Is Your Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World
Anomaly detection techniques are essential in automating the monitoring of IT systems and operations. These techniques imply that machine learning algorithms are trained on operational data corresponding to a specific period of time and that they are continuously evaluated on newly emerging data. Operational data is constantly changing over time, which affects the performance of deployed anomaly detection models. Therefore, continuous model maintenance is required to preserve the performance of anomaly detectors over time. In this work, we analyze two different anomaly detection model maintenance techniques in terms of the model update frequency, namely blind model retraining and informed model retraining. We further investigate the effects of updating the model by retraining it on all the available data (full-history approach) and on only the newest data (sliding window approach). Moreover, we investigate whether a data change monitoring tool is capable of determining when the anomaly detection model needs to be updated through retraining.
Mon 15 AprDisplayed time zone: Lisbon change
16:00 - 18:00 | System QualitiesResearch and Experience Papers / Industry Talks at Pequeno Auditório Chair(s): Andrei Paleyes Department of Computer Science and Technology, Univesity of Cambridge | ||
16:00 10mTalk | Modeling Resilience of Collaborative AI Systems Research and Experience Papers Diaeddin Rimawi Free University of Bozen-Bolzano, Antonio Liotta Free University of Bozen-Bolzano, Marco Todescato Fraunhofer Italia, Barbara Russo | ||
16:10 10mTalk | Seven Failure Points When Engineering a Retrieval Augmented Generation System Research and Experience Papers Scott Barnett Applied Artificial Intelligence Institute, Deakin University, Stefanus Kurniawan Deakin University, Srikanth Thudumu Deakin University, Zach Brannelly Deakin University, Mohamed Abdelrazek Deakin University, Australia | ||
16:20 15mTalk | POLARIS: A framework to guide the development of Trustworthy AI systems Research and Experience Papers Maria Teresa Baldassarre Department of Computer Science, University of Bari , Domenico Gigante SER&Practices and University of Bari, Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Azzurra Ragone University of Bari | ||
16:35 15mTalk | Worst-Case Convergence Time of ML Algorithms via Extreme Value Theory Research and Experience Papers A: Saeid Tizpaz-Niari University of Texas at El Paso, A: Sriram Sankaranarayanan University of Colorado, Boulder | ||
16:50 15mTalk | Is Your Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World Research and Experience Papers Lorena Poenaru-Olaru TU Delft, Natalia Karpova TU Delft, Luís Cruz Delft University of Technology, Jan S. Rellermeyer Leibniz University Hannover, Arie van Deursen Delft University of Technology | ||
17:05 15mTalk | Novel Contract-based Runtime Explainability Framework for End-to-End Ensemble Machine Learning Serving Research and Experience Papers Minh-Tri Nguyen Aalto University, Hong-Linh Truong Aalto University, Tram Truong-Huu Singapore Institute of Technology | ||
17:20 10mIndustry talk | Trustworthy AI: Industry-Guided Tooling of the Methods Industry Talks Zakaria Chihani CEA, LIST, France | ||
17:30 15mLive Q&A | System Qualities: Q&A Session Research and Experience Papers | ||
17:45 15mDay closing | Closing Research and Experience Papers Jan Bosch Chalmers University of Technology |