Identifying concerns when specifying machine learning-enabled systems: A perspective-based approach
Engineering successful machine learning (ML)-enabled systems poses various challenges from both a theoretical and a practical side. Among those challenges are how to effectively address unrealistic expectations of ML capabilities from customers, managers and even other team members, and how to connect business value to engineering and data science activities composed by interdisciplinary teams. In this paper, we present PerSpecML, a perspective-based approach for specifying ML-enabled systems that helps practitioners identify which attributes, including ML and non-ML components, are important to contribute to the overall system’s quality. The approach involves analyzing 60 concerns related to 28 tasks that practitioners typically face in ML projects, grouping them into five perspectives: system objectives, user experience, infrastructure, model, and data. Together, these perspectives serve to mediate the communication between business owners, domain experts, designers, software and ML engineers, and data scientists. The creation of PerSpecML involved a series of formative evaluations conducted in different contexts: (i) in academia, (ii) with industry representatives, and (iii) in two real industrial case studies. As a result of the diverse validations and continuous improvements, PerSpecML stands as a promising approach, poised to positively impact the specification of ML-enabled systems, particularly helping to reveal key components that would have been otherwise missed without using PerSpecML.
Thu 24 OctDisplayed time zone: Brussels, Copenhagen, Madrid, Paris change
16:00 - 17:30 | Software vulnerabilities and defectsESEM Technical Papers / ESEM Emerging Results, Vision and Reflection Papers Track / ESEM Journal-First Papers at Sala de graus (C4 Building) Chair(s): Daniela Cruzes Norwegian University of Science and Technology | ||
16:00 20mFull-paper | Automated Code-centric Software Vulnerability Assessment: How Far Are We? An Empirical Study in C/C++ ESEM Technical Papers Anh Nguyen The , Triet Le The University of Adelaide, Muhammad Ali Babar School of Computer Science, The University of Adelaide DOI Pre-print | ||
16:20 20mFull-paper | Empirical Evaluation of Frequency Based Statistical Models for Estimating Killable Mutants ESEM Technical Papers Konstantin Kuznetsov Saarland University, CISPA, Alessio Gambi Austrian Institute of Technology (AIT), Saikrishna Dhiddi Passau University, Julia Hess Saarland University, Rahul Gopinath University of Sydney | ||
16:40 20mFull-paper | Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems ESEM Technical Papers Guoshuai Shi University of Waterloo, Farshad Kazemi University of Waterloo, Michael W. Godfrey University of Waterloo, Canada, Shane McIntosh University of Waterloo Pre-print | ||
17:00 15mVision and Emerging Results | DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware ESEM Emerging Results, Vision and Reflection Papers Track Tiezhu Sun University of Luxembourg, Nadia Daoudi Luxembourg Institute of Science and Technology, Kisub Kim Singapore Management University, Singapore, Kevin Allix Independent Researcher, Tegawendé F. Bissyandé University of Luxembourg, Jacques Klein University of Luxembourg | ||
17:15 15mJournal Early-Feedback | Identifying concerns when specifying machine learning-enabled systems: A perspective-based approach ESEM Journal-First Papers Hugo Villamizar fortiss GmbH, Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Helio Côrtes Vieira Lopes PUC-Rio, Daniel Mendez Blekinge Institute of Technology and fortiss DOI |