Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AIDistinguished paper Award Candidate
Modern AI practices all strive towards the same goal: better results. In the context of deep learning, the term “results” often refers to the achieved accuracy on a competitive problem set. In this paper, we adopt an idea from the emerging field of Green AI to consider energy consumption as a metric of equal importance to accuracy and to reduce any irrelevant tasks or energy usage. We examine the training stage of the deep learning pipeline from a sustainability perspective, through the study of hyperparameter tuning strategies and the model complexity, two factors vastly impacting the overall pipeline’s energy consumption. First, we investigate the effectiveness of grid search, random search and Bayesian optimisation during hyperparameter tuning, and we find that Bayesian optimisation significantly dominates the other strategies. Furthermore, we analyse the architecture of convolutional neural networks with the energy consumption of three prominent layer types: convolutional, linear and ReLU layers. The results show that convolutional layers are the most computationally expensive by a strong margin. Additionally, we observe diminishing returns in accuracy for more energy-hungry models. The overall energy consumption of training can be halved by reducing the network complexity. In conclusion, we highlight innovative and promising energy-efficient practices for training deep learning models. To expand the application of Green AI, we advocate for a shift in the design of deep learning models, by considering the trade-off between energy efficiency and accuracy.
Mon 15 MayDisplayed time zone: Hobart change
17:15 - 18:45 | Data & Model OptimizationPapers / Posters / Industrial Talks at Virtual - Zoom for CAIN Chair(s): Justus Bogner University of Stuttgart Click here to Join us over zoomClick here to watch the session recording on Youtube | ||
17:15 15mShort-paper | Automatically Resolving Data Source Dependency Hell in Large Scale Data Science Projects Papers Pre-print | ||
17:30 15mShort-paper | Dataflow graphs as complete causal graphs Papers Andrei Paleyes Department of Computer Science and Technology, Univesity of Cambridge, Siyuan Guo Max Planck Institute for Intelligent Systems, Bernhard Schölkopf MPI Tuebingen, Neil D. Lawrence Department of Computer Science and Technology, Univesity of Cambridge Pre-print | ||
17:45 20mLong-paper | Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AIDistinguished paper Award Candidate Papers Tim Yarally Delft University of Technology, Luís Cruz Delft University of Technology, Daniel Feitosa University of Groningen, June Sallou Delft University of Technology, Arie van Deursen Delft University of Technology Pre-print | ||
18:05 15mShort-paper | Prevalence of Code Smells in Reinforcement Learning Projects Papers Nicolás Cardozo Universidad de los Andes, Ivana Dusparic Trinity College Dublin, Ireland, Christian Cabrera Department of Computer Science and Technology, Univesity of Cambridge Pre-print Media Attached | ||
18:20 20mLong-paper | Automotive Perception Software Development: An Empirical Investigation into Data, Annotation, and Ecosystem Challenges Papers Hans-Martin Heyn University of Gothenburg & Chalmers University of Technology, Khan Mohammad Habibullah University of Gothenburg, Eric Knauss Chalmers | University of Gothenburg, Jennifer Horkoff Chalmers and the University of Gothenburg, Markus Borg CodeScene, Alessia Knauss Zenseact AB, Polly Jing Li Kognic AB Pre-print |