The FormAI Dataset: Generative AI in Software Security Through the Lens of Formal Verification
This paper presents the FormAI dataset, a large collection of 112,000 AI-generated compilable and independent C programs with vulnerability classification. We introduce a dynamic zero-shot prompting technique constructed to spawn diverse programs utilizing Large Language Models (LLMs). The dataset is generated by GPT-3.5-turbo and comprises programs with varying levels of complexity. Some programs handle complicated tasks like network management, table games, or encryption, while others deal with simpler tasks like string manipulation. Every program is labeled with the vulnerabilities found within the source code, indicating the type, line number, and vulnerable function name. This is accomplished by employing a formal verification method using the Efficient SMT-based Bounded Model Checker (ESBMC), which uses model checking, abstract interpretation, constraint programming, and satisfiability modulo theories to reason over safety/security properties in programs. This approach definitively detects vulnerabilities and offers a formal model known as a counterexample, thus eliminating the possibility of generating false positive reports. We have associated the identified vulnerabilities with Common Weakness Enumeration (CWE) numbers. We make the source code available for the 112,000 programs, accompanied by a separate file containing the vulnerabilities detected in each program, making the dataset ideal for training LLMs and machine learning algorithms. Our study unveiled that according to ESBMC, 51.24% of the programs generated by GPT-3.5 contained vulnerabilities, thereby presenting considerable risks to software safety and security.
Fri 8 DecDisplayed time zone: Pacific Time (US & Canada) change
14:00 - 15:30 | |||
14:00 30mPaper | The FormAI Dataset: Generative AI in Software Security Through the Lens of Formal Verification PROMISE 2023 Norbert Tihanyi Technology Innovation Institute, Tamas Bisztray University of Oslo, Ridhi Jain Technology Innovation Institute (TII), Abu Dhabi, UAE, Mohamed Amine Ferrag Technology Innovation Institute, Lucas C. Cordeiro The University of Manchester, UK, Vasileios Mavroeidis University of Oslo DOI | ||
14:30 30mPaper | Comparing Word-based and AST-based Models for Design Pattern Recognition PROMISE 2023 Sivajeet Chand Dept. of CSE Chalmers | University of Gothenburg, Sweden, Sushant Kumar Pandey Chalmers and University of Gothenburg, Jennifer Horkoff Chalmers and the University of Gothenburg, Miroslaw Staron University of Gothenburg, Miroslaw Ochodek Poznan University of Technology, Darko Durisic R&D, Volvo Cars, Gothenburg, Sweden DOI | ||
15:00 30mPaper | On Effectiveness of Further Pre-training on BERT models for Story Point Estimation PROMISE 2023 Sousuke Amasaki Okayama Prefectural University DOI |