Thu 16 Jun 2022 09:00 - 09:30 at 205 - Paper discussion B3 (IRL) Chair(s): June Sallou
With the growing availability of large-scale datasets, and the popularization of affordable storage and computational capabilities, the energy consumed by AI is becoming a growing concern. To address this issue, in recent years, studies have focused on demonstrating how AI energy efficiency can be improved by tuning the model training strategy. Nevertheless, how modifications applied to datasets can impact the energy consumption of AI is still an open question. To fill this gap, in this exploratory study, we evaluate if datacentric approaches can be utilized to improve AI energy efficiency. To achieve our goal, we conduct an empirical experiment, executed by considering 6 different AI algorithms, a dataset comprising 5,574 data points, and two dataset modifications (number of data points and number of features). Our results show evidence that, by exclusively conducting modifications on datasets, energy consumption can be drastically reduced (up to 92.16%), often at the cost of a negligible or even absent accuracy decline. As additional introductory results, we demonstrate how, by exclusively changing the algorithm used, energy savings up to two orders of magnitude can be achieved. In conclusion, this exploratory investigation empirically demonstrates the importance of applying data-centric techniques to improve AI energy efficiency. Our results call for a research agenda that focuses on data-centric techniques, to further enable and democratize Green AI.
Tue 14 JunDisplayed time zone: Athens change
16:30 - 18:00 | |||
16:30 30mPaper | Data-Centric Green AI: An Exploratory Empirical Study. Research Papers Roberto Verdecchia Vrije Universiteit Amsterdam, Luís Cruz Deflt University of Technology, June Sallou University of Rennes 1, Michelle Lin McGill University, James Wickenden University of Bristol, Estelle Hotellier Inria Pre-print | ||
17:00 30mPaper | Analysing the energy impact of different optimisations for machine learning models. Research Papers Maria Gutierrez University of Castilla-La Mancha, Felix García University of Castilla-La Mancha, Mª Angeles Moraga University of Castilla-La Mancha | ||
17:30 30mTalk | Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approachJournal-first Research Papers |
Thu 16 JunDisplayed time zone: Athens change
09:00 - 10:30 | |||
09:00 30mPaper | Data-Centric Green AI: An Exploratory Empirical Study. Research Papers Roberto Verdecchia Vrije Universiteit Amsterdam, Luís Cruz Deflt University of Technology, June Sallou University of Rennes 1, Michelle Lin McGill University, James Wickenden University of Bristol, Estelle Hotellier Inria Pre-print | ||
09:30 30mPaper | Analysing the energy impact of different optimisations for machine learning models. Research Papers Maria Gutierrez University of Castilla-La Mancha, Felix García University of Castilla-La Mancha, Mª Angeles Moraga University of Castilla-La Mancha | ||
10:00 30mTalk | Assessing the embodied carbon footprint of IoT edge devices with a bottom-up life-cycle approachJournal-first Research Papers |