SCAM 2024
Mon 7 - Tue 8 October 2024
co-located with ICSME 2024
Tue 8 Oct 2024 11:04 - 11:20 at Fremont - Program Analysis and Generation Chair(s): Patrick Lam

In recent years, the use of automated source code generation utilizing transformer-based generative models has expanded, and these models can generate functional code according to the developers’ requirements. However, recent research revealed that these automatically generated source codes can contain vulnerabilities and other quality issues. Despite researchers’ and practitioners’ attempts to enhance code generation models, retraining and fine-tuning large language models is time-consuming, resource-intensive and costly. Thus, in this manuscript, we describe FRANC, a lightweight framework for recommending more secure and high-quality source code derived from transformer-based code generation models. FRANC includes a static filter to make the generated code compilable with heuristics and a quality-aware ranker to sort the code snippets based on a quality score. Moreover, the framework uses prompt engineering to fix persistent quality issues. We evaluated FRANC with five Python and Java code generation models and six prompt datasets, including a newly created one in this work (FRANC). The static filter improves 9% to 46% Java suggestions and 10% to 43% Python suggestions regarding compilability. The average improvement over the NDCG@10 score for the ranking system is 0.0763, and the repairing techniques repair the highest 80% of prompts. FRANC takes, on average, 1.98 seconds for Java; for Python, it takes 0.08 seconds.

Tue 8 Oct

Displayed time zone: Arizona change

10:30 - 12:00
Program Analysis and GenerationResearch Track at Fremont
Chair(s): Patrick Lam University of Waterloo
10:30
16m
Research paper
AUTOGENICS: Automated Generation of Context-Aware Inline Comments for Code Snippets on Programming Q&A Sites Using LLM
Research Track
Suborno Deb Bappon Department of Computer Science, University of Saskatchewan, Canada, Saikat Mondal University of Saskatchewan, Banani Roy University of Saskatchewan
Pre-print
10:47
16m
Research paper
Code Search Oriented Node-Enhanced Control Flow Graph EmbeddingVideo Presentation
Research Track
Yang Xu , WenLiang Peng South China University of Technology
11:04
16m
Research paper
FRANC: A Lightweight Framework for High-Quality Code Generation
Research Track
Mohammed Latif Siddiq University of Notre Dame, Beatrice Casey University of Notre Dame, Joanna C. S. Santos University of Notre Dame
Pre-print
11:21
16m
Research paper
REINFOREST: Reinforcing Semantic Code Similarity for Cross-Lingual Code Search Models
Research Track
Anthony Saieva IBM Research, Saikat Chakraborty Microsoft Research, Gail Kaiser Columbia University
Pre-print
11:40
20m
Live Q&A
Discussion (Program Analysis and Generation)
Research Track