Tue 18 Jul 2023 16:25 - 16:45 at Anderson Seminar Room (Gates 271) - Other topics

Automatic Differentiation (AD) has become a dominant technique in ML. AD frameworks have first been implemented for imperative languages using tapes. Meanwhile, functional implementations of AD have been developed, often based on dual numbers, which are close to the formal specification of differentiation and hence easier to prove correct. But these papers have focussed on correctness not efficiency. Recently, it was shown how an approach using dual numbers could be made efficient through the right optimizations. Optimizations are highly dependent on order, as one optimization can enable another. It can therefore be useful to have fine-grained control over the scheduling of optimizations. One method expresses compiler optimizations as rewrite rules, whose application can be combined and controlled using strategy languages. Previous work describes the use of term rewriting and strategies to generate high-performance code in a compiler for a functional language.

In this work, we implement dual numbers AD in a functional array programming language using rewrite rules and strategy combinators for optimization. We aim to combine the elegance of differentiation using dual numbers with a succinct expression of the optimization schedule using a strategy language. We give preliminary evidence suggesting the viability of the approach on a micro-benchmark.

Tue 18 Jul

Displayed time zone: Pacific Time (US & Canada) change

15:30 - 17:00
15:30
25m
Talk
Runtime verification of hash code in mutable classes
FTfJP
Davide Ancona DIBRIS, University of Genova, Italy, Angelo Ferrando DIBRIS, Università di Genova, Viviana Mascardi DIBRIS, University of Genova, Italy
15:55
25m
Talk
Verifying Well-Typedness Preservation of Refactorings using Scope Graphs
FTfJP
Luka Miljak Delft University of Technology, Casper Bach Poulsen Delft University of Technology, Flip van Spaendonck TU Eindhoven
DOI
16:25
20m
Talk
Using Rewrite Strategies for Efficient Functional Automatic Differentiation
FTfJP
Timon Böhler Technical University of Darmstadt, David Richter Technical University of Darmstadt, Mira Mezini TU Darmstadt
Pre-print