CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
Constructing assurance cases is a widely used, and sometimes required, process toward demonstrating that safety-critical systems will operate safely in their planned environment. To mitigate the risk of errors and missing edge cases, the concept of defeaters–arguments or evidence that challenge claims in an assurance case–has been introduced. Defeaters can provide timely detection of weaknesses in the arguments, prompting further investigation and timely mitigations. However, capturing defeaters relies on expert judgment, experience, and creativity and must be done iteratively due to evolving requirements and regulations. This new ideas paper proposes CoDefeater, an automated process to leverage large language models (LLMs) for finding defeaters. Initial results on two systems show that LLMs can efficiently find known and unforeseen feasible defeaters to support safety analysts in enhancing the completeness and confidence of assurance cases.
Tue 29 OctDisplayed time zone: Pacific Time (US & Canada) change
13:30 - 15:00 | LLM for SE 1Research Papers / NIER Track / Tool Demonstrations / Journal-first Papers at Camellia Chair(s): Chengcheng Wan East China Normal University | ||
13:30 15mTalk | How Effective Do Code Language Models Understand Poor-Readability Code? Research Papers Chao Hu Shanghai Jiao Tong University, Yitian Chai School of Software, Shanghai Jiao Tong University, Hao Zhou Pattern, Recognition Center, WeChat, Tencent, Fandong Meng WeChat AI, Tencent, Jie Zhou Tencent, Xiaodong Gu Shanghai Jiao Tong University | ||
13:45 15mTalk | An Empirical Study to Evaluate AIGC Detectors on Code Content Research Papers Jian Wang Nanyang Technological University, Shangqing Liu Nanyang Technological University, Xiaofei Xie Singapore Management University, Yi Li Nanyang Technological University Pre-print | ||
14:00 15mTalk | Distilled GPT for source code summarization Journal-first Papers | ||
14:15 15mTalk | Leveraging Large Language Model to Assist Detecting Rust Code Comment Inconsistency Research Papers Zhang Yichi , Zixi Liu Nanjing University, Yang Feng Nanjing University, Baowen Xu Nanjing University | ||
14:30 10mTalk | LLM-Based Java Concurrent Program to ArkTS Converter Tool Demonstrations Runlin Liu Beihang University, Yuhang Lin Zhejiang University, Yunge Hu Beihang University, Zhe Zhang Beihang University, Xiang Gao Beihang University | ||
14:40 10mTalk | Towards Leveraging LLMs for Reducing Open Source Onboarding Information Overload NIER Track | ||
14:50 10mTalk | CoDefeater: Using LLMs To Find Defeaters in Assurance Cases NIER Track Usman Gohar Dept. of Computer Science, Iowa State University, Michael Hunter Iowa State University, Robyn Lutz Iowa State University, Myra Cohen Iowa State University |