FORGE 2025
Sun 27 - Mon 28 April 2025 Ottawa, Ontario, Canada
co-located with ICSE 2025

This program is tentative and subject to change.

Predicting program behavior without execution is a critical task in software engineering. Existing models often fall short in capturing the dynamic dependencies among program elements. To address this, we present CodeFlow, a novel machine learning-based approach that predicts code coverage and detects runtime errors by learning both static and dynamic dependencies within the code. By using control flow graphs (CFGs), CodeFlow effectively represents all possible execution paths and the statistic relations between different statements, providing a more comprehensive understanding of program behaviors. CodeFlow constructs CFGs to represent possible execution paths and learns vector representations (embeddings) for CFG nodes, capturing static control-flow dependencies. Additionally, it learns dynamic dependencies by leveraging execution traces, which reflect the impacts among statements during execution. This combination enables CodeFlow to accurately predict code coverage and identify runtime errors. Our empirical evaluation demonstrates that CodeFlow significantly improves code coverage prediction accuracy and effectively localizes runtime errors, outperforming state-of-the-art models.

This program is tentative and subject to change.

Mon 28 Apr

Displayed time zone: Eastern Time (US & Canada) change

11:00 - 12:30
Session4: Human-AI Collaboration & Legal Aspects of using FMResearch Papers / Industry Papers at 207
11:00
12m
Long-paper
Extracting Fix Ingredients using Language Models
Research Papers
Julian Prenner Free University of Bozen-Bolzano, Romain Robbes Univ. Bordeaux, CRNS
11:12
12m
Long-paper
CodeFlow: Program Behavior Prediction with Dynamic Dependencies Learning
Research Papers
Cuong Chi Le FPT Software AI Center, Hoang Nhat Phan Nanyang Technological University, Huy Nhat Phan FPT Software AI Center, Tien N. Nguyen University of Texas at Dallas, Nghi D. Q. Bui Salesforce Research
11:24
12m
Long-paper
Addressing Specific and Complex Scenarios in Semantic Parsing
Research Papers
Yu Wang Nanjing University, Ming Fan Xi'an Jiaotong University, Ting Liu Xi'an Jiaotong University
11:36
12m
Long-paper
Skill over Scale: The Case for Medium, Domain-Specific Models for SE
Research Papers
Manisha Mukherjee Carnegie Mellon University, Vincent J. Hellendoorn Carnegie Mellon University
Pre-print
11:48
12m
Long-paper
Resource-Efficient & Effective Code Summarization
Research Papers
Saima Afrin William & Mary, Joseph Call William & Mary, Khai Nguyen William & Mary, Oscar Chaparro William & Mary, Antonio Mastropaolo William and Mary, USA
12:00
6m
Short-paper
How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering
Research Papers
Christoph Treude Singapore Management University, Marco Gerosa Northern Arizona University
Pre-print
12:06
6m
Short-paper
"So what if I used GenAI?” - Legal Implications of Using GenAI in Software Engineering Research
Research Papers
Gouri Ginde (Deshpande) University of Calgary
12:12
6m
Short-paper
Evaluating the Ability of GPT-4o to Generate Verifiable Specifications in VeriFast
Research Papers
Marilyn Rego Purdue University, Wen Fan Purdue University, Xin Hu Univeristy of Michigan - Ann Arbor, Sanya Dod , Zhaorui Ni Purdue University, Danning Xie Purdue University, Jenna DiVincenzo (Wise) Purdue University, Lin Tan Purdue University
12:18
6m
Short-paper
Towards Generating App Feature Descriptions Automatically with LLMs: the Setapp Case Study
Industry Papers