Predicting Popularity of Open Source Projects Using Recurrent Neural Networks
GitHub is the largest open source source development platform with millions of repositories on variety of topics. The number of stars received by a repository is often considered as a measure of its popularity. Predicting the number of stars of a repository has been associated with the number of forks, commits, followers, documentation size, and programming language in the literature. We extend prior studies in terms of input features and algorithm: We de ne six features from GitHub events corresponding to the development activities, and additional six features incorporating the influence of users (followers and contributors) on the popularity of projects into their development activities. We propose a time-series based forecast model using Recurrent Neural Networks to predict the number of stars received in consecutive k days. We assess the performance of our proposed model with varying k (1,7,14,30 days) and with varying input features. Our analysis on fi ve topmost starred repositories in data visualization area shows that the error rate ranges between 19.76 and 70.57 among the projects. The best performing models use either features from development activities only, or all metrics including all the features.
Sun 26 MayDisplayed time zone: Eastern Time (US & Canada) change
14:00 - 15:30 | |||
14:00 30mResearch paper | What Are the Perception Gaps between FLOSS Developers and SE Researchers? – A case of bug finding research OSS 2019 Papers | ||
14:30 30mResearch paper | Does FLOSS in Software Engineering Education narrow the Theory-Practice Gap? A Study Grounded on Students' Perception OSS 2019 Papers Debora Maria Coelho Nascimento Federal University of Sergipe, São Cristovão, Brazil, Christina von Flach Federal University of Bahia, Roberto A. Bittencourt State University of Feira de Santana, Feira de Santana, Brazil | ||
15:00 30mResearch paper | Predicting Popularity of Open Source Projects Using Recurrent Neural Networks OSS 2019 Papers Sefa Eren Sahin Faculty of Computer and Informatics Engineering, Istanbul Technical University, Kubilay Karpat Faculty of Computer and Informatics Engineering, Istanbul Technical University, Ayse Tosun Istanbul Technical University |