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Abstract—Machine learning models, at their core, are software
systems that demand computational resources, making them a
pertinent concern for software engineers. The energy consumed
by these models during training and inference phases can have
far-reaching consequences, from the environmental impact to
operational costs and even the user experience. Consequently,
understanding how different software components, such as fea-
ture selection methods, impact energy efficiency becomes essential
for software engineers tasked with building sustainable and cost-
effective AI-driven solutions.

By addressing four key research questions (RQ1-RQ4), we
aim to provide software engineers with actionable insights into
making informed decisions about feature selection methods to
strike the right balance between energy efficiency and model
accuracy.
CCS CONCEPTS - Software and its engineering → Soft-
ware libraries and repositories - Computing methodologies →
Machine learning
KEYWORDS Energy consumption, run-time performance,
feature selection methods, environmental impact, Green AI

I. INTRODUCTION

In an era dominated by machine learning applications, the
energy efficiency of these models has emerged as a critical
concern with significant implications for the field of software
engineering. As machine learning tasks continue to grow in
scale and complexity, so does the associated energy consump-
tion, raising important questions about the environmental and
cost impacts on software systems and applications.

This research delves into the intricate relationship between
feature selection methods and energy efficiency in the realm
of machine learning, offering valuable insights that have
direct relevance to software engineering practices. Software
engineering, as a discipline, is intimately intertwined with
the development, deployment, and maintenance of software
systems that span a multitude of domains and industries. The
rise of machine learning applications has expanded the scope
of software engineering, with AI-powered systems becoming
integral components of modern software solutions. However,
this fusion of AI and software engineering brings forth a criti-
cal challenge: optimizing the energy efficiency of these systems
without compromising on their functionality and performance.
This study focuses on investigating how different feature
selection and scoring methods impact the energy efficiency
of machine learning models, a concern that directly relates to
software engineering practices. Feature selection, an integral

step in model development, influences not only predictive
accuracy but also the computational resources required. There-
fore, the findings of this research hold significant implications
for software engineers who strive to create efficient and envi-
ronmentally responsible software systems. Our comprehensive
experimental setup considers various modification methods,
scoring methods, feature quantities, and machine learning
models—components that software engineers encounter in the
development pipeline.

Four research questions are addressed: RQ1 examines the
relative energy efficiency of two distinct univariate feature
selection methods , RQ2 explores the comparative energy
efficiency of various feature selection methods, RQ3 analyzes
the impact of different feature selection methods on training
energy consumption, and RQ4 assesses the effect of these
methods on the accuracy of machine learning models. To
answer these questions, a comprehensive experimental setup
involving feature selection methods, the number of features,
and machine learning models is employed. The analysis re-
veals that while feature modification methods for univariate
features exhibit no significant differences, the choice of feature
selection method and scoring methods for univariate features
selection significantly impacts energy consumption and model
accuracy. RFE and sequestial feature selection methods are
energy-intensive but may yield better model performance in
limited specific cases.

These findings not only advance the understanding of
energy-efficient machine learning techniques but also provide
a direct bridge to software engineering practices, guiding
developers, architects, and decision-makers in the pursuit of
sustainable and cost-effective software solutions. However, it
is essential to recognize that hardware constraints, dataset
characteristics, and real-world conditions may affect the ap-
plicability of these findings in software engineering contexts.
Nevertheless, this research lays a foundation for the ongoing
integration of energy-efficient AI into software engineering,
aligning with the broader goals of sustainability and respon-
sible technology development.

II. EXPERIMENTAL SETUP

A. Goals

The primary goal of this research is to investigate and
enhance the energy efficiency of feature selection methods in
machine learning. By addressing key research questions and



conducting experiments, our aim is to provide practitioners
with valuable insights and guidelines for achieving a balance
between energy efficiency and model accuracy in machine
learning applications. This research also serves as a foundation
for future studies aimed at advancing the field of sustainable
and cost-effective AI.

B. Research Questions

• RQ1. What is the relative energy efficiency of two
distinct univariate feature selection methods in ma-
chine learning? Different feature selection methods are
available for classification tasks. We selected the methods
implemented in the popular ML library scikit-learn 1. To
ensure a fair comparison, we focused on methods within
a single standard library, as comparing methods from
different libraries can introduce variations in energy con-
sumption due to implementation differences [31]. For uni-
variate feature selection, scikit-learn offers two primary
methods: SelectKBest: This method selects a specified
number of top features based on a scoring function. Se-
lectPercentile: This method selects a specified percentage
of top features based on a scoring function. Both methods
accept scoring methods as parameters. The key difference
lies in how they define the number of features to retain:
SelectKBest uses a fixed number, while SelectPercentile
uses a percentage. We’ll explore three feature scoring
methods: Chi-squared f classif mutual info classif Each
scoring method will be used with both SelectKBest and
SelectPercentile. RQ1 will investigate the energy effi-
ciency of these combinations. Based on the results, we’ll
select the most energy-efficient method and implement
different scoring methods within it. Furthermore, we’ll
consider the three scoring methods themselves as feature
selection methods for comparison with other methods in
our study and to maintain consistency with terminology
used in related research [32].

• RQ2. What is the comparative energy efficiency
of various feature selection methods in machine
learning? This research question aims to compare the
energy efficiency of various feature selection methods
in machine learning. Specifically, three feature scoring
methods within univariate feature selection are considered
as part of these methods. The objective is to understand
the impact of these methods on energy consumption,
providing insights for optimizing energy resources in
machine learning workflows.

• RQ3. How do different feature selection methods
impact the training energy consumption of machine
learning models? This research question explores the
influence of various feature selection methods on the
training energy consumption of machine learning models.
By examining these impacts, it sheds light on how
different methods affect the energy efficiency of model
training processes.

1https://scikit-learn.org/stable/modules/feature selection.html

• RQ4. How do different feature selection methods
impact the accuracy of machine learning models? This
research question delves into the influence of different
feature selection methods on the accuracy of machine
learning models. It seeks to uncover how these methods
affect model performance, providing valuable insights for
optimizing the trade-off between accuracy and energy
efficiency in machine learning.

C. Variables

There exist four independent variables (IVs) and three
dependent variables (DVs) within our research framework.
These independent variables are delineated as follows:

1) Modification Methods (IV1): Within the standard scikit-
learn 1.1.2 Python library, two distinct modification
methods are implemented for univariate feature selec-
tion. The first method, known as ’SelectPercentile’ se-
lects a specified percentage of features from the total
set, while the second method, ’SelectKBest’ accepts a
predefined number of features to select from the dataset.

2) Feature selection Methods (IV2): For classification
tasks, various feature selection methods are implemented
in scikit-learn. We specifically chose methods from the
scikit-learn library to ensure a consistent comparison.
Selecting methods from different libraries could intro-
duce difficulties in comparison due to the potential
impact of the library on energy consumption [31]. The
chosen methods are:

a) Removing features with low variance: It removes
all features whose variance doesn’t meet some
threshold, We calculate the threshold based on the
feature percentage.

b) Select from model: This method uses an ML
model to assign importance to each feature and
subsequently removes features with low impor-
tance. We employed the Random Forest Classifier
for this purpose due to its direct access to feature
importance information after training.

c) Mutual information: Mutual information (MI)
between two random variables is a non-negative
value that measures the dependency between the
variables 2.

d) Chi-square: It computes chi-squared statistics be-
tween each non-negative feature and class2.

e) if classif: This method calculates the ANOVA F-
value for the provided sample2.

3) Number of Features (IV3): To assess the energy required
for dataset modification and the subsequent energy
consumption during model training, we have selected
various percentages of features, ranging from 10% to
100%.

4) Machine Learning Models (IV4): Six machine learning
models were chosen for our experiments, encompassing
SVM, KNN, AdaBoost, Decision Tree, Random Forest,

2https://scikit-learn.org/stable/modules/feature selection.html
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and Bagging Classifier. our focus is on the energy
consumption of the feature selection methods and their
impact on the ML models accuracy and energy con-
sumption of ML models during training, that is why we
don’t take into consideration the hyperparameters tuning
and used the standard hyperparameters as defined in the
library.

The dependent variables are defined as follows:
1) Amount of Energy Consumed for Modifying the Dataset

(DV1): During the modification of the dataset using
different modification and scoring methods, we meticu-
lously record the quantity of energy expended for these
modifications.

2) Amount of Energy Consumed for Training the Model
(DV2): After dataset modification, we proceed to train
the model, meticulously recording the energy consump-
tion throughout this process for the modified dataset.

3) Accuracy (DV3): In order to gauge model performance,
we record the accuracy of the trained models upon
the modified dataset. This assessment of accuracy is
quantified through the F1 score metric.

D. Experimental setting

To investigate these four research questions, we selected a
publicly available dataset that has been previously employed
in similar studies [32]. This dataset was sourced from the
University of California, Irvine’s machine learning repository
3 preprocessing utilizing the term frequency–inverse document
frequency (tf-idf) technique, and we implemented standard
message tokenization using the functionality provided by
scikit-learn version 1.1.2. Post-tokenization, the dataset ex-
panded to encompass a total of 8,168 features. The exper-
iments were conducted on a core i7 system with 16GB of
RAM, and energy measurement was carried out using code-
carbon4 version 2.1.4, a Python open-source library designed
for quantifying the energy consumption of machine learning
models. The Python version employed throughout this research
is 3.10.11.

E. Experimental procedure

To address the first research question comprehensively, we
designed an extensive experimental setup, encompassing a
total of 1,200 individual experiments. These experiments were
meticulously executed, with each one being repeated 20 times
to ensure the reliability and consistency of our results. This
rigorous repetition process enabled us to amass a substantial
dataset that would provide a robust foundation for our analysis.
Throughout these experiments, we recorded all necessary
parameters for the analysis as listed: feature modification
method, algorithm, experiment id, iteration number, number
of features, preprocessing energy in joules, preprocessing time
in seconds, train energy in joules, train time in seconds,

3https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection. Accessed
21th July 2023

4https://codecarbon.io/

predict energy in joules, predict time (seconds), data type,
accuracy, precision, recall, F1 score, experiment date and
time. For the subsequent research questions, pertaining to
questions 2 and 3, we embarked on an even more ambitious
endeavor. We conducted a multitude of experiments, exploring
various permutations and combinations of scoring methods
and machine learning algorithms. With six distinct feature
selection methods, 10 percentages, and six machine learning
algorithms at our disposal, the sheer number of potential
combinations to explore was vast. As a result, our research
involved a staggering 7,200 experimental runs. This extensive
experimentation allowed us to comprehensively examine the
impact of different scoring methods and modification tech-
niques on both energy consumption and model performance.
Moreover, we maintained our commitment to accuracy and
reliability by repeating each of these experiments 20 times.
This meticulous and exhaustive approach to experimentation
not only ensured the robustness of our findings but also
provided a wealth of data for in-depth analysis. By investing
substantial effort into the experimental phase, we aimed to
offer valuable insights into the intricate relationships between
feature selection methods, energy efficiency, and machine
learning model performance.

F. Analysis

In this section we report the adopted procedure for the data
analysis. we employed rigorous statistical methods. Specif-
ically, we applied the Mann-Whitney U test to our experi-
mental data. This choice of statistical test was guided by a
preliminary examination of the data’s normality using Shapiro-
Wilk normality test, as we check the effects of different
feture selection methods on different ML algorithms’s training
energy consumption so we run the test on all groups of data.
The results of the test, with a test statistic of laess than 0.89
and p value 1.52e-12 for all groups, unequivocally indicated
that the data from these experiments did not conform to a
normal distribution. This led us to the prudent decision of
employing non-parametric testing, such as the Mann-Whitney
U test, which is robust in the presence of non-normal data. To
understand the effect size we calculated the Cohen’s d value.

III. RESULT

A. Answer to RQ1

In order to determine the most energy-efficient method,
our analysis of the data generated from multiple experiments,
as depicted in Figure 1, reveals that there is no significant
difference in the energy consumption between the two feature
selection methods. The observations in Figure 1 are further
substantiated by the Mann–Whitney U test result, p-value
is 0.8, which exceeds the significance level of 0.05, as de-
termined through the Mann-Whitney U test applied to the
experimental data. Consequently, due to the SelectPercentile
method’s capability to select features based on a specified
percentage, and its ease of use, we have opted to proceed
with this feature selection method in a subsequent set of
experiments for Univariate feature selection in RQ2 and RQ3.
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Answer to RQ1: Though energy consumption showed
no significant difference between SelectKBest and Se-
lectPercentile, the ability of SelectPercentile to select
features by percentage led to its choice for further
experiments.

B. Answer to RQ2

In addressing this question, our objective is to identify the
most energy-efficient feature selection method. As visually
depicted in Figure 2, it becomes evident that the Recursive
Feature Elimination (RFE) method exhibits the highest energy
consumption, while ’f classif’ emerges as the most energy-
efficient among the six feature selection methods which save
99.99% energy compared to RFE. After RFE, the second
method that consumes more energy is the Mutual Informa-
tion scoring method, used with the SelectPercentile feature
selection method, as shown in Table I. The mean difference
between RFE and the Mutual Information method is 83.31%.
Notably, RFE differs from other methods, as depicted in the
figure, where an increase in the percentage of features to select
results in a reduction in energy consumption.

After Mutual Information, the third method that consumes
more energy is SelectFromModel, which consumes 83.17%
less energy than Mutual Information. As it utilizes a model for
assigning importance to the features, its energy consumption
is dependent on the model used for assigning importance. As
discussed in the experiments design section, we selected the
RandomForestClassifier [32] model due to its lower energy
consumption compared to other models with direct access to
the features’ importance property after training [32].

The fourth method that consumes less energy is Variance
Threshold, consuming 78.22% less energy compared to Se-
lectFromModel. The fifth method that consumes less energy
compared to the aforementioned methods is the Chi-square
(chi2) method, consuming 97.67% less energy compared to
Variance Threshold. Lastly, the most energy-efficient method
is ’f classif,’ consuming 31.79% less energy compared to
’chi2’. In summary, based on the Mann-Whitney U test results
and the percentage of mean difference in energy consumption
among different methods, there is a significant difference
between the energy consumption of various feature selection
methods. The minimum difference is between ’f classif’ and
’chi2,’ indicating that using ’f classif’ can save 31.79% energy
compared to ’chi2’, while the most significant difference
is between ’f classif’ and RFE, suggesting that choosing
’f classif’ over RFE can save 99.99% energy. Additionally,
Cohen’s d value between these methods further supports this
large effect size, indicating a substantial difference in their
energy consumption.

Answer to RQ2: RQ2 reveals significant discrepan-
cies in energy consumption among different methods.
”f classif” emerges as the clear winner, consuming an
impressive 99.99% less energy than the least efficient
option, RFE.

C. Answer to RQ3

In RQ3, our objective is to gain insight into the impact
of scoring methods on energy consumption during the model
training phase. It is well-established that reducing the number
of features can lead to energy savings during training, as
evidenced by the findings illustrated in Figure 3. This visual
representation demonstrates that machine learning models with
a reduced feature set tend to exhibit lower energy consumption
across most model types, with the exception of KNN. We
can also see in Figure 3 that different scoring methods have
different effects on the energy consumption of some models
during model training, such as in bagging classifier, and
decision tree. In bagging classifier and decision tree, ’f classif’
performs well compared to other methods, it save 45% energy
compared to variance threshold, and also in the decision tree,
it consumed 31% less energy compared to varinace threshold.
Variance threshold in both nodels consume more energy. While
in SVM, the RFE is an energy-efficient method during the
training phase. In Random Forest, we see that MI is the
energy-efficient method, but in Adabost, the difference is not
much obvious from the graph. These observations align with
the results of the Mann-Whitney U test statistics and p-values
computed for each model. The test results are available in the
replication package5.

Answer to RQ3: In Bagging, Decision Tree, and
Random Forest f classif and MI are energy efficent
methods.

D. Answer to RQ4

Figure 4 visually illustrates no significant discrepancies
in model accuracy across datasets modified using different
feature selection methods. However, the Mann-Whitney U test
revealed statistically significant differences in the accuracy
of KNN trained on datasets modified by different feature
selection techniques. Crucially, feature reduction did not yield
a reduction in energy consumption during KNN training.
Moreover, training KNN on smaller datasets negatively im-
pacted its accuracy without offering energy savings. Therefore,
we conclude that feature reduction is not recommended for the
KNN model in the context of energy conservation and model
accuracy.

Answer to RQ4: No significant difference except in
KNN.

5https://doi.org/10.5281/zenodo.10612801
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Fig. 1. Energy consumption of SelectKBest and SelectPercentile.

TABLE I
MODIFICATION METHODS ENERGY CONSUMPTION ALPHA=0.05

M1 M2 p value M1 mean M2 mean Difference (%) Cohen Value

RFE f classif 2.31E-119 1957.1 0.3 99.99 4.0

RFE chi2 3.46E-119 1957.1 0.4 99.98 4.0

RFE VarianceThreshold 4.05E-78 1957.1 12.0 99.39 2.7

RFE SelectFromModel 5.28E-79 1957.1 55.0 97.19 2.6

RFE mutual info classif 6.73E-120 1957.1 326.6 83.31 3.2

mutual info classif f classif 2.30E-257 326.6 0.3 99.91 3.5

mutual info classif chi2 7.15E-257 326.6 0.4 99.88 3.5

mutual info classif VarianceThreshold 1.75E-119 326.6 12.0 96.33 2.7

mutual info classif SelectFromModel 6.39E-121 326.6 55.0 83.17 2.3

SelectFromModel f classif 1.80E-119 55.0 0.3 99.49 6.1

SelectFromModel chi2 2.34E-119 55.0 0.4 99.26 6.1

SelectFromModel VarianceThreshold 2.95E-78 55.0 12.0 78.22 3.2

VarianceThreshold f classif 5.92E-123 12.0 0.3 97.67 5.2

VarianceThreshold chi2 5.57E-121 12.0 0.4 96.59 5.1

chi2 f classif 4.31E-135 0.4 0.3 31.79 1.1

Test results indicate that the most significant difference in
accuracy obtained with different feature selection methods
across various machine learning models is 0.014, observed
in the decision tree between RFE and Variance Threshold.
We achieve better accuracy with RFE compared to Variance
Threshold in the decision tree model. Consequently, the selec-
tion of methods for the decision tree will be solely based on
accuracy requirements and energy trade-offs. KNN is the only
model significantly affected in its accuracy when reducing the
number of features with any of the methods. Full details about
the test results are available in the replication package.

IV. DISCUSSION

The results of our experimental study provide evidence of
a substantial difference in the energy consumption among
various feature selection methods. We discuss these results
and offer conclusions and guidelines for practitioners and
developers regarding the selection of these methods during
the development of ML-enabled software.

A. Energy Efficiency of Different Feature Selection Methods:

Previous work closely related to ours [32] concluded that
reducing the number of features during the training of machine
learning models has a significant impact. Modifying features
itself is a process that introduces a new source of energy
consumption. Therefore, we must ensure that the energy saved
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Fig. 2. Energy consumption of feature selection methods.

during the training phase of machine learning models exceeds
the energy consumed for feature selection. In some cases, if we
repeatedly retrain the models, the effects of feature reduction
become more pronounced. Retraining a model may occur due
to the availability of new data or concept drift, necessitating
a rerun of the feature selection process. It is not guaranteed
that previously selected features will retain the same level of
importance. Thus, by reducing the energy required for the fea-
ture selection process, we effectively increase overall energy
savings. Based on our results, Recursive Feature Elimination
(RFE) is one of the methods that consumes more energy. When
comparing its energy consumption during feature selection
with the energy consumed by the decision tree during training,
RFE consumes 4000 times more energy than the training
phase. If this difference is substantial, especially in scenarios
where new data is received frequently, and the model is
retrained upon data arrival, we may inadvertently introduce
an additional source of energy consumption that surpasses
the energy saved. Careful consideration and optimization of
the feature selection process are crucial to ensuring a net
gain in energy efficiency. Several factors influence the energy
consumption of ’RFE’. Firstly, the estimator it uses for feature
removal requires retraining each time a feature is removed.
Despite selecting an energy-efficient machine learning model,

the maximum iteration it undergoes contributes to increased
energy consumption. Another factor affecting the energy
consumption is the number of features removed with each
iteration. If this number is small, numerous iterations occur,
leading to higher energy consumption. Conversely, removing
a large number of features with each iteration may impact
the model’s accuracy, as important features may be discarded.
Furthermore, the total number of features in a dataset plays
a crucial role, as ’RFE’ utilizes a model, and the model’s
energy consumption is potentially dependent on the number
of features [32]. Thus, we can conclude that using ’RFE’ with
a dataset containing a large number of features, where models
are frequently trained, may not be a favorable decision in terms
of energy consumption. f classif is the most energy efficient
method among the compared methods.

B. Effects of These Methods on Model Training Energy Con-
sumption

To further investigate whether the choice of feature selec-
tion methods influences the energy consumption of machine
learning (ML) models during training. When different models
are trained on datasets modified with various methods, we
discovered significant differences among some methods for
specific models. In the bagging classifier, the mutual infor-
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Fig. 3. Models training Energy consumption.

Fig. 4. Models accuracy.

mation method saves 49.9% more energy compared to the
variance threshold. In SVM, RFE saves 43% more energy than

chi2. For decision trees, mutual information saves 43% more
energy than the variance threshold. In Adaboost, select from
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model saves 29.8% more energy compared to chi2. Detailed
information about these differences is available in the replica-
tion package. This information can assist developers in making
decisions based on the frequency of retraining, availability
of new data, number of reruns of feature selection methods,
and the energy consumption of these methods. Subsequently,
developers can opt for an energy-efficient feature selection
method.

C. Effects of These Methods on the Models’ Accuracy

KNN is one of the models for which reducing features
does not affect its energy during training, but it does impact
its accuracy. In contrast, there is no significant difference
between the feature selection methods in other models. The
maximum difference observed in the results is 0.01, which
is between chi2 and variance threshold in the decision tree
model. Additionally, there is a 0.009 difference between
f classif and variance threshold, where, in both cases, variance
threshold achieves lower accuracy compared to the other
two methods. This outcome is favorable because variance
threshold consumes more energy during the feature reduction
process. Full details are available in the replication package,
the remaining differences in the accuracy are less than 0.009.

V. THREATS TO VALIDITY

A potential challenge to internal validity, linked to his-
torical factors, may have arisen in our experiment due to
the potential impact of executing successive iterations on our
measurements, e.g., due to rising hardware temperatures. To
address this concern, we implemented measures by introducing
a 5-second sleep operation before each experimental iteration.
This ensured more uniform hardware conditions for all runs.
Likewise, a warm-up operation was conducted to guarantee
that the initial iteration occurred under very similar condi-
tions to subsequent ones, mitigating potential influences on
our measurements. As a threat to reliability of measure, the
presence of background tasks during the experiment execution
could have served as confounding factors, thereby affecting
our energy measurements. To address this concern, we took
preemptive measures by terminating processes that were not
essential for the execution of the experiment and restricted
access to the infrastructure. Furthermore, we conducted each
experiment 20 times to minimize the impact of any unforeseen
background processes. To ensure the reproducibility of our
study, we have made the replication package accessible online
6. Running the experiments on different hardware yielded
consistent results, reinforcing the reliability of our findings
and offering assurance in the robustness of the outcomes.

VI. RELATED WORK

In prior research, energy consumption in the context of
software systems has garnered significant attention, with a
focus on various domains [20], [21], levels, and ecosystems
[11]. Notably, some have explored the energy consumption of
different programming languages and different data structures

6https://doi.org/10.5281/zenodo.10612801

[17]–[19] and developed some tools for the making the appli-
cations green (er) [22], [23] ,some studies have explored the
energy efficiency of AI-based systems, albeit within a limited
scope. For instance, prior work has delved into AI’s substan-
tial energy requirements and its environmental and financial
implications [2], [3], [8], [10], [13], [25]. Researchers have
examined practices to enhance traditional machine learning
(ML) methods, aiming to reduce energy consumption [6],
[7], [9], [12]. These investigations have yielded insights into
factors affecting energy use in ML for specific applications,
such as Android devices. Additionally, studies have proposed
guidelines and models for estimating energy consumption
in ML applications [4], [5], [26]. Another line of research
has evaluated the energy efficiency of AI models, aiming to
make them more sustainable. Techniques such as reducing
unnecessary computations in convolutional neural networks
(CNNs) have demonstrated significant energy savings [13],
[14]. Researchers have also developed models and tools to
estimate energy consumption in ML applications [4], [5],
[29]. They have highlighted the challenges of relying solely
on ML models for such estimations [1]. In parallel, some
studies have begun addressing energy consumption in AI and
machine learning with a broader perspective. These studies
have drawn attention to the substantial environmental impact
of training large AI models and introduced the concept of
Green AI, which considers energy consumption as a critical
performance metric alongside accuracy [15]. They emphasize
the importance of researching strategies to reduce the energy
footprint of AI systems. Furthermore, research on AI sustain-
ability has gained momentum, with a focus on energy-efficient
AI development [16]. These studies offer recommendations for
mitigating the growth of energy-intensive AI models [16], in-
cluding the curation of datasets and considerations of potential
risks in AI development. They also underscore the need for
increased research on Green AI and its potential impact on the
sustainability of AI projects [15]. Another study investigated
the energy efficiency of different DL models implemented in
various AI frameworks [31], while study [32] explores the
utilization of data-centric approaches to reduce the amount of
energy needed for training ML models. In [32], a data-centric
approach is studied with a specific focus on reducing the size
of the dataset and its impact on the energy consumption of
ML models during training, while considering model accu-
racy. Their results indicate potential energy savings of up to
92.16% by reducing the dataset size. Notably, they reduced
the dataset in terms of features, employing the chi-square
method for features reduction. While alternative methods exist
for feature reduction, it is essential to make informed decisions
considering the energy cost associated with the size reduction
process. To the best of our knowledge, no existing literature
investigates the energy efficiency of available methods for
dataset size reduction. Addressing this gap, our study bridges
these research domains by empirically comparing the energy
consumption of various feature selection methods in machine
learning. We delve into the energy efficiency of different
feature selection methods, their impact on ML model accuracy,
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and their implications for energy consumption during both
training and inference phases.

This work extends the current research landscape by shed-
ding light on data-centric approaches aimed at achieving Green
AI and reducing the energy demands of machine learning
applications [30].

VII. FUTURE WORK

This research has provided valuable insights into the energy
efficiency of feature selection methods in machine learning.
However, there are several avenues for future work that can
further advance our understanding and contribute to the devel-
opment of more energy-efficient machine learning practices:

1) Dynamic Feature Selection: Investigating the feasibility
of dynamically adapting feature selection methods dur-
ing the machine learning process could be beneficial.
By dynamically selecting features based on model per-
formance and energy consumption, practitioners could
achieve a better balance between accuracy and effi-
ciency.

2) Benchmarking on Diverse Datasets: Expanding the study
to include diverse datasets from various domains can
provide a more comprehensive understanding of the
relationship between feature selection methods, energy
efficiency, and model performance. Different datasets
may exhibit distinct behaviors regarding energy con-
sumption.

3) Real-world Applications: Applying the findings from
this research to real-world applications and case studies
in different industries, such as healthcare, finance, or
environmental monitoring, can validate the practical im-
plications of energy-efficient feature selection methods.

VIII. CONCLUSION

Our experimental study has revealed substantial differences
in the energy consumption of various feature selection meth-
ods, providing crucial insights for practitioners and developers
involved in machine learning (ML)-enabled software devel-
opment. The discussion below summarizes our key observa-
tions and provides actionable insights. Our investigation into
the energy efficiency of different feature selection methods
highlighted significant considerations. Previous work, closely
aligned with our study [32], emphasized the substantial im-
pact of reducing the number of features during ML model
training. Recursive Feature Elimination (RFE), while widely
used, emerged as one of the methods with higher energy
consumption. On the contrary, f classif demonstrated superior
energy efficiency among the compared methods. Examining
the impact of feature selection methods on ML model training
energy consumption revealed distinctive patterns. Significant
differences were observed across methods for specific models.
Notably, mutual information in the bagging classifier, RFE
in SVM, mutual information in decision trees, and select
from model in Adaboost exhibited energy-saving advantages
over alternative methods. These nuances provide developers
with valuable insights for decision-making based on factors

such as retraining frequency, data availability, and the energy
consumption of feature selection methods. The accuracy of
ML models was scrutinized concerning the choice of feature
selection methods. While KNN demonstrated resilience to
feature reduction in terms of energy, its accuracy was affected.
In contrast, other models showed no significant differences
among feature selection methods, except for marginal dis-
crepancies. The replication package contains detailed infor-
mation, aiding developers in making informed decisions. In
conclusion, our study contributes to the understanding of
energy-efficient practices in ML development. Developers are
encouraged to consider the specific characteristics of their
datasets and models when selecting feature selection methods,
keeping a delicate balance between energy efficiency and
model accuracy.
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