainability metrics

and indicators for each phase are presented in the separate boxes.

Sustainability debt can be compared to technical debt
and both of them should be kept in mind when analyzing
the economical feasibility of software development. When
acquiring new software, sustainability debt should be used
to disqualify those solutions that regress the sustainability
situation, unless the need for new software is thoroughly
analyzed. When preparing requests-for-proposals it should be
considered unfeasible to develop software that does not follow
sustainable methods.

B. Requirements Phase

The software development process properly starts at re-
quirements engineering. As has been stated before, green
digitalization necessitates that software bear responsibility for
its part in energy consumption. This means that starting at
the requirements phase the energy consumption and hardware
requirements of software should be addressed and restricted.
It is important to minimize both of these factors and ensure
the maximal amount of backwards compatibility to reduce the
amount of e-waste produced [24]. These requirements should
be validated during later phases of the development process
to ensure compliance.

A common activity during the requirements phase is stake-
holder analysis, which encompasses all persons, groups and
organizations that affect the project or have an interest in it
[8]. To promote environmental concerns stakeholders such as
customers and regulatory organs should demand sustainability

concerns to be addressed [4], [37]. Environmental sustainabil-
ity should also be included as its own stakeholder:e.g. being
energy efficient has value in its own right, and will also save
money in the long run.

Assessment or evaluation criteria for the greenness of soft-
ware can also be converted into requirements for software.
For example the procurer of software can demand that certain
criteria are fulfilled, which then transform into requirements
for the software. These can include such things as energy
consumption, hardware capacity required, and functional re-
quirements allowing sustainable use. Software should support
continued development, have clear documentation and data
formats and have no functionalities that are hidden from the
user. [24]

C. Design Phase

After the requirements are defined, the software can be
designed to fulfill its functional requirements and quality
attributes. The fine-tuning of requirements will continue during
the whole software development process usually iteratively.
After the design process, the construction of the software
should be possible.

As design is based on requirements, the primary goal
of environmental sustainable design should be making the
program as simple and clear as possible [43]. Simplicity is
important because there should be no unnecessary work or
technical debt added to the project, and clarity is important

for similar reasons. The sustainability debt [5] is also easier
to manage with a simple design. Design should also support
environmentally sustainable use by allowing the user to change
functionalities, function in a transparent manner, give feedback
on resource usage and release unnecessary hardware capacity
temporarily [24].

Ideally software architecture and design should be as lean as
possible. The technical architecture is based on efficiency and
functionality, implementing only the required functions. Data
structures, algorithms and other such considerations should be
chosen based on efficiency instead of whether or not they are
easy and fast to implement. While technical architecture is
important, the usability should also be designed to be as fluent
and efficient as possible. The design process should be done
with great care, as it has a great impact on the final product
and modifications to the design later in the life cycle can have
an immense impact on the total cost of development.

Cloud services, data centers, the communication protocols
and server architecture should also be taken into consideration.
Many decisions made in the design phase are not strictly
related to development of software but still greatly influence
the life cycle of the software. There are many potential metrics
to be used here, some of them being extensively researched
and having widespread use.

D. Construction Phase

The construction phase is where the implementation begins
in earnest. Optimizing environmental sustainability during de-
velopment means that the contents of the written code-base are
managed to be efficient and functional. Without oversight into
the quality of code, problems such as unnecessary abstraction
layers and poor usage of frameworks can easily appear and
be hard to remove later on. These both increase maintenance
costs and unnecessarily decrease the run-time efficiency of the
software product [6].

In general focus on developer productivity should be less-
ened to increase focus on code efficiency, so that the end result
would be more sustainable. Throwaway code and prototypes
that cannot be reused are examples of practices that should be
avoided unless absolutely necessary. Abstractions and other
techniques can also unnecessarily burden the application.
Refactoring the code is also a potential source of both gains
and losses in sustainability. Determining whether or not refac-
toring will lead to sustainability gains in the long run will
require more intricate tools for analysis of low-level code.

At this point it is possible to start measuring environmental
factors related to the software product and its use. Some
extremely important metrics are energy consumption and by
extension carbon footprint, the hardware specs required by
the software, and the algorithmic efficiency of the code [22],
[28], [47]. Depending on the desired level of abstraction it
may be necessary to determine the power consumption of
different software units and elements [20], and the energy
consumed by the computation and communication components
[15]. This allows developers to focus on optimizing those parts
of software that need it most. Energy consumption must also

be related to the rate of green energy sources used, but it can
be difficult to determine this information with current tools
[17].

It is important to note that also the actual development
practices can greatly vary in their environmental sustainability.
Some important factors are to avoid hard copies of documents,
business trips and contact meetings. Remote meetings with
digital documents will save on energy [28]. Developers should
also minimize the amount of waste during the software life
cycle. Waste in this context means the amount of work that
does not have discernible value to end users of the software
product [22], [47]. Technical debt is one possible contributor
to waste and should be minimized when possible.

E. Testing Phase

During the testing phase the most important concern tradi-
tionally is finding and fixing software defects and ensuring
the software product is functional. During this phase the
environmental requirements and greenness of the software
should also be validated [30] [43]. Validating whether or not
the criteria for standards and certificates are being upheld
will lend them more credibility and ensure that software will
actually have to care about being efficient. Optimizing tests for
energy efficiency and sustainability is difficult, as automated
testing can cost large amounts of energy while being mostly
unnecessary. Still, defects must be found and fixed to avoid
unnecessary energy consumption and end-user work.

When it comes to actually measuring the environmental
impacts and energy consumption of a software product, it
is important to note that the key metric should be energy
efficiency, the ratio of energy consumed to the amount of
useful work done. Using low amounts of energy does not
matter if no useful work gets done, and consuming excessive
amounts of energy is not sustainable. Energy efficiency can be
abstracted to different levels, for example the energy efficiency
of telecommunication devices can also be used as a metric.
Energy efficiency has been refined further into metrics such
as energy proportionality, which addresses the fact that e.g. a
CPU is often at peak efficiency when it is at high utilization,
but spends most of its operative time at low utilization [44].

F. Maintenance and Operation Phase

During the maintenance and operation phase of the software,
it is critical that the original requirements are fulfilled as
well as possible. The maintenance and operation phase is
usually the longest phase of the software life cycle, and most
likely its environmental impact will be highest. Moderating
updates means that any updates and new functionalities that
also raise the operating requirements of hardware are to be
avoided. Maximizing the functional life of hardware is very
important to sustainability as it reduces e-waste and, as stated
earlier, software requirements are essentially what invalidates
hardware that could still function. Minimizing increases in
resource consumption should also be a key principle. In an
ideal situation the update lowers the resource consumption of

the software product. This can often be unrealistic, so the main
takeaway is to moderate updates and do careful change control.

While the software developers maintain and update the
product, the users of the software also deserve some attention
as software use has a great impact on its total energy efficiency.
To encourage sustainable use the software should be designed
to have environmentally friendly default settings and functions,
and it should advise users on how to best use it in an efficient
manner [28]. Enlightening users on efficient usage habits is
an important part of green digitalization, and at the moment
the tools for end users to improve their own footprint can be
lacking.

Due to the extremely widespread use of cloud services,
attention should also be directed towards factors influencing
their energy efficiency. Such factors are the usage rate of a
server [25], optimization of the network and data transfers,
and the management of scheduling of virtual machines. One
problem is that the users and even the technical administrators
of a software product may have little to no chance to influ-
ence these factors. During the operational use of software,
performance indicators such as simultaneous user sessions /
watt [44], transactions / watt and data transferred / watt [49]
can be used to analyze KPI and GPI. Energy efficiency and
minimizing the electric bill will lead to both financial and
sustainability gains.

G. Disposal Phase

As maintenance ends and the product faces its end of use,
disposal becomes relevant. This should be a short phase in
the whole software life cycle, but it is still desirable to make
it as smooth as possible. In software engineering the phase
of disposal is usually connected to the disposal of hardware
and the recycling of electronic equipment. When considering
software, this phase is usually called deactivation [22], [33].

Cradle-to-cradle thinking with the software components of
the system is also necessary to ensure holistically sustainable
digital products. Therefore, the authors of this paper propose
to use the term disposal also when discussing the end of the
software life cycle. It is important for sustainability that the
data generated during the software life cycle can be transferred
and used in the systems that replace it, and that the choice of
new platforms, devices or products is not restricted at this
point. It is important that disposal is easy for the user and no
trace of the product remains beyond the data intended to be
transferred for future use.

The disposal phase is linked to the first phase of acquisition
with the need to take the disposal phase into account in the
very early stages of the software life cycle. This also justifies
the cyclic appearance of the GSLC model visualization as
illustrated in Figure 2.

V. VALIDATION OF MODEL

To validate the GSLC model it was analyzed in relation
to empirical data collected through interviews with software
developers and procurement experts (as described in Section
IIT). Due to the nature of the interviews and the small sample

size, qualitative analyses of the data was seen as the best
approach. Abductive coding was employed to understand if
empirical data supports that criteria, indicators and metrics
identified through literature are relevant for creating environ-
mentally sustainable software and if empirical data supports
the conceptualization of sustainability factors and their map-
ping to the phases of the GSLC model.

In the acquisition phase, interviewees from procurement
units expressed the need for certifications that they could
ask from the tender. Such certifications could focus on the
sustainability of the organization or on the skills of the
software developers in relation to green coding practices. In-
terviews with representatives of software companies revealed
that tenders have often acknowledged the need to reduce
environmental footprint. However, none of them had joined
public competitive tendering that would require environmental
certification. Another theme that emerged from interviewees
with software developers was the careful evaluation of the
need for new technological solutions.

Interviewees from software companies highlighted that cus-
tomer demand is essential for developing environmentally
sustainable software. Most software companies had skills and
knowledge to develop sustainable software however they were
not always able to implement these practices because green
practices were not appreciated or financed by the customers.
In the requirement phase, a procuring organization would have
the opportunity to set requirements that enable and facilitate
environmentally sustainable software development. In addi-
tion, it is important to recognize situations which require a
lot of processing power efficient or repetitive calculations to
focus optimization resources where it matters most.

In the design phase, software design should be simple for
both the technical architecture and the user experience. It
was brought up by interviewees from software companies that
environmentally sustainable design practices are also usually
software design best practices. One interviewee expressed this
in the following way: “In design, the lower the hierarchy or the
shorter the customer paths, the better, and at the same time it
usually serves quite a few other things: accessibility, usability
and this kind”.

In the construction phase, optimization of sustainability
during software development was appreciated by both procure-
ment experts and software developers. Procurement experts
mentioned efficient use of algorithms and compact solutions to
reduce the need for data storage. Software companies brought
up the quality and usability of the code to minimize waste
during software development. They emphasized the efficient
use of frameworks which was perceived to have a higher
impact than low-level code optimization. For example, one
interviewee said: “We make a lot of user interfaces, so we’ve
talked a lot about a framework like a Remix (server-side
rendered apps), which basically takes web development a bit
back to the good old days when we didn’t load JavaScript just
in case we had to, i.e. we render on the HTML server and just
serve that HTML there in the web browser and then JavaScript
if there is a use for it. We try to get such a practice, that you

don’t have to load all JavaScript directly into your browser
every time.”

The procurement experts had relatively limited experi-
ence on testing environmental sustainability requirements of
software they had acquired. Some of them had experience
on testing sustainability of their own hardware. However,
representatives of software companies had some suggestions
regarding testing sustainability requirements of software. They
mentioned response and download times of web applications
as good sustainability indicators. One of the interviewees
mentioned that they are able to track whether their API calls
transfer only the relevant data. This enables better optimiza-
tion.

In the maintenance and operation phase, procurement units
as well as software companies emphasized the role of cloud
service providers and data center operators as the gate keepers
of sustainability for production software. Environmental sus-
tainability of the cloud service can be improved by choosing
renewable energy and utilizing the heat produced by the
servers for beneficial purposes. The use of cloud resources
should be closely monitored and optimized to avoid any
unnecessary use of these resources. In addition, software
companies mentioned the importance of metrics to enable
monitoring the energy efficiency of using their software during
operational use.

To the most part, the empirical data supports the feasibility
of the identified sustainability factors in the GSLC model.
Interviewees mentioned many criteria, indicators and metrics
that were also identified from literature. They also mentioned
issues and practices that were not present in the model,
especially the importance of cloud service providers related
to the environmental sustainability of the software during the
maintenance and operation phase. Although the data seems to
support the model, the characteristics of the disposal phase
could not be validated due to lack of interview data on the
phase. The reason might be that traditionally this phase has
not been widely recognized by the software practitioners.
Whatever the reason is, the further research regarding this
phase is clearly needed.

VI. DISCUSSION

In this article we have studied the relationship between
environmental sustainability and the software life cycle. We
have been able to identify relevant sustainability factors from
existing research for each phase of the software life cycle,
propose the holistic Green Software Life Cycle model based
on this knowledge, and proof that the model mostly resembles
the actual software life cycle activities from environmental sus-
tainability point of view. Special care should be given to phases
related to the identification of need, maintenance and use. Most
of the decisions affecting a software systems’ environmental
impact will be done in these phases. Sustainability should be
addressed as early as possible in the life cycle, as it is more
expensive and time-consuming to make design changes later
in the life cycle of a software system. The maintenance and
operation phase will in most cases be the longest part of the

life cycle and the one where the brunt of the environmental
impact will be caused.

In essence, to make the cradle-to-grave progression of
software sustainable it is important to determine whether or
not it is feasible to even start the development. If the costs
incurred during development are greater than any potential
gains made, the development work should be seen unfeasible.
This also applies to maintenance and potential updates. The
end of the life activities should also receive consideration well
before the disposal phase.

In addition to describing sustainability factors, our model
includes concrete criteria, indicators and metrics to be used
as part of software life cycle. These have value for the
practitioners who are aiming to acquire or develop sustainable
software but also for the researchers who wish to explore the
usability, suitability and impact of these criteria, indicators
and metrics in different scenarios. We have also been able
to identify the need for developing new criteria, indicators
and metrics because the existing ones do not capture all the
necessary aspects of each sustainability factor.

When reflecting the results of this paper to the sustainable
software life cycle models [33] [30] [43] presented in the
research literature, it can be said that the GSLC model is well
aligned with those. Since most of these models are from early
2010’s, the GSLC model supplements these with the most
recent research advancements in the field. Also, the scope of
these models varies compared to the GSLC model: GREEN-
SOFT [33] is a larger, more conseptual model, where life cycle
phases are only one part, whereas the model of Mahdmoud
and Ahmad [30] define more detailed processes inside the
life cycle phases to address sustainability requirements. The
life cycle model of Shenoy and Eeratta [43] resembles the
GSLC model most but concentrates on more technical issues.
As a summary, the GSLC model builds up on these pioneering
models while taking the latest research into account. The
GSLC model also broadens the scope slightly to take all
the life cycle phases from cradle to grave into consideration
and thus provides support to wider number of practitioners
participating the different software life cycle phases.

Lastly, it should be noted that the whole environmental
impact of software is dependent not only on the software
developers but also on the buyers, the administrators and the
users of a system. It has been recently brought forth that
the responsibility of emissions caused by software systems
should be divided among all the stakeholders in order to create
incentives for all the stakeholders to minimize the impacts
[36]. However, this is mostly beyond the scope of this article,
but worth emphasizing, that the responsibility does not rely
only on the software developers’ shoulders.

VII. CONCLUSION

In this paper we presented the theoretical Green Software
Life Cycle (GSLC) model that maps methods and metrics
of green software engineering into recognized software life
cycle phases: acquisition, requirements [elicitation], design,
construction, testing, maintenance and operation, and disposal.

The GSLC model shows that these metrics and methods of
environmental sustainability vary between different phases,
although the decisions made in earlier phases affect the latter.
Key factors during different phases can be characterized as 1)
evaluation of sustainability debt from the very first phases, 2)
elicitation of requirements from the sustainability stakeholders,
3) simple and clear design, 4) optimization during construc-
tion, 5) testing of environmental requirements, 6) moderated
updates during maintenance and constant monitoring of sys-
tem’s sustainability, and 7) clean and efficient disposal of the
system. We also validated the model through interview data
of software developers and software procurement experts, and
showed that the factors and the metrics of the theoretical
GSLC model are present in actual software life cycle phases.

The presented model connects the concepts presented in the
green ICT research literature to the actual software life cycle
phases. This lowers the threshold for the software developers,
the software procurement experts and other software practi-
tioners to take environmental sustainability into consideration
in their work independently of used development methodolo-
gies. The model forms a starting point for further academic
discussion and together with other similar models lays a
foundation for the standardization work of green software
life cycle practices. In the future, the created model should
be further validated in different real-life software acquisition,
development and operation scenarios by interviewing software
practitioners, and further elaborated by mapping existing and
upcoming academic research into the model.

REFERENCES

[1] Sarah Abdulsalam, Donna Lakomski, Qijun Gu, Tongdan Jin, and
Ziliang Zong. Program Energy Efficiency: The Impact of Language,
Compiler and Implementation Choices. In International Green Comput-
ing Conference, pages 1-6, 2014.

[2] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Feng Xia,
and Muhammad Shiraz. A Review on Mobile Application Energy Pro-
filing: Taxonomy, State-of-the-art, and Open Research Issues. Journal
of Network and Computer Applications, 58:42-59, 2015.

[3] Luca Ardito, Giuseppe Procaccianti, Marco Torchiano, and Antonio
Vetro. Understanding Green Software Development: A Conceptual
Framework. IT Professional, 17(1):44-50, 2015. Conference Name:
IT Professional.

[4] Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc,
Steve M. Easterbrook, Birgit Penzenstadler, Norbet Seyff, and Colin C.
Venters. Requirements: The Key to Sustainability. [EEE Software,
33(1):56-65, 2016. Conference Name: IEEE Software.

[5] Stefanie Betz, Christoph Becker, Ruzanna Chitchyan, Leticia Duboc,
Steve M. Easterbrook, Birgit Penzenstadler, Norbert Seyff, and Colin C.
Venters. Sustainability Debt: A Metaphor to Support Sustainability
Design Decisions. In Proceedings of the Fourth International Workshop
on Requirements Engineering for Sustainable Systems, RE4SuSy 2015,
co-located with the 23rd IEEE International Requirements Engineering
Conference (RE 2015), Ottawa, Canada, August 24, 2015, volume 1416
of CEUR Workshop Proceedings, pages 55-53. CEUR-WS.org, 2015.

[6] Suparna Bhattacharya, Karthick Rajamani, K. Gopinath, and Manish
Gupta. The Interplay of Software Bloat, Hardware Energy Proportion-
ality and System Bottlenecks. In Proceedings of the 4th Workshop
on Power-Aware Computing and Systems, HotPower ’11, pages 1-5.
Association for Computing Machinery, 2011.

[7]1 Eli Blevis. Sustainable Interaction Design: Invention & Disposal,
Renewal & Reuse. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 07, pages 503—-512. Association for
Computing Machinery, 2007.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. Guide
to the Software Engineering Body of Knowledge (SWEBOK(R)): Version
3.0. IEEE Computer Society Press, 3rd edition, 2014.

Coral Calero and Mario Piattini. Introduction to Green in Software
Engineering. In Green in Software Engineering, pages 3-27. Springer
International Publishing, 2015.

Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Is Software
“Green”? Application Development Environments and Energy Efficiency
in Open Source Applications. Information and Software Technology,
54(1):60-71, 2012.

Nitin Singh Chauhan and Ashutosh Saxena. A Green Software Devel-
opment Life Cycle for Cloud Computing. IT Professional, 15(1):28-34,
2013. Conference Name: IT Professional.

Nelly Condori-Fernandez and Patricia Lago. Characterizing the Contri-
bution of Quality Requirements to Software Sustainability. Journal of
Systems and Software, 137:289-305, 2018.

Martin Geissdoerfer, Marina P. P. Pieroni, Daniela C. A. Pigosso, and
Khaled Soufani. Circular Business Models: A Review. Journal of
Cleaner Production, 277:123741, 2020.

Stefanos Georgiou, Maria Kechagia, and Diomidis Spinellis. Analyzing
Programming Languages’ Energy Consumption: An Empirical Study. In
Proceedings of the 21st Pan-Hellenic Conference on Informatics, PCI
’17, pages 1-6. Association for Computing Machinery, 2017.

Havva Giilay Giirbiiz and Bedir Tekinerdogan. Software Metrics
for Green Parallel Computing of Big Data Systems. In 2016 [EEE
International Congress on Big Data (BigData Congress), pages 345—
348, 2016.

Albert Hankel, Lisa Oud, Maiko Saan, and Patricia Lago. A Maturity
Model for Green ICT: The Case of the SURF Green ICT Maturity
Model. In Proceedings of the 28th Conference on Environmental
Informatics - Informatics for Environmental Protection, Sustainable
Development and Risk Management. BIS-Verlag, Oldenburg, 2014.
Md Mohaimenul Hossain, Jean-Philippe Georges, Eric Rondeau, and
Thierry Divoux. Energy, Carbon and Renewable Energy: Candidate Met-
rics for Green-Aware Routing? Sensors, 19(13):2901, 2019. Number:
13 Publisher: Multidisciplinary Digital Publishing Institute.

ISO Central Secretary. Systems and software engineering — Software life
cycle processes. Standard ISO/IEC/IEEE 12207:2017(E), International
Organization for Standardization, Geneva, CH, 2017.

Erik Jagroep, Jan Martijn van der Werf, Sjaak Brinkkemper, Leen Blom,
and Rob van Vliet. Extending Software Architecture Views with an
Energy Consumption Perspective. Computing, 99(6):553-573, 2017.
Erik A. Jagroep, Jan Martijn E. M. van der Werf, Ruvar Spauwen, Leen
Blom, Rob van Vliet, and Sjaak Brinkkemper. An Energy Consumption
Perspective on Software Architecture. In Software Architecture, Lecture
Notes in Computer Science, pages 239-247. Springer International
Publishing, 2015.

Leila Karita, Brunna C. Mourdo, and Ivan Machado. Software Industry
Awareness on Green and Sustainable Software Engineering: A State-of-
the-practice Survey. In Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, SBES °19, pages 501-510. Association for
Computing Machinery, 2019.

Eva Kern, Markus Dick, Stefan Naumann, Achim Guldner, and Timo
Johann. Green Software and Green Software Engineering—Definitions,
Measurements, and Quality Aspects. In Proceedings of the First Inter-
national Conference on Information and Communication Technologies
for Sustainability, pages 87-94. Universitit Ziirich, 2013.

Eva Kern, Markus Dick, Stefan Naumann, and Tim Hiller. Impacts
of Software and its Engineering on the Carbon Footprint of ICT.
Environmental Impact Assessment Review, 52:53-61, 2015.

Eva Kern, Lorenz M. Hilty, Achim Guldner, Yuliyan V. Maksimov,
Andreas Filler, Jens Groger, and Stefan Naumann. Sustainable soft-
ware products—towards assessment criteria for resource and energy
efficiency. Future Generation Computer Systems, 86:199-210, 2018.
Barbara Krumay and Roman Brandtweiner. Measuring the Environ-
mental Impact of ICT Hardware. International Journal of Sustainable
Development and Planning, 11(6):1064—1076, 2016.

Patricia Lago, Qing Gu, and Paolo Bozzelli. A Systematic Literature
Review of Green Software Metrics. VU Technical Report, 2014.
Patricia Lago, Sedef Akinli Kogak, Ivica Crnkovic, and Birgit Pen-
zenstadler. Framing Sustainability as a Property of Software Quality.
Commun. ACM, 58(10):70-78, 2015.

Giuseppe Lami, Luigi Buglione, and Fabrizio Fabbrini. Derivation of
Green Metrics for Software. In Software Process Improvement and Ca-

[29]

(30]

[31]

[32]

[33]

[34]

[36]

[37]

(38]

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

pability Determination, Communications in Computer and Information
Science, pages 13-24. Springer, 2013.

Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kusz-
maul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. There’s
plenty of room at the Top: What will drive computer performance after
Moore’s law? Science, 368(6495):ecaam9744, 2020. Publisher: American
Association for the Advancement of Science.

Sara S. Mahmoud and Imtiaz Ahmad. A Green Model for Sustainable
Software Engineering. International Journal of Software Engineering
and Its Applications, 7(4):55-74, 2013.

Maximilian Meissner, Supriya Kamthania, Nishant Rawtani, James
Bucek, Klaus-Dieter Lange, and Samuel Kounev. Experience and
Guidelines for Sorting Algorithm Choices and Their Energy Efficiency.
In Companion of the 2022 ACM/SPEC International Conference on
Performance Engineering, ICPE °22, pages 137-144. Association for
Computing Machinery, 2022.

Nathan Myhrvold. The Future of Software, the Software Industry, and
Windows ’47. In ACM97: The Next 50 Years of Computing, ACM ’97,
page 1. Association for Computing Machinery, 1997.

Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The
GREENSOFT Model: A Reference Model for Green and Sustainable
Software and its Engineering. Sustainable Computing: Informatics and
Systems, 1(4):294-304, 2011.

Bendra Ojameruaye and Rami Bahsoon. Sustainability ArchDebts: An
Economics-Driven Approach for Evaluating Sustainable Requirements.
In Software Sustainability, pages 369-398. Springer International Pub-
lishing, 2021.

Abdullateef Shola Oyedeji. Early Investigation Towards Defining and
Measuring Sustainability as a Quality Attribute in Software Systems.
Master’s thesis, LUT University, 2016. Accepted: 2016-08-04.

Laura Partanen, Antti Sipild, and Jari Porras. Energy consumption and
CO2 emissions of a Software — Who Is Responsible? In https://ceur-
ws.org/Vol-3621/poster-paper2.pdf, volume 2023. Springer, 2023.
Birgit Penzenstadler, Henning Femmer, and Debra Richardson. Who Is
the Advocate? Stakeholders for Sustainability. In Proceedings of the 2nd
International Workshop on Green and Sustainable Software, GREENS
’13, pages 70-77. IEEE Press, 2013.

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jicome Cunha,
Jodo Paulo Fernandes, and Jodo Saraiva. Ranking Programming Lan-
guages by Energy Efficiency. Science of Computer Programming,
205:102609, 2021.

Gustavo Pinto, Francisco Soares-Neto, and Fernando Castor. Refactoring
for Energy Efficiency: A Reflection on the State of the Art. In
2015 IEEE/ACM 4th International Workshop on Green and Sustainable
Software, pages 29-35, 2015.

Giuseppe Procaccianti, Patricia Lago, Antonio Vetrd, Daniel Méndez
Ferndndez, and Roel Wieringa. The Green Lab: Experimentation in
Software Energy Efficiency. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 941-942, 2015.
ISSN: 1558-1225.

Mohammad Rashid, Luca Ardito, and Marco Torchiano. Energy Con-
sumption Analysis of Algorithms Implementations. In 2015 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1-4, 2015. ISSN: 1949-3789.

Nasir Rashid, Siffat Ullah Khan, Habib Ullah Khan, and Muhammad
Ilyas. Green-Agile Maturity Model: An Evaluation Framework for
Global Software Development Vendors. IEEE Access, 9:71868—71886,
2021. Conference Name: IEEE Access.

Sanath. S. Shenoy and Raghavendra Eeratta. Green Software Develop-
ment Model: An Approach Towards Sustainable Software Development.
In 2011 Annual IEEE India Conference, pages 1-6, 2011. ISSN: 2325-
9418.

Balaji Subramaniam. Metrics, Models and Methodologies for Energy-
proportional Computing. In Proceedings of the 14th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing, CCGRID
’14, pages 575-578. IEEE Press, 2014.

Jakub Swacha. Models of Sustainable Software: A Scoping Review.
Sustainability, 14(1):551, 2022. Number: 1 Publisher: Multidisciplinary
Digital Publishing Institute.

Juha Taina. How Green Is Your Software? In Software Business, Lecture
Notes in Business Information Processing, pages 151-162. Springer,
2010.

Juha Taina. Good, Bad, and Beautiful Software - In Search of Green
Software Quality Factors. CEPIS UPGRADE, 2011(4):22-27, 2011.

(48]

[49]

[50]

Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler,
Tom Crick, Steve Crouch, Elisa Yumi Nakagawa, Christoph Becker, and
Carlos Carrillo. Software Sustainability: Research and Practice From
a Software Architecture Viewpoint. Journal of Systems and Software,
138:174-188, 2018.

Zane Wei and Da Qi Ren. Review of Energy Aware Big Data Computing
Measurements, Benchmark Methods and Performance Analysis. In
2014 23rd International Conference on Computer Communication and
Networks (ICCCN), pages 1-4, 2014. ISSN: 1095-2055.

Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and
Gary Sevitsky. Software Bloat Analysis: Finding, Removing, and Pre-
venting Performance Problems in Modern Large-scale Object-oriented
Applications. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FOSER 10, pages 421-426. Association
for Computing Machinery, 2010.

