HyRACC: A Hybrid Retrieval-Augmented Framework for More Efficient Code Completion
This program is tentative and subject to change.
Retrieval-Augmented Generation (RAG) approaches have significantly advanced code completion tasks, addressing limitations like the use of updated third-party libraries and new project dependencies. However, existing RAG methods often face challenges in balancing retrieval costs and completion accuracy. In this paper, we introduce HyRACC, a hybrid retrieval-augmented framework designed to enhance code completion efficiency. HyRACC incorporates a novel approach that uses hybrid databases at both block-level and token-level, coupled with a two-step retrieval scheme. This structure not only ensures high retrieval accuracy but also boosts response speed and reduces storage requirements. Our experimental results demonstrate that HyRACC improves code completion accuracy while optimizing latency and storage usage. Remarkably, HyRACC operates independently of model parameters, which facilitates its integration with various models and domains. This flexibility and efficiency make HyRACC particularly suitable for integration into plugins or local deployment, meeting diverse user needs for personalized code completion.
This program is tentative and subject to change.
Sun 27 AprDisplayed time zone: Eastern Time (US & Canada) change
14:00 - 15:30 | |||
14:00 12mLong-paper | RepoHyper: Search-Expand-Refine on Semantic Graphs for Repository-Level Code Completion Research Papers Huy Nhat Phan FPT Software AI Center, Hoang Nhat Phan Nanyang Technological University, Tien N. Nguyen University of Texas at Dallas, Nghi D. Q. Bui Salesforce Research | ||
14:12 12mLong-paper | SoTaNa: An Open-Source Software Engineering Instruction-Tuned Model Research Papers Ensheng Shi Xi’an Jiaotong University, Yanlin Wang Sun Yat-sen University, Fengji Zhang Microsoft Research Asia, Bei Chen Microsoft Research Asia, Hongyu Zhang Chongqing University, yanli wang Sun Yat-sen University, Daya Guo Sun Yat-sen University, Lun Du Microsoft Research, Shi Han Microsoft Research, Dongmei Zhang Microsoft Research, Hongbin Sun Xi’an Jiaotong University | ||
14:24 12mLong-paper | Automated Codebase Reconciliation using Large Language Models Research Papers Aneri Gandhi University of Toronto, Sanjukta De Advanced Micro Devices, Marsha Chechik University of Toronto, Vinay Pandit Advanced Micro Devices, Max Kiehn Advanced Micro Devices, Matthieu Chan Chee Advanced Micro Devices, Yonas Bedasso Advanced Micro Devices | ||
14:36 12mLong-paper | AI-Powered, But Power-Hungry? Energy Efficiency of LLM-Generated Code Research Papers Lola Solovyeva University of Twente, Sophie Weidmann University of Twente, Fernando Castor University of Twente | ||
14:48 6mShort-paper | SwiftEval: Developing a Language-Specific Benchmark for LLM-generated Code Evaluation Data and Benchmarking | ||
14:54 6mShort-paper | SE Arena: An Interactive Platform for Evaluating Foundation Models in Software Engineering Research Papers Zhimin Zhao Queen's University | ||
15:00 12mLong-paper | PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback Research Papers Yun Peng The Chinese University of Hong Kong, Akhilesh Deepak Gotmare Salesforce Research, Michael Lyu The Chinese University of Hong Kong, Caiming Xiong Salesforce Research, Silvio Savarese Salesforce Research, Doyen Sahoo Salesforce Research | ||
15:12 6mShort-paper | HyRACC: A Hybrid Retrieval-Augmented Framework for More Efficient Code Completion Research Papers Chuanyi Li Nanjing University, Jiwei Shang Nanjing University, Yi Feng Nanjing University, Bin Luo Nanjing University | ||
15:18 6mShort-paper | OptCodeTrans: Boost LLMs on Low-Resource Programming Language Translation Research Papers Jianbo Lin Nanjing University, Yi Shen Nanjing University, Chuanyi Li Nanjing University, Changan Niu Software Institute, Nanjing University, Bin Luo Nanjing University |