Computer Vision (CV) is used in a broad range of Cyber-Physical Systems such as surgical and factory floor robots and autonomous vehicles including small Unmanned Aerial Systems (sUAS). It enables machines to perceive the world through detecting and classifying objects of interest, reconstructing 3D scenes, estimating motion, and maneuvering around objects. CV algorithms are developed using diverse machine learning and deep learning frameworks, which are often deployed on limited resource edge devices. As sUAS rely upon an accurate and timely perception of their environment to perform critical tasks, problems related to CV can create hazardous conditions leading to crashes or mission failure. In this paper, we perform a systematic literature review (SLR) of CV-related challenges associated with CV, hardware, and software engineering. We then group the reported challenges into five categories and fourteen sub-challenges and present existing solutions. As current literature focuses primarily on CV and hardware challenges, we close by discussing implications for Software Engineering, drawing examples from a CV-enhanced multi-sUAS system.