Towards Highly Scalable Runtime Models with HistoryNIER
Advanced systems such as IoT comprise many heterogeneous, interconnected, and autonomous entities operating in often highly dynamic environments. Due to their large scale and complexity, large volumes of monitoring data are generated and need to be stored, retrieved, and mined in a time- and resource-efficient manner. Architectural self-adaptation automates the control, orchestration, and operation of such systems. This can only be achieved via sophisticated decision-making schemes supported by monitoring data that fully captures the system behavior and its history.
Employing model-driven engineering techniques we propose a highly scalable, history-aware approach to store and retrieve monitoring data in form of enriched runtime models. We take advantage of rule-based adaptation where change events in the system trigger adaptation rules. We first present a scheme to incrementally check model queries in the form of temporal logic formulas which represent the conditions of adaptation rules against a runtime model with history. Then we enhance the model to retain only information that is temporally relevant to the queries, therefore reducing the accumulation of information to a required minimum. Finally, we demonstrate the feasibility and scalability of our approach via experiments on a simulated smart healthcare system employing a real-world medical guideline.
Thu 2 JulDisplayed time zone: (UTC) Coordinated Universal Time change
07:00 - 08:20 | Session 5: Design, Verification & ExplainabilitySEAMS 2020 at SEAMS Chair(s): Javier Camara University of York | ||
07:00 5mTalk | Collective Risk Minimization via a Bayesian Model for Statistical Software TestingTechnical SEAMS 2020 Joachim Haensel Hasso Plattner Institute, University of Potsdam, Germany, Christian Medeiros Adriano Hasso-Plattner-Institute, Potsdam, Johannes Dyck Hasso Plattner Institute for Software Systems Engineering, Germany, Holger Giese Hasso Plattner Institute, University of Potsdam Pre-print Media Attached | ||
07:05 5mTalk | Expecting the Unexpected: Developing Autonomous-System Design Principles for Reacting to Unpredicted Events and ConditionsNIER SEAMS 2020 Assaf Marron Weizmann Institute of Science, Israel, Lior Limonad IBM Corporation, Israel, Sarah Pollack Weizmann Institute of Science, Israel, David Harel Weizmann Institute of Science, Israel Media Attached | ||
07:10 5mTalk | Self-Protection Against Business Logic VulnerabilitiesNIER SEAMS 2020 Silvan Zeller Omegapoint AB, Sweden, Narges Khakpour Linnaeus University, Danny Weyns KU Leuven, Daniel Deogun Omegapoint AB, Sweden Media Attached File Attached | ||
07:15 5mTalk | Towards Highly Scalable Runtime Models with HistoryNIER SEAMS 2020 Lucas Sakizloglou Hasso Plattner Institute, University of Potsdam, Sona Ghahremani Hasso Plattner Institute, University of Potsdam, Thomas Brand , Matthias Barkowsky Hasso Plattner Institute, University of Potsdam, Germany, Holger Giese Hasso Plattner Institute, University of Potsdam DOI Pre-print Media Attached | ||
07:20 60mOther | Q&A and Discussion (Session 5) SEAMS 2020 |