ASE 2024
Sun 27 October - Fri 1 November 2024 Sacramento, California, United States
Tue 29 Oct 2024 14:00 - 14:15 at Camellia - LLM for SE 1 Chair(s): Chengcheng Wan

A code summary is a brief natural language description of source code. Summaries are usually only a single sentence long, and yet form the backbone of developer documentation. A short descriptions such as “changes all visible polygons to the color blue” can give a programmer a high-level idea of what code does without the effort of reading the code itself. Recently, products based on Large Language Models such as ChatGPT have demonstrated a strong ability to write these descriptions automatically. However, to use these tools, programmers must send their code to untrusted third parties for processing (e.g., via an API call). This loss of custody is not acceptable to many organizations. In this paper, we present an alternative: we train an open source model using sample output generated by GPT-3.5 in a process related to knowledge distillation. Our model is small enough (350m parameters) to be run on a single 16gb GPU, yet we show in our evaluation that it is large enough to mimic GPT-3.5 on this task.

Tue 29 Oct

Displayed time zone: Pacific Time (US & Canada) change

13:30 - 15:00
LLM for SE 1Research Papers / NIER Track / Tool Demonstrations / Journal-first Papers at Camellia
Chair(s): Chengcheng Wan East China Normal University
13:30
15m
Talk
How Effective Do Code Language Models Understand Poor-Readability Code?
Research Papers
Chao Hu Shanghai Jiao Tong University, Yitian Chai School of Software, Shanghai Jiao Tong University, Hao Zhou Pattern, Recognition Center, WeChat, Tencent, Fandong Meng WeChat AI, Tencent, Jie Zhou Tencent, Xiaodong Gu Shanghai Jiao Tong University
13:45
15m
Talk
An Empirical Study to Evaluate AIGC Detectors on Code Content
Research Papers
Jian Wang Nanyang Technological University, Shangqing Liu Nanyang Technological University, Xiaofei Xie Singapore Management University, Yi Li Nanyang Technological University
Pre-print
14:00
15m
Talk
Distilled GPT for source code summarization
Journal-first Papers
Chia-Yi Su University of Notre Dame, Collin McMillan University of Notre Dame
14:15
15m
Talk
Leveraging Large Language Model to Assist Detecting Rust Code Comment Inconsistency
Research Papers
Zhang Yichi , Zixi Liu Nanjing University, Yang Feng Nanjing University, Baowen Xu Nanjing University
14:30
10m
Talk
LLM-Based Java Concurrent Program to ArkTS Converter
Tool Demonstrations
Runlin Liu Beihang University, Yuhang Lin Zhejiang University, Yunge Hu Beihang University, Zhe Zhang Beihang University, Xiang Gao Beihang University
14:40
10m
Talk
Towards Leveraging LLMs for Reducing Open Source Onboarding Information Overload
NIER Track
Elijah Kayode Adejumo George Mason University, Brittany Johnson George Mason University
14:50
10m
Talk
CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
NIER Track
Usman Gohar Dept. of Computer Science, Iowa State University, Michael Hunter Iowa State University, Robyn Lutz Iowa State University, Myra Cohen Iowa State University