CIbSE 2025
Mon 12 - Fri 16 May 2025 Ciudad Real, Spain

The migration from monolithic architectures to microservices poses significant challenges, particularly in achieving modularity, decoupling, and functional coherence. This paper explores a spectral multi-view clustering approach for systematically decomposing monolithic applications while generating multiple architectural options tailored to weighted quality attributes. By integrating structural dependencies, domain semantics, and dynamic analysis into a unified weighted affinity model, our method enables architects to make flexible trade-offs between competing priorities. Using spectral clustering on this multi-view affinity matrix, we uncover optimal service boundaries that balance cohesion, coupling, and complexity. Through validation with a real-world application, we demonstrate how this approach allows architects to dynamically adjust the importance of input views and prioritize output quality attributes, aligning the architecture with both business and technical goals. This framework empowers decision-making, offering architects a practical tool to streamline the migration process while navigating complex architectural considerations.

Wed 14 May

Displayed time zone: Brussels, Copenhagen, Madrid, Paris change

12:00 - 13:30
Session W1a Artificial Intelligence and Software QualityCIbSE 2025 (Main Track) at Salón de Actos - Alan Turing
Chair(s): Nelly Condori-Fernández Universidad de Santiago de Compostela
12:00
15m
Paper
TrustML: A Python package for computing the trustworthiness of ML models (Journal First)
CIbSE 2025 (Main Track)
Martí Manzano , Claudia Ayala Universitat Politècnica de Catalunya, Spain, Cristina Gómez Universitat Politècnica de Catalunya
File Attached
12:15
30m
Full-paper
Evaluación de la calidad de historias de usuario usando modelos de lenguaje de gran tamaño: un estudio en la industria
CIbSE 2025 (Main Track)
12:45
15m
Vision and Emerging Results
Multi-View Spectral Clustering for Monolith-to-Microservices Migration
CIbSE 2025 (Main Track)
Gonzalo Rivera Lazo , Fernando Montoya , Hernan Astudillo Universidad Andrés Bello, Chile
:
:
:
: