Write a Blog >>
MSR 2022
Mon 23 - Tue 24 May 2022
co-located with ICSE 2022

Collaboration platforms, such as GitHub and Slack, are a vital instrument in the day-to-day routine of software engineering teams. The data stored in these platforms has a significant value for data-driven methods that assist with decision-making and help improve software quality. However, the distribution of this data across different platforms leads to the fact that combining it is a very time-consuming process. Most existing algorithms for socio-technical assistance, such as recommendation systems, are based only on data directly related to the purpose of the algorithms, often originating from a single system.

In this work, we explore the capabilities of a multimodal recommendation system in the context of software engineering. Using records of interaction between employees in a software company in messenger channels and repositories, as well as the organizational structure, we build several channel recommendation models for a software engineering collaboration platform, and compare them on historical data. In addition, we implement a channel recommendation bot and assess the quality of recommendations from the best models with a user study.

We find that the multimodal recommender yields better recommendations than unimodal baselines, allows to mitigate the overfitting problem, and helps to deal with cold start. Our findings suggest that the multimodal approach is promising for other recommendation problems in software engineering.

Thu 19 May

Displayed time zone: Eastern Time (US & Canada) change

11:00 - 11:50
Session 11: Machine Learning & Information RetrievalTechnical Papers at MSR Main room - odd hours
Chair(s): Phuong T. Nguyen University of L’Aquila
11:00
4m
Short-paper
On the Naturalness of Fuzzer Generated Code
Technical Papers
Rajeswari Hita Kambhamettu Carnegie Mellon University, John Billos Wake Forest University, Carolyn "Tomi" Oluwaseun-Apo Pennsylvania State University, Benjamin Gafford Carnegie Mellon University, Rohan Padhye Carnegie Mellon University, Vincent J. Hellendoorn Carnegie Mellon University
11:04
7m
Talk
Does Configuration Encoding Matter in Learning Software Performance? An Empirical Study on Encoding Schemes
Technical Papers
Jingzhi Gong Loughborough University, Tao Chen Loughborough University
DOI Pre-print Media Attached
11:11
7m
Talk
Multimodal Recommendation of Messenger Channels
Technical Papers
Ekaterina Koshchenko JetBrains Research, Egor Klimov JetBrains Research, Vladimir Kovalenko JetBrains Research
11:18
7m
Talk
Senatus: A Fast and Accurate Code-to-Code Recommendation Engine
Technical Papers
Fran Silavong JP Morgan Chase & Co., Sean Moran JP Morgan Chase & Co., Antonios Georgiadis JP Morgan Chase & Co., Rohan Saphal JP Morgan Chase & Co., Robert Otter JP Morgan Chase & Co.
DOI Pre-print Media Attached
11:25
7m
Talk
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study
Technical Papers
Tatiana Castro Vélez City University of New York (CUNY) Graduate Center, Raffi Khatchadourian City University of New York (CUNY) Hunter College, Mehdi Bagherzadeh Oakland University, Anita Raja City University of New York (CUNY) Hunter College
Pre-print Media Attached
11:32
7m
Talk
GraphCode2Vec: Generic Code Embedding via Lexical and Program Dependence Analyses
Technical Papers
Wei Ma SnT, University of Luxembourg, Mengjie Zhao LMU Munich, Ezekiel Soremekun SnT, University of Luxembourg, Qiang Hu University of Luxembourg, Jie M. Zhang King's College London, Mike Papadakis University of Luxembourg, Luxembourg, Maxime Cordy University of Luxembourg, Luxembourg, Xiaofei Xie Singapore Management University, Singapore, Yves Le Traon University of Luxembourg, Luxembourg
Pre-print
11:39
11m
Live Q&A
Discussions and Q&A
Technical Papers


Information for Participants
Thu 19 May 2022 11:00 - 11:50 at MSR Main room - odd hours - Session 11: Machine Learning & Information Retrieval Chair(s): Phuong T. Nguyen
Info for room MSR Main room - odd hours:

Click here to go to the room on Midspace