Understanding and effectively managing Technical Debt (TD) remains a vital challenge in software engineering. While many studies on code-level TD have been published, few illustrate the business impact of low-quality source code. In this study, we combine two publicly available datasets to study the association between code quality on the one hand, and defect count and implementation time on the other hand. We introduce a value-creation model, derived from regression analyses, to explore relative changes from a baseline. Our results show that the associations vary across different intervals of code quality. Furthermore, the value model suggests strong non-linearities at the extremes of the code quality spectrum. Most importantly, the model suggests amplified returns on investment in the upper end. We discuss the findings within the context of the “broken windows” theory and recommend organizations to diligently prevent the introduction of code smells in files with high churn. Finally, we argue that the value-creation model can be used to initiate discussions regarding the return on investment in refactoring efforts.