APLAS 2024
Tue 22 - Fri 25 October 2024 Kyoto

Fault-tolerant quantum computation using lattice surgery can be abstracted as operations on graphs, wherein each logical qubit corresponds to a vertex of the graph, and multi-qubit measurements are accomplished by connecting the vertices with paths between them. Operations attempting to connect vertices without a valid path will result in abnormal termination. As the permissible paths may evolve during execution, it is necessary to statically verify that the execution of a quantum program can be completed.

This paper introduces a type-based approach to statically verify that well-typed programs can be executed without encountering halts induced by surgery operations. Alongside, we present $\mathcal{Q}_{LS}$, a first-order quantum programming language to formalize the execution model of surgery operations. Furthermore, we provide a type checking algorithm by reducing the type checking problem to the offline dynamic connectivity problem.