Software Design Decisions for Greener Machine Learning-based Systems
The widespread integration of Machine Learning (ML) in software systems has brought forth unprecedented advancements, yet the surge in energy consumption raises ecological concerns. This research addresses the environmental impact of ML development, focusing on the energy implications of design decisions in ML-based systems. This thesis aims to offer insights into the energy consumption patterns influenced by decisions such as deployment and training location. Different case studies on ML-based systems will be conducted to validate and demonstrate the implications of these design choices. The expected outcomes encompass actionable insights, validated through rigorous evaluations, and the development of a decision support tool for ML-based system development, with energy efficiency at its core. This work contributes to the broader field of Green AI by addressing a critical gap and guiding the transition towards a more sustainable AI landscape.
Mon 15 AprDisplayed time zone: Lisbon change
11:00 - 12:30 | Doctoral Symposium and Energy-Aware AI EngineeringDoctoral Symposium / Research and Experience Papers at Pequeno Auditório Chair(s): Justus Bogner Vrije Universiteit Amsterdam, Silverio Martínez-Fernández UPC-BarcelonaTech | ||
11:00 6mTalk | Software Design Decisions for Greener Machine Learning-based Systems Doctoral Symposium Santiago del Rey Universitat Politècnica de Catalunya (UPC) | ||
11:06 6mTalk | Energy-Efficient Development of ML-Enabled Systems: A Data-Centric Approach Doctoral Symposium | ||
11:12 6mTalk | Optimizing Data Analytics Workflows through User-driven Experimentation Doctoral Symposium Keerthiga Rajenthiram Vrije Universiteit Amsterdam | ||
11:18 6mTalk | Component-based Approach to Software Engineering of Machine Learning-enabled Systems Doctoral Symposium Vladislav Indykov Chalmers | University of Gothenburg | ||
11:24 6mTalk | Threat Modeling of ML-intensive Systems: Research Proposal Doctoral Symposium Felix Viktor Jedrzejewski Blekinge Institute of Technology | ||
11:30 6mTalk | Continuous Quality Assurance ML Pipelines under the AI Act Doctoral Symposium Matthias Wagner Lund University | ||
11:36 10mTalk | Green Runner: A tool for efficient deep learning component selection Research and Experience Papers Jai Kannan Applied Artificial Intelligence Institute, Deakin University, Scott Barnett Applied Artificial Intelligence Institute, Deakin University, Anj Simmons , Taylan Selvi Applied Artificial Intelligence Institute, Deakin University, Luís Cruz Delft University of Technology | ||
11:46 15mTalk | Engineering Carbon Emission-aware Machine Learning Pipelines Research and Experience Papers | ||
12:01 10mTalk | Identifying architectural design decisions for achieving green ML serving Research and Experience Papers Francisco Durán Universitat Politècnica De Catalunya - Barcelona Tech, Silverio Martínez-Fernández UPC-BarcelonaTech, Matias Martinez Universitat Politècnica de Catalunya (UPC), Patricia Lago Vrije Universiteit Amsterdam Pre-print | ||
12:11 10mTalk | Green AI: a Preliminary Empirical Study on Energy Consumption in DL Models Across Different Runtime Infrastructures Research and Experience Papers Negar Alizadeh Universiteit Utrecht, Fernando Castor University of Twente and Federal University of Pernambuco | ||
12:21 9mLive Q&A | Energy: Q&A Session Research and Experience Papers |