ASE 2024
Sun 27 October - Fri 1 November 2024 Sacramento, California, United States
Wed 30 Oct 2024 11:15 - 11:30 at Compagno - Program analysis 2 Chair(s): Qingkai Shi

Type recovery in stripped binaries is a critical and challenging task in reverse engineering, as it is the basis for many security applications (e.g., vulnerability detection). Traditional analysis methods are limited by software complexity and emerging types in real-world projects. To address these limitations, machine learning methods have been explored. However, existing supervised learning approaches struggle with analyzing complicated and uncommon types due to the limited availability of samples. Additionally, none of the existing works can capture fine-grained and inter-procedural features in the binaries. In this paper, we present TypeFSL, a framework that addresses the challenge of imbalanced type distributions by incorporating few-shot learning and captures inter-procedural semantics through program slicing. Based on a dataset with $3{,}003{,}117$ functions, TypeFSL achieves an average $77.9%$ and $84.6%$ accuracy across all architecture and optimizations in 20-way 5-shot and 10-shot classification tasks. Our prototype outperforms existing techniques in prediction accuracy and obfuscation resistance. Finally, the case studies demonstrate how TypeFSL predicts uncommon and complicated types in practical security analysis.

Wed 30 Oct

Displayed time zone: Pacific Time (US & Canada) change

10:30 - 12:00
Program analysis 2Research Papers / Industry Showcase at Compagno
Chair(s): Qingkai Shi Nanjing University
10:30
15m
Talk
Semantic-Enhanced Indirect Call Analysis with Large Language Models
Research Papers
Baijun Cheng Peking University, Cen Zhang Nanyang Technological University, Kailong Wang Huazhong University of Science and Technology, Ling Shi Nanyang Technological University, Yang Liu Nanyang Technological University, Haoyu Wang Huazhong University of Science and Technology, Yao Guo Peking University, Xiangqun Chen Peking University
10:45
15m
Talk
Scaler: Efficient and Effective Cross Flow Analysis
Research Papers
Steven (Jiaxun) Tang University of Massachusetts Amherst, Mingcan Xiang University of Massachusetts Amherst, Yang Wang The Ohio State University, Bo Wu Colorado School of Mines, Jianjun Chen Bytedance, Tongping Liu ByteDance
11:00
15m
Talk
AXA: Cross-Language Analysis through Integration of Single-Language Analyses
Research Papers
Tobias Roth TU Darmstadt | ATHENE - National Research Center for Applied Cybersecurity, Darmstadt, Julius Näumann TU Darmstadt | ATHENE - National Research Center for Applied Cybersecurity, Darmstadt, Dominik Helm University of Duisburg-Essen; TU Darmstadt; National Research Center for Applied Cybersecurity ATHENE, Sven Keidel TU Darmstadt, Mira Mezini TU Darmstadt; hessian.AI; National Research Center for Applied Cybersecurity ATHENE
Link to publication DOI Pre-print
11:15
15m
Talk
TypeFSL: Type Prediction from Binaries via Inter-procedural Data-flow Analysis and Few-shot Learning
Research Papers
Zirui Song The Chinese University of Hong Kong, YuTong Zhou The Chinese University of Hong Kong, Shuaike Dong Ant Group, Ke Zhang , Kehuan Zhang The Chinese University of Hong Kong
11:30
15m
Talk
Experience Report on Applying Program Analysis Techniques for Mainframe Application Understanding
Industry Showcase
Shivali Agarwal IBM, Hiroaki Nakamura IBM Research Tokyo, Rami Katan IBM Research Haifa
11:45
15m
Talk
Diagnosis via Proofs of Unsatisfiability for First-Order Logic with Relational Objects
Research Papers
Nick Feng University of Toronto, Lina Marsso University of Toronto, Marsha Chechik University of Toronto