ASE 2024
Sun 27 October - Fri 1 November 2024 Sacramento, California, United States
Wed 30 Oct 2024 11:30 - 11:45 at Magnoila - Testing 2 Chair(s): Wing Lam

Machine learning(ML)-based AI systems are often black box, making it challenging to understand and interpret their decision-making processes. Surrogate models are essential for providing transparency, enabling the extraction of interpretable models that approximate the behavior of these black-box models. This includes querying the model with inputs and using the responses to infer information about the model’s structure and parameters. In this paper, we propose a combinatorial testing approach for surrogate model construction, aiming to efficiently capture the significant interactions between features that drive the original model’s predictions. Our approach leverages t-way testing to generate diverse data points, focusing on interactions potentially influencing specific prediction classes. We iteratively refine the data set based on the pre-trained model’s predictions, identifying crucial patterns and generating additional targeted test cases. This iterative process efficiently constructs a surrogate model that closely mirrors the original model’s behavior, achieving high accuracy with a minimal number of test cases. We evaluate our approach on 4 datasets and 12 ML models and compare the results with state-of-the-art (STOA) approaches. Our experimental results suggest that the proposed approach can successfully construct a surrogate ML model, and in most cases, performs better than STOA approaches in terms of efficiency and accuracy.

Wed 30 Oct

Displayed time zone: Pacific Time (US & Canada) change

10:30 - 12:00
Testing 2Research Papers / Industry Showcase at Magnoila
Chair(s): Wing Lam George Mason University
10:30
15m
Talk
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Research Papers
Mouxiang Chen Zhejiang University, Zhongxin Liu Zhejiang University, He Tao Zhejiang University, Yusu Hong Zhejiang University, David Lo Singapore Management University, Xin Xia Huawei, JianLing Sun Zhejiang University
10:45
15m
Talk
Reducing Test Runtime by Transforming Test FixturesACM SigSoft Distinguished Paper Award
Research Papers
Chengpeng Li University of Texas at Austin, Abdelrahman Baz The University of Texas at Austin, August Shi The University of Texas at Austin
11:00
15m
Talk
Efficient Incremental Code Coverage Analysis for Regression Test Suites
Research Papers
Jiale Amber Wang University of Waterloo, Kaiyuan Wang Google, Pengyu Nie University of Waterloo
11:15
15m
Talk
Combining Coverage and Expert Features with Semantic Representation for Coincidental Correctness DetectionACM SigSoft Distinguished Paper Award
Research Papers
Huan Xie Chongqing University, Yan Lei Chongqing University, Maojin Li Chongqing University, Meng Yan Chongqing University, Sheng Zhang Chongqing University
11:30
15m
Talk
A Combinatorial Testing Approach to Surrogate Model Construction
Research Papers
Sunny Shree The University of Texas at Arlington, Krishna Khadka The University of Texas at Arlington, Jeff Yu Lei University of Texas at Arlington, Raghu Kacker National Institute of Standards and Technology, D. Richard Kuhn National Institute of Standards and Technology
11:45
15m
Talk
The Importance of Accounting for Execution Failures when Predicting Test Flakiness
Industry Showcase
Guillaume Haben University of Luxembourg, Sarra Habchi Ubisoft Montréal, John Micco VMware, Mark Harman Meta Platforms, Inc. and UCL, Mike Papadakis University of Luxembourg, Maxime Cordy University of Luxembourg, Luxembourg, Yves Le Traon University of Luxembourg, Luxembourg
Pre-print