ASE 2024
Sun 27 October - Fri 1 November 2024 Sacramento, California, United States
Tue 29 Oct 2024 13:30 - 13:45 at Camellia - LLM for SE 1 Chair(s): Chengcheng Wan

Code language models such as CodeT5 and CodeLlama have demonstrated substantial achievement in code comprehension. While the majority of research efforts have focused on improving model architectures and training processes, we find that the current benchmarks used for evaluating code comprehension models are confined to high-readability code, regardless of the popularity of low-readability code in reality. As such, they are inadequate to demonstrate the fine-grained ability of models, particularly the robustness to varying readability degrees. In this paper, we comprehensively analyze the robustness of code summarization models to code with varying readability, including seven obfuscated datasets derived from existing benchmarks. Our findings indicate that current code comprehension models are sensitive to code with varying readability. In particular, their performance predominantly depends on semantic cues within the code, often neglecting the syntactic aspects. Existing benchmarks are biased toward evaluating semantic features, thereby overlooking the models’ ability to understand non-sensitive syntactic features. Based on the findings, we present R-CodeSumEval, a new evaluation benchmark on code summarization tasks. R-CodeSumEval innovatively introduces readability into the testing process, considering semantic, syntactic, and their cross-obfuscation, thereby providing a more comprehensive and rigorous evaluation of code summarization models. Our studies also provide more insightful suggestions for future research, such as constructing new benchmarks to evaluate the robustness of models on poor-readability code, proposing readability-awareness metrics, and automatic methods for code data cleaning and normalization.

Tue 29 Oct

Displayed time zone: Pacific Time (US & Canada) change

13:30 - 15:00
LLM for SE 1Research Papers / NIER Track / Tool Demonstrations / Journal-first Papers at Camellia
Chair(s): Chengcheng Wan East China Normal University
13:30
15m
Talk
How Effective Do Code Language Models Understand Poor-Readability Code?
Research Papers
Chao Hu Shanghai Jiao Tong University, Yitian Chai School of Software, Shanghai Jiao Tong University, Hao Zhou Pattern, Recognition Center, WeChat, Tencent, Fandong Meng WeChat AI, Tencent, Jie Zhou Tencent, Xiaodong Gu Shanghai Jiao Tong University
13:45
15m
Talk
An Empirical Study to Evaluate AIGC Detectors on Code Content
Research Papers
Jian Wang Nanyang Technological University, Shangqing Liu Nanyang Technological University, Xiaofei Xie Singapore Management University, Yi Li Nanyang Technological University
Pre-print
14:00
15m
Talk
Distilled GPT for source code summarization
Journal-first Papers
Chia-Yi Su University of Notre Dame, Collin McMillan University of Notre Dame
14:15
15m
Talk
Leveraging Large Language Model to Assist Detecting Rust Code Comment Inconsistency
Research Papers
Zhang Yichi , Zixi Liu Nanjing University, Yang Feng Nanjing University, Baowen Xu Nanjing University
14:30
10m
Talk
LLM-Based Java Concurrent Program to ArkTS Converter
Tool Demonstrations
Runlin Liu Beihang University, Yuhang Lin Zhejiang University, Yunge Hu Beihang University, Zhe Zhang Beihang University, Xiang Gao Beihang University
14:40
10m
Talk
Towards Leveraging LLMs for Reducing Open Source Onboarding Information Overload
NIER Track
Elijah Kayode Adejumo George Mason University, Brittany Johnson George Mason University
14:50
10m
Talk
CoDefeater: Using LLMs To Find Defeaters in Assurance Cases
NIER Track
Usman Gohar Dept. of Computer Science, Iowa State University, Michael Hunter Iowa State University, Robyn Lutz Iowa State University, Myra Cohen Iowa State University